
Article 

Two -Level Evolutionary Multi -Objective 

Optimization of  a District Heating System with  

Distributed Cogeneration  

Melchiorre Casisi 1,*, Stefano Costanzo2, Piero Pinamonti 1, Mauro Reini 3 

1 Polytechnic Dept. of Engineering and Architecture, University of Udine, Italy  
2 ESTECO S.p.A., Area Science Park, Padriciano 99, Trieste, Italy 
3 Dept. of Engineering and Architecture, University of Trieste, Italy  

* Correspondence: melchiorre.casisi@uniud.it; Tel.: +39-338-9946-864 

Abstract: The paper deals with the modelization  and optimization of an integrated multi -

component energy system. On-off operation and presence-absence of components must be 

described by means of binary decision variables, besides equality and inequality constraints; 

furthermore, the synthesis and the operation of the energy system should be optimized at the same 

time. In this paper a hierarchical optimization strategy is used, adopting a genetic algorithm in the 

higher optimization level, to choose the main binary decision variables, whilst a MILP algor ithm is 

used in the lower level, to choose the optimal operation of the system and to supply the merit 

function to the genetic algorithm. The method is then applied to a distributed generation system, 

which has to be designed for a set of users located in the center of a small town in the North -East of 

Italy. The results show the advantage of distributed cogeneration, when the optimal synthesis and 

operation of the whole system are adopted, and significant reduction in the computing time by 

using the proposed two-level optimization procedure . 

Keywords: District Heating; multi -objective evolutionary optimization; distributed cogeneration; 

optimal operation . 

 

1. Introduction  

A more thorough integration among energy systems is expected to significantly contribute to 

reducing primary energy consumption, as well as global pollutant emissions and energy costs for 

final users. Integrated District Heating (DHN) networks and Combined  Heat and Power (CHP) are 

of particular interest for the object of defining an efficient system for distributed energy generation 

and are widely discussed in Literature, i.e. in terms of role and opportunities in a country like 

Denmark [1] or United Kingdo m [2], or considering a review of the different technology 

opportunities [3] and of the energy sources [4] also for Combined Heat, Cooling and Power systems 

(CHCP). The expected advantages of energy integration can, in fact, be obtained in real world 

appli cations only if the structure (synthesis) and the management of the whole system are carefully 

optimized. For instance, in [5] a computational framework is proposed to face the problem at city 

districts level, in [6] a Mixed Integer Linear Programming (MIL P) model is used to determine the 

type, number and capacity of equipment in CHCP systems installed in a tertiary sector building, in 

[7] a modelling and optimization method is developed for planning an d operating a CHP-DH system 

with a solar thermal plant and a thermal energy storage, in [8] a detailed optimization model is 

presented for planning the short -term operation of combined cooling, heat and power (CCHP) en ergy 

systems, for a single user in [9]an algorithm for the minimization of a suitable cost fu nction is applied 

to optimize CHP commercial and domestic systems with variable heat demand.  

Synthesis and operation optimization of integrated multi -component energy systems generally 

require a binary variable set to be introduced to describe the existence/absence and the on/off 

operation status of components and energy connections inside the model. Besides these, other 
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continuous variables have to be introduced for modelling the energy and material flows exchanged 

among components, as well as other possible design options [6, 10, 11].  

In addition to this complex variable set, the variation of the thermal demands of the final users 

has also to be taken into account. Thus, a Mixed Integer Non Linear Programming (MINLP) problem 

has generally to be solved for obtaining the optimal synthesis and operation of the integrated system, 

with a high computational effort. A general introduction to MILP, MINLP and other possible 

approaches to the design and synthesis optimization of energy systems can be found in [12]. Recently, 

the MINLP approach ha s been used, for instance in [13, 14] to optimize the CCHP systems of different 

buildings with solar energy integration.  

The computational effort can be reduced if the whole problem is faced by defining two (or more) 

levels, which can be solved dealing with a reduced num ber of independent variables [15], or if it is 

decomposed into many sub-problems, which have to be solved with an iterative procedure [16 -18]. 

In both cases the solution could be more easily obtained if the problem were described with sufficient 

precision by means of a linear model (MILP), even if additional variables are introduced for 

considering strong non-linear relations among flows of both energy and mass [10, 11]. 

