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Abstract

We apply Rosen’s approach to the quantization of the gravitational
collapse in the simple case of a pressureless “star of dust” and we find
the gravitational potential, the Schroedinger equation and the solution
for the collapse’s energy levels without any approximation. By applying
the constrains for a black hole (BH), we found the analogous quantum
quantities and the BH mass spectrum, again without any approximation.
Remarkably, such a mass spectrum is the same which was found by Beken-
stein in 1974. Finally, our approach permits to find the exact quantum
representation of the Schwarzschild BH ground state at the Planck scale.

1 Introduction

It is a general conviction that, in the search of a quantum gravity theory, a
BH should play a role similar to the hydrogen atom in quantum mechanics
[9]. It should be a “theoretical laboratory” where one discusses and tries to
understand conceptual problems and potential contradictions in the attempts
to unify Einstein’s general theory of relativity with quantum mechanics. This
analogy suggested that BHs should be regular quantum systems with a discrete
mass spectrum [9]. The biggest problems in the above picture are that, till now,
in our knowledge, nobody has found the BH Schroedinger equation and nobody
knows if BHs can be described by a wave function. The knowledge of such
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quantities could also play an important role in the solution of the famous BH
information paradox [10]. In this work, a solution for both of these fundamental
problems will be found for the Schwarzschild BH. A quantization approach
proposed 25 years ago by the historical collaborator of Einstein, Nathan Rosen
[5], to the quantization of the gravitational collapse in the simple case of a
pressureless “star of dust” will be applied. Thus, the gravitational potential,
the Schroedinger equation and the solution for the collapse’s energy levels will
be found without any approximation. After that, the constrains for a BH will
be applied and this will permit to find the analogous quantum quantities and
the BH mass spectrum, again without any approximation. It is quite intriguing
that such a mass spectrum is the same which was found by Bekenstein in 1974
[7]. Finally, our approach permits to find the exact quantum representation of
the Schwarzschild BH ground state at the Planck scale and the results presented
in this paper seem consistent with a Bohr-like approach to BH quantum physics
recently developed by one of us (CC) [13, 14]. For the sake of completeness, we
remark that Rosen’s quantization approach has been recently applied also to a
cosmological framework by one of us (FF) and collaborators in [11].

2 Application of Rosen’s quantization approach
to the gravitational collapse

Classically, the gravitational collapse in the simple case of a pressureless “star of
dust” is well known [1]. From the historical point of view, it was originally anal-
ysed in the famous paper of Oppenheimer and Snyder [2]. A different approach
has been instead developed by Beckerdoff and Misner [3]. More recently, a non-
linear electrodynamics Lagrangian has been added in this collapse’s framework
by one of us (CC) and a collaborator in [4]. This different approach permitted
to obtain a way to remove the BH singularity at the classical level [4]. The tra-
ditional, classical framework of this kind of gravitational collapse is well known
[1 - 3]. For the interior of the collapsing star, one indeed uses the well-known
Friedmann-Lemaitre-Robertson-Walker (FLRW) line-element which represents
comoving hyper-spherical coordinates for the interior of the star [1]. Thus, in
terms of the conformal time 7, one writes down [1] (hereafter we will use Planck
units, i.e. G =c=kp=h= 2 =1)

4meq

ds® = a(n)(—dn? + dx* + sin® x(d6? + sin? 0dp?), (1)

where a(n) is the scale factor of a conformal space-time. Setting sin® y one
chooses the case of positive curvature, which corresponds to a gas sphere whose
dynamics begins at rest with a finite radius, and, in turn, it is the only one of
interest [1]. In order to discuss the simplest model of a “star of dust” , that is,
the case of zero pressure, one sets the stress-energy tensor as [1]

T =pu®u,?2 (2)
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where p is the density of the collapsing star and w the four-vector velocity of
the matter.

On the other hand, the external geometry is given by the Schwarzschild
line-element [1]

2M ’
ds* = (L= ==)dt* — r*(sin® 0dip” + db”) — LzM’ ®)

T

where M is the total mass of the collapsing star. The internal homogeneity and
isotropy of the FLRW line-element are broken at the star’s surface, that is, a
some radius Y = xo. Thus, one considers a range of x given by 0 < x < xo,
with xo < § during the collapse [1]. Hence, the interior FLRW geometry must
match the exterior Schwarzschild geometry. Such a matching is given by [1]

7 = apsin xo
o (4)
M = 5apsin” xo,
where 7; and ag are the values of the Schwarzschild radial coordinate in Eq. (3)
and of the scale factor in Eq. (1) at the beginning of the collapse, respectively.
Thus, the Schwarzschild radial coordinate, in the case of the matching between
the internal and external geometries , is [1]

r = asin xo. (5)

Let us see what happens when the star is completely collapsed, i.e. when the
star is a BH. On sees that, inserting r; = 2M = ry, where rg is the gravitational
radius (the Schwarzschild radius), in Eqs. (4), one gets sin® xo = 1. Thus, as
the range x > 5 must be discarded [1], one concludes that it is xo = 5 for a
BH.

