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Abstract

We apply Rosen’s approach to the quantization of the gravitational
collapse in the simple case of a pressureless “star of dust” and we find
the gravitational potential, the Schroedinger equation and the solution
for the collapse’s energy levels without any approximation. By applying
the constrains for a black hole (BH), we found the analogous quantum
quantities and the BH mass spectrum, again without any approximation.
Remarkably, such a mass spectrum is the same which was found by Beken-
stein in 1974. Finally, our approach permits to find the exact quantum
representation of the Schwarzschild BH ground state at the Planck scale.

1 Introduction

It is a general conviction that, in the search of a quantum gravity theory, a
BH should play a role similar to the hydrogen atom in quantum mechanics
[9]. It should be a “theoretical laboratory” where one discusses and tries to
understand conceptual problems and potential contradictions in the attempts
to unify Einstein’s general theory of relativity with quantum mechanics. This
analogy suggested that BHs should be regular quantum systems with a discrete
mass spectrum [9]. The biggest problems in the above picture are that, till now,
in our knowledge, nobody has found the BH Schroedinger equation and nobody
knows if BHs can be described by a wave function. The knowledge of such
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quantities could also play an important role in the solution of the famous BH
information paradox [10]. In this work, a solution for both of these fundamental
problems will be found for the Schwarzschild BH. A quantization approach
proposed 25 years ago by the historical collaborator of Einstein, Nathan Rosen
[5], to the quantization of the gravitational collapse in the simple case of a
pressureless “star of dust ” will be applied. Thus, the gravitational potential,
the Schroedinger equation and the solution for the collapse’s energy levels will
be found without any approximation. After that, the constrains for a BH will
be applied and this will permit to find the analogous quantum quantities and
the BH mass spectrum, again without any approximation. It is quite intriguing
that such a mass spectrum is the same which was found by Bekenstein in 1974
[7]. Finally, our approach permits to find the exact quantum representation of
the Schwarzschild BH ground state at the Planck scale and the results presented
in this paper seem consistent with a Bohr-like approach to BH quantum physics
recently developed by one of us (CC) [13, 14]. For the sake of completeness, we
remark that Rosen’s quantization approach has been recently applied also to a
cosmological framework by one of us (FF) and collaborators in [11].

2 Application of Rosen’s quantization approach

to the gravitational collapse

Classically, the gravitational collapse in the simple case of a pressureless “star of
dust” is well known [1]. From the historical point of view, it was originally anal-
ysed in the famous paper of Oppenheimer and Snyder [2]. A different approach
has been instead developed by Beckerdoff and Misner [3]. More recently, a non-
linear electrodynamics Lagrangian has been added in this collapse’s framework
by one of us (CC) and a collaborator in [4]. This different approach permitted
to obtain a way to remove the BH singularity at the classical level [4]. The tra-
ditional, classical framework of this kind of gravitational collapse is well known
[1 - 3]. For the interior of the collapsing star, one indeed uses the well-known
Friedmann-Lemaitre-Robertson-Walker (FLRW) line-element which represents
comoving hyper-spherical coordinates for the interior of the star [1]. Thus, in
terms of the conformal time η, one writes down [1] (hereafter we will use Planck
units, i.e. G = c = kB = ~ = 1

4πǫ0
= 1)

ds2 = a(η)(−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θdϕ2), (1)

where a(η) is the scale factor of a conformal space-time. Setting sin2 χ one
chooses the case of positive curvature, which corresponds to a gas sphere whose
dynamics begins at rest with a finite radius, and, in turn, it is the only one of
interest [1]. In order to discuss the simplest model of a “star of dust” , that is,
the case of zero pressure, one sets the stress-energy tensor as [1]

T = ρu⊗ u, 2 (2)
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where ρ is the density of the collapsing star and u the four-vector velocity of
the matter.

On the other hand, the external geometry is given by the Schwarzschild
line-element [1]

ds2 = (1−
2M

r
)dt2 − r2(sin2 θdϕ2 + dθ2)−

dr2

1− 2M
r

, (3)

where M is the total mass of the collapsing star. The internal homogeneity and
isotropy of the FLRW line-element are broken at the star’s surface, that is, a
some radius χ = χ0. Thus, one considers a range of χ given by 0 ≤ χ ≤ χ0,
with χ0 < π

2
during the collapse [1]. Hence, the interior FLRW geometry must

match the exterior Schwarzschild geometry. Such a matching is given by [1]

ri = a0 sinχ0

M = 1

2
a0 sin

3 χ0,

(4)

where ri and a0 are the values of the Schwarzschild radial coordinate in Eq. (3)
and of the scale factor in Eq. (1) at the beginning of the collapse, respectively.
Thus, the Schwarzschild radial coordinate, in the case of the matching between
the internal and external geometries , is [1]

r = a sinχ0. (5)

