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Abstract

In this paper only one basic assumption has been made: if we try to
describe black holes, their behavior should be understood in the same lan-
guage as the one we use for particles; black holes should be treated just
like atoms. They must be quantum forms of matter, moving in accordance
with Schrédinger equations just like everything else. In particular, Rosen’s
quantization approach to the gravitational collapse is applied in the simple
case of a pressureless “star of dust” by finding the gravitational potential,
the Schrodinger equation and the solution for the collapse’s energy levels.
By applying the constraints for a Schwarzschild black hole (BH) and by
using the concept of BH effective state, previously introduced by one of
the authors (CC), the BH quantum gravitational potential, Schrédinger
equation and the BH energy spectrum are found. Remarkably, such an
energy spectrum is in agreement (in its absolute value) with the one which
was conjectured by Bekenstein in 1974 and consistent with other ones in
the literature. This approach also permits to find an interesting quantum
representation of the Schwarzschild BH ground state at the Planck scale.
Moreover, two fundamental issues about black hole quantum physics are
addressed by this model: the area quantization and the singularity res-
olution. As regards the former, a result similar to the one obtained by
Bekenstein, but with a different coefficient, has been found. About the
latter, it is shown that the traditional classical singularity in the core
of the Schwarzschild BH is replaced, in a full quantum treatment, by
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a two-particle system where the two components strongly interact with
each other via a quantum gravitational potential. The two-particle system
seems to be non-singular from the quantum point of view and is analogous
to the hydrogen atom because it consists of a “nucleus” and an “electron”.

1 Introduction

It is a general conviction that, in the search of a quantum gravity theory, a
black hole should play a role similar to that of the hydrogen atom in quantum
mechanics [9]. It should be a “theoretical laboratory” where one discusses and
tries to understand conceptual problems and potential contradictions in the
attempt to unify Einstein’s general theory of relativity with quantum mechanics.
This analogy suggests that black holes should be regular quantum systems with
a discrete mass spectrum [9]. In this paper, the authors attempt to contribute
to the above by finding the Schrédinger equation and the wave function of
the Schwarzschild BH. The knowledge of such quantities could, in principle,
also play a role in the solution of the famous BH information paradox [10],
because in the proposed approach black holes seem to be well defined quantum
mechanical systems, having ordered and discrete quantum spectra. This issue
appears consistent with the unitarity of the underlying quantum gravity theory
and with the idea that information should come out in BH evaporation.

A quantization approach proposed 25 years ago by the historical collaborator
of Einstein, Nathan Rosen [5], will be applied to the gravitational collapse in
the simple case of a pressureless “star of dust”. Therefore, the gravitational
potential, the Schrodinger equation and the solution for the collapse’s energy
levels will be found. After that, the constraints for a BH will be applied and
this will permit to find the BH quantum gravitational potential, Schrédinger
equation and energy spectrum. Such an energy spectrum, in its absolute value,
is in agreement with both the one conjectured by Bekenstein in 1974 [7] and
that found by Maggiore’s description of BH in terms of quantum membranes
[8]. This approach also permits to find an interesting quantum representation
of the Schwarzschild BH ground state at the Planck scale.

Furthermore, the authors try to clarify two important issues such as Beken-
stein area law and singularity resolution. Regarding the former, a result similar
to that obtained by Bekenstein, but with a different coefficient, has been found.
About the latter, it is shown that the traditional classical singularity in the core
of the Schwarzschild BH is replaced, in a full quantum treatment, by a two-
particle system where the two components strongly interact with each other via
a quantum gravitational potential. The two-particle system seems to be non-
singular from the quantum point of view and is analogous to the hydrogen atom
because it consists of a “core” and an “electron”.

Returning to the Rosen’s quantization approach, it has also been recently
applied to a cosmological framework by one of the authors (FF) and collabo-
rators in [11] and to the famous Hartle-Hawking initial state by both of the
authors and an additional collaborator in [26].


https://doi.org/10.20944/preprints201810.0413.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019 d0i:10.20944/preprints201810.0413.v3

For the sake of completeness, one stresses that this quantization approach is
only applicable to homogeneous space-times where the Weyl tensor vanishes. As
soon as one introduces inhomogeneities (for example in the Lemaitre-Tolman-
Bondi (LTB) models [23 - 25]), there exists open sets of initial data where the
collapse ends to a BH absolutely similar to Oppenheimer-Snyder-Datt (OSD)
collapse. Hence, the exterior space-time remains the same whereas the interior
is absolutely different. A further generalization of the proposed approach, which
could be the object of future works, should include also a cosmological term or
other sources of dark energy.