Unfortunately, when there is a high numb er of binary variables present in almost all sub-

problems, the coupling variables, which allow each sub -problem to be solved consistently with the 

optimal solution of the whole system [19, 20], become too changeable to allow the convergence of the 

optimiza tion process toward the actual optimum. This is h ighlighted, for instance, in [21 ], where the 

Mixed Integer Linearized Exergoeconomic (MILE) method is presented and the thermoeconomic 

costs are used as coupling variables. 

In the present paper, such difficu lties are overcome by using a novel approach, characterized by 

a two-level hierarchical optimization strategy which does not require an explicit system 

decomposition. In the proposed method a genetic algorithm is used in the higher optimization level, 

to choose the main binary decision variables, whilst a MILP algorithm is used in the lower level, to 

choose the optimal operation of the system and to supply the merit function to the genetic algorithm.  

The proposed system model is intended for district -level implementation and is concerned with 

the optimal layout and operation of CHP units, deployed in different buildings, as well as with the 

optimal configuration of one, or more micro -district heating grids. A central CHP plant, besides a set 

of micro -CHP gas turbines distributed among the involved buildings, along with the installation of 

thermal collectors and photovoltaic (PV) panels have been considered to further improve the energy 

efficiency and sustainability of the whole system.  

The main optimization was aimed at minimizing the total annual cost for owning, maintaining 

and operating of the whole system. Furthermore, the optimal solution, beside satisfying the electric 

energy and heating demands of each building throughout the year, should allow a minim um 

environmental impact. Therefore, a multi -objective optimization has been performed, by considering, 

as a second objective of the optimization, the avoided CO2 compared to the conventional energy 

supply.  

In summary, the method allows the identification o f the optimal configuration of the micro -

district heating grids, of the design of the CHP units in each building and the optimal operation of 

the whole energy system inside a unique optimization procedure, satisfying the energy demands of 

multiple users.  

The focus of this paper does not lie so much in the numerical solution of the case study, but 

rather in the performance of the hierarchical optimization algorithm and on the option of easily 

performing a multi -objective optimization. The expectation is that  the developed optimization 

strategy highlights a reduction in the computing time compared with the direct implementation of 

the whole problem in a single level MILP solver. Therefore, the presented method could be applied 

to distributed cogeneration systems with a number of energy users and district heating branches 

much higher than those considered in the case study. 

2. Model of a cogeneration system with District Heating   
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analysis of the different techniques to reduce the computational effort for energy models resolution 

[32], including time slices and typical days  or weeks identification. In [33 ] the approach of identifying 

a set of proper typical days is used in the optimal design of a multi -energy system with seasonal 

thermal storage, while in [34] an i mproved adaptive genetic algorithm is proposed to model the 

typical day load sequence for multi -objective optimization of a distributed generation system.  

 

 

Figure 2. Plan of buildings and path of district heating network in the Pordenone city center: 1) Town Hall, 2) 

Theatre, 3) Library, 4) Primary school, 5) Retirement home, 6) Ex-monastery.  

In Figures 3a and 3b, the energy demands of the 6 buildings are shown for a winter working 

day, as an example. In Figure 4 the total monthly energy demands are shown for all the year. Notice 

that the thermal demand shows strong seasonal variations, as it is common for civil buildings in the 

central European region.  

In each building a local cogeneration unit may be installed, with a maximum number of 

microturbines equal to 4, jointly with an integration boiler; all buildings are also connected to the 

external electric grid. In addition, a 600 kWe cogeneration ICE may be located near the buildings 

(Figure 1). This size has been chosen to avoid the adoption of a too big ICE in an urban context, whilst 

the choice of its location is obtained from the optimization procedure. Only one ICE can be chosen in 

the optimal solution, to compare a fully distributed cogeneration system with a more concentrated 

one.  Each cogeneration unit can produce electrical energy for both the grid and the building where 

it is placed, as well as thermal energy for both the district heating network and the building.  
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number of binary decision variables is low enough , as shown by the authors in [24, 25, 43, 44]. 