Let us see what happens when the star is completely collapsed, i.e. when the
star is a BH. On sees that, inserting ri = 2M = rg, where rg is the gravitational
radius (the Schwarzschild radius), in Eqs. (4), one gets sin2 χ0 = 1. Thus, as
the range χ > π

2
must be discarded [1], one concludes that it is χ0 = π

2
for a

BH.
In the following, we will apply the quantization approach derived by Rosen

in [5] to the above case. We will find some thin difference, because we analyse
the case of a collapsing star, while Rosen analysed a closed homogeneous and
isotropic universe [5] . Let us start by rewriting the FLRW line-element (1) in
spherical coordinates and comoving time as [1, 5]

ds2 = dt2 − a2(t)

(

dr2

1− r2
+ r2dθ2 + r2 sin2 θdϕ2

)

. (6)

The Einstein field equation [1, 5]

Gµν = −8πTµν (7)

gives the relations (we are assuming zero pressure) [5]

ȧ2 = 8

3
πa2ρ− 1

ä = − 4

3
πaρ

(8)
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with ȧ = da
dt

. For consistency, one gets [5]

dρ

da
= −

3ρ

a
, (9)

which, when integrated gives [5]

ρ =
C

a3
. (10)

In the collapse case, C is determined by the initial conditions as [1]

C =
3a0
8π

. (11)

By analysing a closed homogeneous isotropic universe rather than a collapsing
object, in [5] Rosen obtained a different value of C. Thus, one rewrites Eq. (10)
as

ρ =
3a0
8πa3

. (12)

By multiplying the first of (8) for M/2 one gets [5]

Mȧ2

2
−

4

3
πMa2ρ =

M

2
, (13)

which can be interpreted as an energy equation for a particle in one-dimensional
motion having coordinate a [5] as

E = T + V, (14)

where the kinetic energy is [5]

T =
Mȧ2

2
(15)

and the potential energy is [5]

V (a) = −
4

3
πMa2ρ. (16)

Thus, the total energy is [5]

E = −
M

2
. (17)

From the second of Eqs. (8), one gets the equation of motion of this particle as

Mä = −
4

3
Mπaρ. (18)

The momentum of the particle is [5]

P = Mȧ, (19)
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with an associated Hamiltonian [5]

H =
P 2

2M
+ V. (20)

Till now, we discussed the problem from the classical point of view. In order to
discuss it from the quantum point of view, we need to define a wave-function as
[5]

Ψ ≡ Ψ(a, t) . (21)

Thus, in correspondence of the classical equation (20), one gets the traditional
Schrodinger equation [5]

i
∂Ψ

∂t
= −

1

2M

∂2Ψ

∂a2
+ VΨ. (22)

For a stationary state with energy E one obtains [5]

Ψ = Ψ(a) exp− (iEt) (23)

and Eq. (21) becomes [5]

−
1

2M

∂2Ψ

∂a2
+ VΨ = EΨ. (24)

Inserting Eq. (12) into Eq. (16) one obtains

V (a) = −
Ma0
2a2

. (25)

Based on the different value of the constant C, this equation is different from
the one which was found by Rosen in [5]. Setting [5]

Ψ = aX, (26)

Eq. (24) becomes [5]

−
1

2M

(

∂2X

∂a2
+

2

a

∂X

∂a

)

+ V X = EX. (27)

With V given by Eq. (25), Eq. (27), is analogous to the Schrodinger equation
in polar coordinates for the s states (l = 0) of a hydrogen-like atom [5, 6] in
which e2 is replaced by Ma0. Thus, for the bound states (E < 0) the energy
spectrum is

En = −
a20M

3

2n2
, (28)

where n is the principal quantum number. Following [5], one inserts Eq. (17)
into Eq. (28), obtaining the mass spectrum of the gravitational collapse as

Mn =
a2
0
M3

n

n2
⇒ Mn =

n

a0
. (29)
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Rosen’s discussion in [5] can be followed. For the ground state (n = 1) the mass
is M1 = 1

a0

(in Planck units the Planck mass is equal to 1). The wave-function
associated to this ground state is given by

Ψ1 = 2b
− 3

2

1
a exp−

(

a

b1

)

, (30)

where the “Bohr radius” is given by

b1 =
1

a2

0

a30 = a0. (31)

Thus, the “Bohr radius” is the product of the initial scale factor and the Planck
length (lP ∼ 10−33cm in standard units) and Ψ1 is normalized as

ˆ ∞

0

Ψ2

1
da = 1. (32)

The size of the collapsing star is of the order of

ā1 =

ˆ ∞

0

Ψ2

1ada =
3

2
a0. (33)

For an arbitrary value of n one gets

ān =
3

2

a0√
n

√
n =

3

2
Mn

a20
n

=
3

2
a0, (34)

which means that the size of the collapsing star does not depend on its quantum
excited state.