2 Application of Rosen’s quantization approach
to the gravitational collapse

Classically, the gravitational collapse in the simple case of a pressureless “star
of dust” with uniform density is well known [1]. Historically, it was originally
analysed in the famous paper of Oppenheimer and Snyder [2]. Instead, a differ-
ent approach has been developed by Beckerdoff and Misner [3]. Furthermore,
a non-linear electrodynamics Lagrangian has been recently added in this col-
lapse’s framework by one of the authors (CC) and a collaborator in [4]. This
different approach permits to find a way to remove the black hole singular-
ity at the classical level [4]. The traditional, classical framework of this kind
of gravitational collapse is well known [1 - 3]. In regard to the interior of the
collapsing star, one indeed uses the well-known Friedmann-Lemaitre-Robertson-
Walker (FLRW) line-element with comoving hyper-spherical coordinates y, 6,
© [1]. Therefore, one writes down [1] (hereafter Planck units will be used, i.e.
G=c=kp=h==1)

4meq
ds® = dr? + a(1)(—dx? — sin? x(d#?* + sin? 0dyp?), (1)

where the origin of coordinates is set at the centre of the star, and a(7) is the
scale factor given by the familiar cycloidal relation [1]

a= 3am (1+cosn),
(2)

T = $am (n+sinn),

while the density is given by [1]

() () o]

Setting sin? x one chooses the case of positive curvature, which corresponds to a
gas sphere whose dynamics begins at rest with a finite radius, and, in turn, it is
the only one of interest [1]. Thus, the choice k¥ = 1 is made for dynamical reasons
(the initial rate of change of density is null, that means “momentum of maximum
expansion” [1]), but the dynamics also depends on the field equations. As it has
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been stressed in the paper’s Introduction, for isotropic models, a cosmological
term - or other sources of dark energy - can be in principle included in future
works, in order to obtain a more realistic physical framework for the collapse.

In order to discuss the simplest model of a “star of dust”, that is the case of
zero pressure, one sets the stress-energy tensor as [1]

T =pu®u, (4)

where p is the density of the collapsing star and w the four-vector velocity of the
matter. On the other hand, the external geometry is given by the Schwartzschild
line-element [1]

2M dr?
ds? = (1 — T) dt? — r? (sim2 Odp? + d92) — ﬁ, (5)

T

where M is the total mass of the collapsing star. Since there are no pressure
gradients, which can deflect the particles motion, the particles on the surface of
any ball of dust move along radial geodesics in the exterior Schwarzschild space-
time [1]. Considering a ball which begins at rest with finite radius (in terms of
the Schwarzschild radial coordinate) r = r; at the (Schwarzschild) time ¢ = 0,
the geodesics motion of its surface is given by the following equations [1]:

1
r= 51y-(1+c0s77), (6)
l71+tan(ﬂ)
t=2MIn | X2AL_—— 2/
|:\/;—A’/I1tan(g):|
+2M /37 — 1+ (fg) (n +sinn)] .

The proper time measured by a clock put on the surface of the collapsing star
is [1]

(7)

3

73 .
T=\ 57 (n+sinn). (8)

The collapse begins at r =r;, n =7 =t = 0, and ends at the singularity » = 0,
1 = 7 after a duration of proper time measured by the falling particles [1]

r3

o )

Ar =1

which coincidentally corresponds, as it is well known, to the interval of Newto-
nian time for free-fall collapse in Newtonian theory. Different from the cosmo-
logical case, where the solution is homogeneous and isotropic everywhere, here
the internal homogeneity and isotropy of the FLRW line-element are broken at
the star’s surface, that is, at some radius x = xo [1]. At that surface, which
is a 3-dimensional world tube enclosing the star’s fluid [1], the interior FLRW
geometry must smoothly match the exterior Schwarzschild geometry [1]. One
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considers a range of x given by 0 < x < xo, with xo < § during the collapse [1].
For the pressureless case the match is possible [1]. The external Schwarzschild
solution indeed predicts a cycloidal relation for the star’s circumference [1]

C =2mr =2m [4r; (14 cosn)],

3 .
T =1/ g7 (n+sinn).