In the following, we will apply the quantization approach derived by Rosen
in [5] to the above case. We will find some thin difference, because we analyse
the case of a collapsing star, while Rosen analysed a closed homogeneous and
isotropic universe [5] . Let us start by rewriting the FLRW line-element (1) in
spherical coordinates and comoving time as [1, 5]

d 2
ds* = dt* — a*(t) (1 _TT2 + r2df* + 1% sin® 0dgp2) . (6)
The Einstein field equation [1, 5]
Gy = —87T,, (7)

gives the relations (we are assuming zero pressure) [5]

22 _ 8.2
a® = gma*p—1

- 4
a = —zmap


http://dx.doi.org/10.20944/preprints201810.0413.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2018 d0i:10.20944/preprints201810.0413.v1

with @ = 4¢. For consistency, one gets [5]

dp 3p
Lo 27 9
da a’ ©)
which, when integrated gives [5]
c
In the collapse case, C' is determined by the initial conditions as [1]
3&0
C=—. 11
8 (11)

By analysing a closed homogeneous isotropic universe rather than a collapsing
object, in [5] Rosen obtained a different value of C. Thus, one rewrites Eq. (10)

as 5
ao
= . 12
8ma3 (12)
By multiplying the first of (8) for M/2 one gets [5]
M2 4, M
5 —gﬂMa =5 (13)

which can be interpreted as an energy equation for a particle in one-dimensional
motion having coordinate a [5] as

E=T+V, (14)
where the kinetic energy is [5]
Ma?
T = 15
: (15)
and the potential energy is [5]
4 2
V(a) = —gﬂ'Ma p. (16)
Thus, the total energy is [5]
M

From the second of Egs. (8), one gets the equation of motion of this particle as
.. 4
Ma = —§M7rap. (18)

The momentum of the particle is [5]

P = Ma, (19)
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with an associated Hamiltonian [5]

P2
H=—+V. 20
s T (20)
Till now, we discussed the problem from the classical point of view. In order to
discuss it from the quantum point of view, we need to define a wave-function as
[5]
U =Y(a,t). (21)

Thus, in correspondence of the classical equation (20), one gets the traditional
Schrodinger equation [5]

0¥ 1 0%

For a stationary state with energy F one obtains [5]

U =V (a)exp— (iFt) (23)
and Eq. (21) becomes [5]
1 0%V
—_—— U =FEV. 24
2M Oa? v (24)

Inserting Eq. (12) into Eq. (16) one obtains

Mao
2a2

Via) = (25)

Based on the different value of the constant C| this equation is different from
the one which was found by Rosen in [5]. Setting [5]

U =aX, (26)
Eq. (24) becomes [5]

1 0’X 20X
2M<8a2 +a8a>+VX_EX' (27)
With V given by Eq. (25), Eq. (27), is analogous to the Schrodinger equation
in polar coordinates for the s states (I = 0) of a hydrogen-like atom [5, 6] in
which e? is replaced by Mag. Thus, for the bound states (E < 0) the energy
spectrum is
aiM3
2n2 "’
where n is the principal quantum number. Following [5], one inserts Eq. (17)
into Eq. (28), obtaining the mass spectrum of the gravitational collapse as

B, =— (28)

2M3
M, =% o pp, =2 (29)

n? ao
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Rosen’s discussion in [5] can be followed. For the ground state (n = 1) the mass

is My = a—lo (in Planck units the Planck mass is equal to 1). The wave-function

associated to this ground state is given by
_3 a
Uy =2b, 2aexp— (—) , (30)
by
where the “Bohr radius” is given by
L 3
by = —agy = aop- (31)

2
ap

Thus, the “Bohr radius” is the product of the initial scale factor and the Planck
length (Ip ~ 10733¢m in standard units) and ¥, is normalized as