3 Black hole mass spectrum and ground state

Now, let us consider the case of a completely collapsed star, i.e. a BH, which
means χ0 = π

2
and ri = a0 = 2M = rg, in Eqs. (4), see the discussion below

Eq. (5). Then, Eq. (29) becomes

Mn =

√

n

2
. (35)

Remarkably, this is the same BH mass spectrum which was found by Bekenstein
in 1974 [7]. Bekenstein indeed used the Bohr-Sommerfeld quantization condition
because he argued that the Schwarzschild BH behaves as an adiabatic invariant.
Maggiore [8] conjectured a quantum description of BH in terms of quantum
membranes. He obtained the mass spectrum

Mn =

√

A0n

16π
. (36)
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Thus, he was forced to set A0 = 8π in order to find Bekenstein’s result in
[7]. In addition, we stress that both Bekenstein and Maggiore used approx-
imations and/or conjectures. Instead, we obtained Eq. (35) through an ex-
act quantization process. Further, if we use again the conditionχ0 = π

2
and

ri = a0 = 2M = rg, we obtain the following remarkable results. Eq. (25)
becomes

V (a) = −
M2

r2
, (37)

which results the exact potential energy, i.e. without any approximation, for the
Schwarzschild BH interpreted as “gravitational hydrogen atom”. Hence, Eqs.
(22), (24) and (27) represent the exact Schrodinger equation for a Schwarzschild
BH if one uses the potential energy (37). For the BH ground state (n = 1), one
gets the mass as

M1 =

√
2

2
, (38)

with an associated wave-function

Ψ1 = 2r(n = 1)gr exp−
(

r

r(n = 1)g

)

, (39)

and now the “Bohr radius” coincides with the gravitational radius. Ψ1 is nor-
malized as

ˆ ∞

0

Ψ2

1
dr = 1. (40)

The size of this BH is of the order of

r̄1 =

ˆ ∞

0

Ψ2

1rdr =
3

2
r(n = 1)g. (41)

We wrote r(n = 1)g in Eqs. (39) and (41) because now the gravitational radius
is function of the BH quantum principal number. Thus, we have remarkably
found the exact quantum representation of the Schwarzschild BH ground state
at the Planck scale. In particular, Eq. (38) represents the mass of the smallest
Schwarzschild BH, while the correspondent Schwarzschild BH ground state rep-
resents the BH minimum energy level which is compatible with the generalized
uncertainty principle (GUP) [12]. The GUP indeed prevents a BH from its to-
tal evaporation by stopping Hawking’s evaporation process in exactly the same
way that the usual uncertainty principle prevents the hydrogen atom from total

collapse [12]. In standard units one gets M1 =
√
2

2
mP , where mP is the Planck

mass, mP = 2, 17645x10−8Kg.
For an arbitrary value of n one gets

r̄n =
3

2

r(n)g√
n

√
n =

3

2
Mn

r2(n)g
n

=
3

2
r(n)g . (42)

which means that the Schwarzschild BH size does not depend on its quantum
excited state. The issue that the BH size is, on average, larger than the grav-
itational radius could appear surprising, but we recall that one of us, (CC),
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recently developed a Bohr-like approach to BH quantum physics where the BH
quasi-normal modes (QNMs), “triggered” by emissions (Hawking radiation) and
absorption of external particles, represent the “electron” which jumps from a
level to another one, and the absolute values of the QNMs frequencies, repre-
sent the energy “shells” of the “gravitational atom”, see for example [13] and the
complete review [14]. Thus, the BH size which is, on average, larger than the
gravitational radius, seem consistent with the issue that the BH horizon oscil-
lates with damped oscillations when the BH energy state jumps from a quantum
level to another one through emissions of Hawking quanta and/or absorption of
external particles.

4 Conclusion remarks

Rosen’s approach has been applied to the quantization of the gravitational
collapse in the simple case of a pressureless “star of dust ”. In that way, the
gravitational potential, the Schroedinger equation and the solution for the col-
lapse’s energy levels have been found without any approximation. After that,
by applying the constrains for a BH, it has been found the analogous quan-
tum quantities and the BH mass spectrum, again without any approximation.
Remarkably, such a mass spectrum coincides with the one which was found by
Bekenstein in 1974. Finally, the discussed approach permitted to find the exact
quantum representation of the Schwarzschild BH ground state at the Planck
scale. Our results seem consistent with the recent Bohr-like approach to BH
quantum physics developed by one of us (CC).
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