The interior FLRW predicts a similar cycloidal relation [1]

(10)

C = 27r = 2wasin xo = msin o, (1 4 cosn),

(11)

T = %am, (n+sinn).
Therefore, the two predictions agree perfectly for all time if and only if [1]

T; = Qo Sin Xo,
(12)
M = %ao sin® X0,
where 7; and ag are the values of the Schwarzschild radial coordinate in Eq.
(5) and of the scale factor in Eq. (1) at the beginning of the collapse, respec-
tively. Thus, Eqs. (12) represent the requested match, while the Schwarzschild
radial coordinate, in the case of the matching between the internal and external
geometries, is [1]
r = asin xo. (13)

The attentive reader notes that the initial conditions on the matching are the
simplest possible that could be relaxed, still having a continuous matching with-
out extra surface terms. In fact, taking the interior solution to be homogeneous
requires very fine tuned initial conditions for the collapse and the dynamics of
the edge. So, on one hand, further analyses for a better characterization of the
initial conditions on the matching between the internal and external geometries
could be the object of future works. On the other hand, despite the analysis of
this paper is not as general as possible, one stresses that the BH quantization is
one of the most important problems of modern theoretical physics which has not
vet been solved. Thus, in order to attempt to solve such a fundamental problem,
one must start from the simplest case rather than from more complicated ones.
This is in complete analogy with the history of general relativity. In fact, the
first solution of Einstein field equations was the Schwartzschild solution, but it
was not a general, rotating solution which included cosmological term or other
sources of dark energy, as well the corresponding gravitational collapse devel-
oped by Oppenheimer and Snyder did not include a class of non-homogeneous
models. Thus, as this is a new approach to the BH quantization, here one starts
from the simplest conditions rather than from more complicated ones. So, the
initial conditions on the matching that are applied here are exactly the ones
proposed by Oppenheimer and Snyder in their historical paper on the gravi-
tational collapse [2]. It is well known that the final result of the gravitational
collapse studied by Oppenheimer and Snyder is the Schwarzschild BH [1].
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Thus, let us see what happens when the star is completely collapsed, i.e.
when the star is a BH. One sees that, inserting r; = 2M = ry, where r, is
the gravitational radius (the Schwarzschild radius), in Eqgs. (12), one obtains
sin? xo = 1. Therefore, as the range y > 5 must be discarded [1], one concludes
that it is xo = 5 for a BH.

In the following, the quantization approach derived by Rosen in [5] will be
applied to the above case. Some differences will be found, because here one anal-
yses the case of a collapsing star, while Rosen analysed a closed homogeneous
and isotropic universe [5]. Let us start by rewriting the FLRW line-element (1)
in spherical coordinates and comoving time as [1, 5]

d 2
ds* = dr* — a*(7) <1 _TTQ + r?df* + r? sin® 9d<p2> . (14)
The Einstein field equation [1, 5]
G = —87T), (15)

gives the relations (we are assuming zero pressure) [5]

a’ = %mﬁp -1,
(16)
a= —%Wap,
with a = %. For consistency, one gets [5]
dp 3p
Zr__2F 17
- o (17)
which, when integrated gives [5]
C
In the collapse case, C' is determined by the initial conditions as [1]
3&0
= 19
Py (19)

By analysing a closed homogeneous isotropic universe rather than a collapsing
object, Rosen obtained a different value of C' [5]. So, one rewrites Eq. (18) as

3(10
= . 20
P=5-3 (20)
By multiplying the first of (16) for M /2 one gets [5]
1, 4, M
2Ma 37rMa p=— (21)

which seems like the energy equation for a particle in one-dimensional motion
having coordinate a [5]
E=T+YV, (22)
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where the kinetic energy is [5]

T= %Maz, (23)
and the potential energy is [5]
V(a) = —%ﬂ'Ma2p. (24)
Thus, the total energy is [5]
o _%. (25)

From the second of Egs. (16), one gets the equation of motion of this particle:
. 4
Ma = —§M7rap. (26)

The momentum of the particle is [5]

P = Ma, (27)
with an associated Hamiltonian [5]
P2
=— 4V 28
H=ort (28)

Till now, the problem has been discussed from the classical point of view. In
order to discuss it from the quantum point of view, one needs to define a wave-
function as [5]

U =Y(a,r). (29)

Thus, in correspondence of the classical equation (28), one gets the traditional
Schrodinger equation [5]
ov 1 0%V
— =———+ V.
“or 2M Oa? + (30)

For a stationary state with energy E one obtains [5]

U =T (a)exp (—iET), (31)
and Eq. (29) becomes [5]
1 0%V
_WW—i_VW_E\I]' (32)