Otherwise, the computational effort becomes unacceptable. For instance, the first optimization of the 

case study was performed with this approach by using the commercial software FICO ® Xpress 

Optimization Suite [45 ] and a desktop computer with an Intel Core i7 -4770 processor at 3.40 GHz, 16 

Gb RAM and a solid -state disk. The computational time increased from a few seconds for only three 

buildings to 26 minutes for six buildings. This meant that the problem complexity caused by the 

number of the independent variables was too great to obtain a solution covering an entire town 

district instead of a limited number of buildings. In other words, this approach is not feasible for large 

scale instances. To solve problems of this kind, different approaches based on problem decomposition 

can be found in literature [12, 16-18]. For instance, a physical decomposition could be considered, by 

dividing the whole system into the heating network and the different thermal energy suppliers, but 

this approach is advisable if the binary variables affect only one of the sub-systems obtained by the 

decomposition [21]. 

In this case study, there are many binary variables in all sub-systems, not in only one of them, 

therefore a mere physically based decomposition of the problem cannot be usefully applied. To 

overcome this difficulty, in this study the pro blem has been modeled as a hierarchical problem which 

involves two levels: an outer and an inner level.  

The outer level is concerned with the general configuration of the CHP system in terms of the 

number of branches of the heating grid (i.e. pipeline connections between buildings), the position of 

the central CHP plant, the location and the number of micro -CHP plants. The scheduling of the CHP 

units throughout the year, as well as the surface of thermal collectors and PV cells, are inner level 

variables instead. The objective of the inner level is to find the optimal operation which satisfies the 

constraints expressed by thermal and power demands of each final user and minimizes the 

operational costs of the whole system. 

The problem has been formulated as a two -level problem with the commercial optimization 

software modeFRONTIER® [46], integrated with FICO® Xpress Optimization Suite. The outer level 

configuration has been optimized with a genetic algorithm, whereas the inner level has been solved 

with the Xp ress exact solver. 

 

 

Figure 5. Interaction of the Outer and Inner levels in the Bi -level optimization algorithm . 

As shown in Figure 5, a simple iteration loop has been defined. During its optimization loop the 

genetic algorithm assigns the values to the system configuration variables defining the current 

generation of individuals (i.e. variables X(j,k) and r(k,v) introduced in § 2). The problem has been set 
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with 40 individuals per generation and 25 generations. The individual evaluation phase is made on 

the basis of the results of exact solver at the inner level. The latter receives the configuration variables 

of each individual and, for each of them, it performs the operation optimization using the total annual 

cost (CostTOT, Equation 1) as objective function. The optimal solution contains not only the minimum 

total annual cost allowed by the configuration variables introduced for each individual, but also the 

equivalent CO2 emissions and therefore the avoided emissions, with respect to the conventional 

solution for energy supply. The optimized variable assignment in the inner level is sent back to the 

outer level to allow the genetic algorithm to determine whether a solution is suitable for guiding the 

creation of the next generation of solutions, as well as the quantitative indexes of each solution (these 

indexes are then summarized in the Scatter Matrix and in the Probability Density Function charts, 

presented in the following § 5). The entire loop is repeated until the termination criterion is reache d, 

i.e. when a further evolution of the population does not obtain any appreciable performance 

improvement, indicated as Stop Condition in Figure 5. It is worth noting that more than one objective 

function can be used to evaluate the individual performance , allowing to highlight different 

convergence stories and to identify the Pareto front. In this case study one second objective function 

(besides the total annual cost) have been considered: the avoided CO2 emissions during the year (to 

be maximized), in order of measuring the environmental impact of the modeled system.  

By applying this two -level approach to the case study, i.e. the optimization of the CHP system 

with district heating for 6 buildings, the computational times for each solution provided to th e inner 

level were reduced to a mere 3 seconds compared to the previous 26 minutes required by the direct 

MILP approach. This means that we could perform 520 design evaluations in the same time without 

using any parallel computing functionalities of the wo rkstation.  

The modeFRONTIER® software enabled us not only to keep the original MILP model used in 

the direct approach, but also to integrate it in a hierarchical optimization workflow. After an 

exploration of different optimization algorithms, we decided to use the genetic algorithm NSGA-II, 

wi dely discussed in literature [47]. We considered it the most suitable approach for tackling the outer 

level of this problem in terms of result accuracy and convergence rate. Furthermore, this approach 

enabled us to use the multi-core processor of the computer and thus perform in parallel multiple 

inner level runs, which significantly sped up the optimization process. Repeated optimization test 

runs resulted in the optimal problem solution in less than 15 minutes with an accurate exploration of 

the design space. 