/ U2da = 1. (32)
0

The size of the collapsing star is of the order of
_ 9 3

a; = Ulada = —ayp. (33)
O 2

For an arbitrary value of n one gets

3 ag 3 a3 3
=——\/n==-M,— = Zay, 34
2vn Vi =g MaZh = g (34)
which means that the size of the collapsing star does not depend on its quantum
excited state.

n

3 Black hole mass spectrum and ground state

Now, let us consider the case of a completely collapsed star, i.e. a BH, which
means xo = 5 and 7; = ag = 2M = 7y, in Egs. (4), see the discussion below

Eq. (5). Then, Eq. (29) becomes

M, = \/g . (35)

Remarkably, this is the same BH mass spectrum which was found by Bekenstein
in 1974 [7]. Bekenstein indeed used the Bohr-Sommerfeld quantization condition
because he argued that the Schwarzschild BH behaves as an adiabatic invariant.
Maggiore [8] conjectured a quantum description of BH in terms of quantum
membranes. He obtained the mass spectrum

A()TL
My, =\ —. 36
167 (36)
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Thus, he was forced to set A9 = 87 in order to find Bekenstein’s result in
[7]. In addition, we stress that both Bekenstein and Maggiore used approx-
imations and/or conjectures. Instead, we obtained Eq. (35) through an ex-
act quantization process. Further, if we use again the conditionyo = 7 and
r; = ap = 2M = rg4, we obtain the following remarkable results. Eq. (25)

becomes
(37)

which results the ezact potential energy, i.e. without any approximation, for the
Schwarzschild BH interpreted as “gravitational hydrogen atom”. Hence, Egs.
(22), (24) and (27) represent the exzact Schrodinger equation for a Schwarzschild
BH if one uses the potential energy (37). For the BH ground state (n = 1), one
gets the mass as

M, = — (38)

with an associated wave-function

r

\Ill = 2T(TL = l)g’r exp — <m) y (39)
and now the “Bohr radius” coincides with the gravitational radius. ¥, is nor-
malized as

/ U2dr = 1. (40)
0

The size of this BH is of the order of
o 3
71 :/ Uirdr = gr(n =1),. (41)
0

We wrote r(n = 1), in Egs. (39) and (41) because now the gravitational radius
is function of the BH quantum principal number. Thus, we have remarkably
found the exact quantum representation of the Schwarzschild BH ground state
at the Planck scale. In particular, Eq. (38) represents the mass of the smallest
Schwarzschild BH, while the correspondent Schwarzschild BH ground state rep-
resents the BH minimum energy level which is compatible with the generalized
uncertainty principle (GUP) [12]. The GUP indeed prevents a BH from its to-
tal evaporation by stopping Hawking’s evaporation process in exactly the same
way that the usual uncertainty principle prevents the hydrogen atom from total
collapse [12]. In standard units one gets My = @
mass, mp = 2,17645210 %K g.
For an arbitrary value of n one gets

mp, where mp is the Planck

- 37(n)g

Tn = = ‘

2 /n

which means that the Schwarzschild BH size does not depend on its quantum

excited state. The issue that the BH size is, on average, larger than the grav-
itational radius could appear surprising, but we recall that one of us, (CC),

3 r%(n), B
Vn = §Mn . §T(n)g. (42)
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recently developed a Bohr-like approach to BH quantum physics where the BH
quasi-normal modes (QNMs), “triggered” by emissions (Hawking radiation) and
absorption of external particles, represent the “electron” which jumps from a
level to another one, and the absolute values of the QNMs frequencies, repre-
sent the energy “shells” of the “gravitational atom”, see for example [13] and the
complete review [14]. Thus, the BH size which is, on average, larger than the
gravitational radius, seem consistent with the issue that the BH horizon oscil-
lates with damped oscillations when the BH energy state jumps from a quantum
level to another one through emissions of Hawking quanta and/or absorption of
external particles.

4 Conclusion remarks

Rosen’s approach has been applied to the quantization of the gravitational
collapse in the simple case of a pressureless “star of dust”. In that way, the
gravitational potential, the Schroedinger equation and the solution for the col-
lapse’s energy levels have been found without any approximation. After that,
by applying the constrains for a BH, it has been found the analogous quan-
tum quantities and the BH mass spectrum, again without any approximation.
Remarkably, such a mass spectrum coincides with the one which was found by
Bekenstein in 1974. Finally, the discussed approach permitted to find the exact
quantum representation of the Schwarzschild BH ground state at the Planck
scale. Our results seem consistent with the recent Bohr-like approach to BH
quantum physics developed by one of us (CC).
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