Inserting Eq. (20) into Eq. (24) one obtains

Via) = — ]‘gZO (33)
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Based on the different value of the constant C| this equation is different from
the one which was found by Rosen in [5]. Setting [5]

U =qaX, (34)
Eq. (32) becomes [5]

1 [(0°X 20X

—— ==+ - VX =FEX. 35
2M(6a2+a6a>+ (35)

With V given by Eq. (33), Eq. (35) is analogous to the Schrédinger equation in

polar coordinates for the s states (I = 0) of a hydrogen-like atom [5, 6] in which

the squared electron charge e? is replaced by @ Thus, for the bound states

(E < 0) the energy spectrum is

B, = -2 (36)

where n is the principal quantum number. Following [5], one inserts Eq. (25)
into Eq. (36), obtaining the mass spectrum of the gravitational collapse as

2773

as M., 2n

= = M, =—. 37
4n? ag (37)

On the other hand, by using Eq. (25) one finds the energy levels of the collapsing
star as n

E, = a (38)
In fact, Eq. (37) represents the spectrum of the total mass of the collapsing star,
while Eq. (38) represents the energy spectrum of the collapsing star where the
gravitational energy, which is given by Eq. (33), is included. The total energy
of a quantum system with bound states is indeed negative. It is also important
to clarify the issue concerning the gravitational energy. It is well known that,
in the framework of the general theory of relativity, the gravitational energy
cannot be localized [1]. This is a consequence of Einstein’s equivalence principle
(EEP) [1], which implies that one can always find in any given locality a refer-
ence’s frame (the local Lorentz reference’s frame) in which all local gravitational
fields are null. No local gravitational fields means no local gravitational energy-
momentum and, in turn, no stress-energy tensor for the gravitational field [1].
In any case, this general situation admits an important exception [1], given by
the case of a spherical star [1], which is exactly the case analysed in this paper.
In fact, in this case the gravitational energy is localized not by mathematical
conventions, but by the circumstance that transfer of energy is detectable by
local measures, see Box 23.1 of [1] for details. Therefore, one can surely consider
Eq. (33) as the gravitational potential energy of the collapsing star.
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3 Black hole energy spectrum, ground state and
singularity resolution
Now, let us consider the case of a completely collapsed star, i.e. a BH, which

means Xo = 5, 7 = a and r; = agp = 2M = ry in Egs. (12), see the discussion
below Eq. (13). Then, Egs. from (33) to (38) become

M2
Vir)=—-—, (39)
r
U =rX, (40)
1 0?X 20X
—_— | =+ —— X =FX 41
2M<8r2+T8r>+V ’ (41)
r§M3
E, = B TURE (42)

M, = /n, (43)

E, = —\/g. (44)

Equations (39), (41), (43) and (44) should be the exact gravitation poten-
tial energy, Schrodinger equation, mass spectrum and energy spectrum for the
Schwarzschild BH interpreted as “gravitational hydrogen atom”, respectively.
Actually, a further final correction is needed. To clarify this point, let us com-
pare Eq. (39) with the analogous potential energy of an hydrogen atom, which
is [6]

Vir)=—-——. (45)

r

Equations (39) and (45) are formally identical, but there is an important physical
difference. In the case of Eq. (45) the electron’s charge is constant for all the
energy levels of the hydrogen atom. Instead, in the case of Eq. (39), based on
the emissions of Hawking quanta or on the absorptions of external particles, the
BH mass changes during the jumps from one energy level to another. In fact,
such a BH mass decreases for emissions and increases for absorptions. Therefore,
one must also consider this dynamical behavior of quantum BHs. A way to take
into account this dynamical behavior is by introducing the BH effective state
[13, 14]. Let us start from the emissions of Hawking quanta. If one neglects
the above mentioned BH dynamical behavior, the probability of emission of
Hawking quanta is the one originally found by Hawking, which represents a
strictly thermal spectrum [16]

w

(-2 -

H

where w is the energy-frequency of the emitted particle and Ty = ﬁ is the
Hawking temperature. Taking into account the BH dynamical behavior, i.e. the
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BH contraction enabling a varying BH geometry, one gets the famous correction
of Parikh and Wilezek [17]

Fwexp{—;—H(l—%)] — F—aexp[—;—H(l—ﬁ)}, (47)

where a ~ 1 and the additional term 537 is present. By introducing the effective
temperature [13, 14]

2M 1
A= dr @M —w)’

Tr(w) (48)