Given these results, a sub-set of the inner level parameters was transferred to the outer level, i.e. 

the surfaces of thermal collectors (AST(k)) and PV panels (APV(k)). In this way the computations at the 

inner level were further streamlin ed without this having a negative impact on the outer level, and all 

design variables have been put in the outer decision level, allowing the genetic algorithm to manage 

directly the surfaces of thermal collectors and PV panels, in view of both objective functions. 

It is worth noting that an easy implementation of the multi -objective approach has been possible 

because the choice of the objective as the merit function of the genetic algorithm affects only the 

decision variables of the outer level, not the inner level. 

The presence of two objectives in the outer level and only one of those objectives, i.e. cost 

minimization, at the inner level, may throw the search off balance in favor of this objective. In spite 

of this apparent drawback, the NSGA -II algorith m is able to maintain the uniformity of the Pareto 

front. However, we can expect a different quality of exploration between the two tails of the front 

corresponding to the best values of each of the objectives. The tail of the avoided CO2 emissions 

objective will be less explored, but this is not an issue because the most expensive solutions lead to a 

rather small additional environmental benefit in terms of CO 2 emissions and has thus poor industrial 

appeal. 

5. Results 

Figures 6 and 7 show the convergence history of the hierarchical optimization of both objectives, 

i.e. avoided CO2 emissions and total annual cost. In particular, Figure 6 shows that the maximum CO 2 

savings of 3314 t/year has been obtained at iteration number 964 (Design ID), but this solution implies 
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Figure 8. Pareto front of the multi -objective optimization.  

A moderate inverse correlation can be observed between the thermal collector surface (AST) and 

all the above mentioned variables. In fact, the more the branches and CHP units in the plant, the less 

the usefulness of the thermal collectors to satisfy the energy demand of the buildings. On the other 

hand, the use of solar energy implies a reduction of CHP units and therefore a lower total cost, but 

also less avoided CO2 emissions because additional power has to be purchased from the grid. 

 

 

Figure 9. Scatter Matrix chart of the variables in the outer level . 
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The Probability Density Function charts (Figure 10) reveal that the number of branches is in most 

cases limited to two mid values, i.e. 3 and 4. In no case has an optimal solution been found for the 

minimum (i.e. 0) and the maximu m (i.e. 8) number of branches.  

A significant variability can be observed in the total surface of thermal collectors A ST (between 0 

and 70 m2), although the majority of solutions have the l owest values. Few solar thermal collectors 

are installed in all optimal solutions because of the high investment costs. 

On the contrary, the PV panel range of values is quite restricted: between 590 and 600 m2, with 

more than half optimal configurations ha ving the highest value, because of the strong reduction of 

costs occurred in recent years for this kind of components. 

 

 

Figure 10. Probability Density Function charts for the outer level variables . 

The PV panel range of values is quite restricted, i.e. between 590 and 600 m2, with more than half 

optimal configurations with the highest value because of low investment costs.  

Finally, we can consider the number of micro -CHP units as the most relevant outer level variable 

due to their rather uniform distribution on the Pareto from, as shown in Figure 10. From the Pareto 

front (Fig. 8) it can be noted that the solution allowing the maximum CO 2 saving and, at the same 

time, a reduction of the total cost compared to the reference solution, is ID 419. The main results for 

this compromise solution are shown in Table 3.  

Once one solution has been identified in the Pareto front, the output of the optimization model 

contains complete information about the optimal structure and operation of the energy system. As 

an example, Fig. 11 shows the electricity, heat and pipelines optimal hourly schedules in 4 typical 

working days, for the compromise optimal solution ID 419.  

Notice that the electrical and thermal energy values have been aggregated at global system level, 

even if the solution contains the values of all energy flows exchanged by each building and produced 

by each cogeneration unit. In Fig. 12 the detailed hourly schedules of heat flows through the pipelines 

and electric energy exchanged with the grid is shown for a typical January working day.  

By analyzing the electric energy balance in Fig. 11, it can be noted that the whole system 

produces an excess of energy compared to the electric demand, especially during the winter time; 

nevertheless, some buildings need, at the same time, to buy electric energy from the grid. Fig. 12 

shows that this happens in buildings 1 and 6 (during the typical January working day).  
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Figure 11. Global electricity, heat and pipelines hourly schedules in 4 typical working days, for the compromise 

optimal solution ID 419.  
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