2M —w

Eq. (47) can be rewritten in a Boltzmann-like form similar to Eq. (46) [13, 14]

w
I' = aexp|—fr(w)w] = aexp <_TE(w)> , (49)
where exp[—fEg(w)w] is the effective Boltzmann factor, with [13, 14]
1
Be(w) = To()’ (50)

Therefore, the effective temperature replaces the Hawking temperature in the
equation of the probability of emission as dynamical quantity. There are indeed
various fields of science where one can take into account the deviation from the
thermal spectrum of an emitting body by introducing an effective temperature
which represents the temperature of a black body that would emit the same total
amount of radiation [13, 14]. The effective temperature depends on the energy-
frequency of the emitted radiation and the ratio T?‘F—SJ) = % represents the
deviation of the BH radiation spectrum from the strictly thermal feature due to
the BH dynamical behavior [13, 14]|. Besides, one can introduce other effective
quantities. In particular, if M is the initial BH mass before the emission, and
M — w is the final BH mass after the emission, the BH effective mass and the

BH effective horizon can be introduced as [13, 14]
Mp=M— g re = 2Mp. (51)

They represent the BH mass and horizon during the BH contraction, i.e. during
the emission of the particle [13, 14], respectively. These are average quantities
[13, 14]. The variable rg is indeed the average of the initial and final horizons
while Mg is the average of the initial and final masses [13, 14]. In regard to the
effective temperature, it is the inverse of the average value of the inverses of the

initial and final Hawking temperatures; before the emission we have T}, = ﬁ,
T

after the emission T}, = m [13, 14]. To show that the effective mass is

the correct quantity which characterizes the BH dynamical behavior, one can
use Hawking’s periodicity argument [18 - 20]. One rewrites Eq. (50) as [20]

w

—Bu (1= 52 (52)

10
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where By = ﬁ Following Hawking’ s arguments [18 - 20], the Euclidean form
of the metric is given by [20]

dr
i

This equation is regular at x = 0 and r = rg. One also treats 7 as an angular
variable with period Sg(w) [18 - 20]. Following [20], one replaces the quantity

2
ds% = z° + <L> dz® + 12 (sin? 0dp® + df?). (53)

TE

> ﬁiMh—;i in [18] with the quantity —z%;. Then, following step by step the
detailed analysis in [18] one obtains [20]

2
ds? = (1 - %) dt* — 1_d+ﬁ —r? (sin® 0dyp® + db?) (54)
ks

and one also easily shows that rg in Eq. (53) is the same as in Eq. (51).
Despite the above analysis has been realized for emissions of particles, one

immediately argues for symmetry that the same analysis works also in the case

of absorptions of external particles, which can be considered as emissions having

opposite sign. Thus, the effective quantities (51) become

Mg =M + g re = 2Mp. (55)

Now they represents the BH mass and horizon during the BH expansion, i.e.
during the absorption of the particle, respectively. Hence, Eq. (54) implies that,
in order to take the BH dynamical behavior into due account, one must replace
the BH mass M with the BH effective mass Mg in Egs. (39), (41), (42) and
(25), obtaining

V(r)= —MT%, (56)
_ﬁ @2% %%) +VX = EX, (57)
E = —%. (59)

Now, from the quantum point of view, we want to obtain the energy eigenvalues
as being absorptions starting from the BH formation, that is from the BH having
null mass. This implies that we must replace M — 0 and w — M in Eq. (55).

Thus, we obtain

M
7, rg =2Mg =M. (60)
Following again [5], one inserts Eqs. (59) and (60) into Eq. (58), obtaining the
BH mass spectrum as

Mg

M, = 2/n, (61)

11
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and by using again Eq. (25) one finds the BH energy levels as
E, = —+/n. (62)

Remarkably, in its absolute value, this final result is consistent with the BH
energy spectrum which was conjectured by Bekenstein in 1974 [7]. Bekenstein
indeed obtained E,, ~ y/n by using the Bohr-Sommerfeld quantization condition
because he argued that the Schwarzschild BH behaves as an adiabatic invariant.
Besides, Maggiore [8] conjectured a quantum description of BH in terms of
quantum membranes. He obtained the energy spectrum

AQ?’L
E, = ‘/w_w' (63)

One sees that, in its absolute value, the result of Eq. (62) is consistent also with
Maggiore’s result. On the other hand, it should be noted that both Bekenstein
and Maggiore used heuristic analyses, approximations and/or conjectures. In-
stead, Eq. (43) has been obtained through an exact quantization process. In
addition, neither Bekenstein nor Maggiore realized that the BH energy spectrum
must have negative eigenvalues because the “gravitational hydrogen atom” is a
quantum system composed by bound states.

Let us again consider the analogy between the potential energy of a hydrogen
atom, given by Eq. (45), and the effective potential energy of the “gravitational
hydrogen atom” given by Eq. (56). Eq. (45) represents the interaction between
the nucleus of the hydrogen atom, having a charge e and the electron, having a
charge —e. Equation (56) represents the interaction between the nucleus of the
“gravitational hydrogen atom”, i.e. the BH, having an effective, dynamical mass
Mg, and another, mysterious, particle, i.e. the “electron” of the “gravitational
hydrogen atom” having again an effective, dynamical mass Mg. Therefore, let
us ask: what is the “electron” of the BH? An intriguing answer to this question
has been given by one of the authors (CC), who recently developed a semi-
classical Bohr-like approach to BH quantum physics where, for large values of the
principal quantum number n, the BH quasi-normal modes (QNMs), “triggered”
by emissions (Hawking radiation) and absorption of external particles, represent
the “electron” which jumps from a level to another one; the absolute values of the
QNMs frequencies represent the energy “shells” of the “gravitational hydrogen
atom”. In this context, the QNM jumping from a level to another one has been
indeed interpreted in terms of a particle quantized on a circle [13, 14], which
is analogous to the electron travelling in circular orbits around the hydrogen
nucleus, similar in structure to the solar system, of Bohr’s semi-classical model
of the hydrogen atom [21, 22|. Therefore, the results in the present paper seem
consistent with the above mentioned works [13, 14].

For the BH ground state (n = 1), from Eq. (61) one gets the mass as

My =2, (64)
in Planck units. Thus, in standard units one gets M; = 2mp, where mp is

the Planck mass, mp = 2,17645x1078Kg. To this mass is associated a total

12
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negative energy arising from Eq. (62), which is
B =1, (65)

and a Schwarzschild radius
Tg1 = 4. (66)

Hence, this is the state having minimum mass and minimum energy (the energy
of this state is minimum in absolute value; in its real value, being negative, it is
maximum). In other words, this ground state represents the smallest possible
BH. In the case of Bohr’s semi-classical model of hydrogen atom, the Bohr
radius, which represents the classical radius of the electron at the ground state,
is [6]

1

Bohr radius = by = —,
mee

(67)

where m. is the electron mass. To obtain the correspondent “Bohr radius” for

the “gravitational hydrogen atom”, one needs to replace both the electron mass

m. and the charge e in Eq. (67) with the effective mass of the BH ground state,
My _

which is 5t = 1. Thus, now the “Bohr radius” becomes

by =1, (68)

which in standard units reads b; = lp, where Ip = 1,61625x1073%m is the
Planck length. Hence, we have found that the “Bohr radius” associated to the
smallest possible black hole is equal to the Planck length. Now, following [5],
the wave-function associated to the BH ground state is

Uy = 2b;%rexp <_b£) =2rexp(-r), (69)
1

where V¥, is normalized as
/ Vidr = 1. (70)
0
The size of this BH is of the order of

o0

’Fl —/0 \I/%’I”d’l” = gbl = g (71)
The issue that the size of the BH ground state is, on average, shorter than
the gravitational radius could appear surprising, but one recalls again that one
interprets the “BH electron states” in terms of BH QNMs [13, 14]. Thus, the BH
size which is, on average, shorter than the gravitational radius, seems consistent
with the issue that the BH horizon oscillates with damped oscillations when the
BH energy state jumps from a quantum level to another one through emissions

of Hawking quanta and/or absorption of external particles.
This seems an interesting quantum representation of the Schwarzschild BH
ground state at the Planck scale. This Schwarzschild BH ground state repre-
sents the BH minimum energy level which is compatible with the generalized
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uncertainty principle (GUP) [12]. The GUP indeed prevents a BH from its to-
tal evaporation by stopping Hawking’s evaporation process in exactly the same
way that the usual uncertainty principle prevents the hydrogen atom from total
collapse [12].

Now, let us discuss a fundamental issue. Can one say that the quantum BH
expressed by the system of equations from (56) to (59) is non-singular? It seems
that the correct answer is yes. It is well known that, in the classical general rel-
ativistic framework, in the internal geometry all time-like radial geodesics of the
collapsing star terminate after a lapse of finite proper time in the termination
point » = 0 and it is impossible to extend the internal space-time manifold be-
yond that termination point [1]. Thus, the point » = 0 represents a singularity
based on the rigorous definition by Schmidt [37]. But what happens in the quan-
tum framework that has been analysed in this paper is completely different. By
inserting the constraints for a Schwarzschild BH in Rosen’s quantization process
applied to the gravitational collapse, it has been shown that the completely col-
lapsed object has been split in a two-particle system where the two components
strongly interact with each other through a quantum gravitational interaction.
In concrete terms, the system that has been analysed is indeed formally equal
to the well known system of two quantum particles having finite distance with
the mutual attraction of the form 1/r [6]. These two particles are the “nucleus”
and the “electron” of the “gravitational hydrogen atom”. Thus, the key point is
the meaning of the word “particle” in a quantum framework. Quantum particles
remain in an uncertain, non-deterministic, smeared, probabilistic wave-particle
orbital state [6]. Then, they cannot be localized in a particular “termination
point where all time-like radial geodesics terminate”. As it is well known, such a
localization is also in contrast with the Heisenberg uncertainty principle (HUP).
The HUP says indeed that either the location or the momentum of a quantum
particle such as the BH “electron” can be known as precisely as desired, but as
one of these quantities is specified more precisely, the value of the other becomes
increasingly indeterminate. This is not simply a matter of observational diffi-
culty, but rather a fundamental property of nature. This means that, within
the tiny confines of the “gravitational atom”, the “electron” cannot really be
regarded as a "point-like particle" having a definite energy and location. Thus,
it is somewhat misleading to talk about the BH “electron” “falling into” the BH
“nucleus”. In other words, the Schwarzschild radial coordinate in the system of
equations from (56) to (59) cannot become equal to zero. The GUP makes even
stronger this last statement: as we can notice from its general expression [38]

AzAp > % [1 +0(Ap)? + .. } : (72)

it implies a non-zero lower bound on the minimum value of the uncertainty on
the particle’s position (Ax) which is of order of the Planck length [38]. In other
words, the GUP implies the existence of a minimal length in quantum gravity.

One notes also another important difference between the hydrogen atom of
quantum mechanics [6] and the “gravitational hydrogen atom” discussed in this
paper. In the standard hydrogen atom the nucleus and the electron are different
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particles. In the quantum BH analysed here they are equal particles instead,
as one easily checks in the system of equations from (56) to (59). Thus, the
“‘nucleus” and the “electron” can be mutually exchanged without varying the
physical properties of the system. Hence, the quantum state of the two par-
ticles seems even more uncertain, more non-deterministic, more smeared and
more probabilistic than the corresponding quantum states of the particles of
the hydrogen atom. These quantum argumentations seem to be strong argu-
mentations in favour of the non-singular behavior of the Schwarzschild BH in a
quantum framework. Notice that the results in this paper are also in agreement
with the general conviction that quantum gravity effects become fundamental in
the presence of strong gravitational fields. In a certain sense, the results in this
paper permit to “see into” the Schwartzschild BH. The authors hope to further
deepen these fundamental issues in future works.

4 Area quantization

Bekenstein proposed that the area of the BH horizon is quantized in units of
the Planck length in quantum gravity (let us remember that the Planck length
is equal to one in Planck units) [7]. His result was that the Schwarzschild BH
area quantum is AA = 8z [7].

In the Schwarzschild BH the horizon area A is related to the mass by the
relation A = 16w M?2. Thus, a variation AM of the mass implies a variation

AA =32 MAM (73)

of the area. Let us consider a BH which is excited at the level n. The corre-
sponding BH mass is given by Eq. (61), that is

M, =2v/n. (74)

Now, let us assume that a neighboring particle is captured by the BH causing
a transition from n to n + 1. Then, the variation of the BH mass is

Mn+1 - Mn = AMnﬂnJrl; (75)

where

M1 = 2y F T, (76)
Therefore, using Eqs. (73) and (75) one gets

AA, = 328 MpAM,y s (77)

Equation (77) should give the area quantum of an excited BH when one considers
an absorption from the level n to the level n + 1 in function of the principal
quantum number n. But, let us consider the following problem. An emission
from the level n + 1 to the level n is now possible due to the potential emission
of a Hawking quantum. Then, the correspondent mass lost by the BH will be

Mn+1 - Mn = _AMnﬂnqu = AMn+1~>n- (78)
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Hence, the area quantum for the transition (78) should be
AAn = 327TMn+1AMn+1*>n, (79)

and one gets the strange result that the absolute value of the area quantum for
an emission from the level n+1 to the level n is different from the absolute value
of the area quantum for an absorption from the level n to the level n+1 because
it is M,,+1 # M,,. One expects the area spectrum to be the same for absorption
and emission instead. In order to resolve this inconsistency, one considers the
effective mass, which has been introduced in Section 3, corresponding to the
transitions between the two levels n and n + 1. In fact, the effective mass is
the same for emission and absorption

1
ME(’I’L7 n+1) = 5 (Mn + Mn+1) = \/T_l +vn -+ 1. (80)

By replacing M;,+1 with Mg, n41) in equation (79) and M,, with Mg, nt1)
in equation (77) one obtains

AAnp1 =327 Mp@, ny1) AMpyi1-n emaission

(81)
AA, =321 MEn, nt1) AMnsnt1 absorption
and now it is |[AA,| = |AA,—_1|. By using Egs. (75) and (80) one finds
|AAn| = |AAn+1| = 64, (82)

which is similar to the original result found by Bekenstein in 1974 [7], but with a
different coefficient. This is not surprising because there is no general consensus
on the area quantum. In fact, in [27, 28] Hod had the intriguing idea to consider
the black hole QNMs like quantum levels for absorption of particles, obtaining
a different numerical coefficient. On the other hand, the Hod’s rule

AA=4In3 (83)
is actually a special case of the one suggested by Mukhanov in [29], who proposed
AA=4lnk, k=23,... (84)

This entered into the joint paper of Bekenstein and Mukhanov [30] and then
into the review of Bekenstein [9].

Thus, the approach in this paper seems consistent with the Bekenstein area
law.

5 Discussion and conclusion remarks

Rosen’s quantization approach has been applied to the gravitational collapse in
the simple case of a pressureless “star of dust”. In this way, the gravitational
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potential, the Schrodinger equation and the solution for the collapse’s energy
levels have been found. After that, by applying the constraints for a BH and
by using the concept of BH effective state [13, 14], the analogous results and
the energy spectrum have been found for the Schwarzschild BH. Remarkably,
such an energy spectrum is consistent (in its absolute value) with both the
one which was found by Bekenstein in 1974 [7] and that found by Maggiore
[8]. The discussed approach also permitted to find an interesting quantum
representation of the Schwarzschild BH ground state at the Planck scale; in other
words, the smallest BH has been found, by also showing that it has a mass of two
Planck masses and a “Bohr radius” equal to the Planck length. Furthermore,
two fundamental issues such as Bekenstein area law and singularity resolution
have been discussed. Thus, despite the gravitational collapse analysed in this
paper is the simplest possible, the analysis that it has been performed permitted
to obtain important results in BH quantum physics.

Finally, for the sake of completeness, it is necessary to discuss how the re-
sults found in this paper are related to those appearing in the literature. The
results of Bekenstein and Maggiore concerning the BH energy spectrum have
been previously cited. In general, such an energy spectrum has been discussed
and derived in many different ways, see for example [14], [29 - 32]. In the so
called reduced phase space quantisation method [31, 32] the BH energy spectrum
gets augmented by an additional zero-point energy; this becomes important if
one attempts to address the ultimate fate of BH evaporation, but, otherwise,
it can safely be ignored for macroscopic BHs for which the principal quantum
number n will be extremely large. It is important to stress that the discreteness
of the energy spectrum needs a drastic departure from the thermal behavior
of the Hawking radiation spectrum. A popular way to realize this is through
the popular tunnelling framework arising from the paper of Parikh and Wilczek
[17]. In that case, the energy conservation forces the BH to contract during the
emission of the particle; the horizon recedes from its original radius and becomes
smaller at the end of the emission process [17]. Therefore, BHs do not exactly
emit like perfect black bodies [17], see also the discussion on this issue in Section
3. Moreover, Loop Quantum Gravity predicts a discrete energy spectrum which
indicates a physical Planck scale cutoff of the Hawking temperature law [33].
In the framework of String-Theory one can identify microscopic BHs with long
chains living on the worldvolume of two dual Euclidean brane pairs [34]. This
leads to a discrete Bekenstein-like energy spectrum for the Schwarzschild BH
[35]. The Bekenstein-like energy spectrum is present also in canonical quanti-
zation [36]. This approach yields a BH picture that is shown to be equivalent
to a collection of oscillators whose density of levels is corresponding to that of
the statistical bootstrap model [36].

Thus, it seems that the results of this paper are consistent with the previous
literature on BH quantum physics.
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