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Abstract: Simulator training for image-guided surgical interventions may benefit from artificial 9 
intelligence systems that control the evolution of task skills in terms of time and precision of a 10 
trainee's performance on the basis of fully automatic feed-back systems. At the earliest stages of 11 
training, novice trainees frequently focus on getting faster at the task, and may thereby 12 
compromise the optimal evolution of the precision of their performance. For automatically guiding 13 
them towards attaining an optimal speed-accuracy trade-off, an effective control system for the 14 
reinforcement/correction of strategies must be able to exploit the right individual performance 15 
criteria in the right way, reliably detect individual performance trends at any given moment in 16 
time, and alert the trainee, as early as necessary, when to slow down and focus on precision, or 17 
when to focus on getting faster. This article addresses several aspects of this challenge for 18 
speed-accuracy controlled simulator training before any training on specific surgical tasks or 19 
clinical models should be envisaged. Analyses of individual learning curves from the simulator 20 
training sessions of novices and benchmark performance data of one expert surgeon, who had no 21 
specific training in the simulator task, validate the suggested approach. 22 

Keywords: surgical simulator training; individual performance trend; speed-accuracy function; 23 
automatic detection; performance feed-back 24 

 25 

1. Introduction 26 

Technological development and pressure towards a reduction in time available for learning has 27 
radically changed the traditional apprenticeship model of surgical training. Simulation now offers 28 
the opportunity for repeated practice in safe and controlled environments and the most recent 29 
technological advances have led to the development of various simulators, which have already 30 
been introduced in surgical training. The complexity and reliability of available simulators vary 31 
considerably, and selecting an appropriate simulator for surgical skill training is in itself a 32 
challenge. Simulators that are used for specific surgical skills training are generally tested for the 33 
highest validity level [1], that of predictive validity, ensuring that assessments of performance in 34 
the specific simulator task are likely to predict future performance of the trainee in the same task in 35 
a clinical context (animal, patient). However, only a certain percentage of these surgical simulators 36 
give some kind of performance feedback to the trainee, and the feed-back systems as such are 37 
generally not validated. In other words, whether the feed-back given during training is actually 38 
truly useful to a novice is not known. Ideally, within a surgical curriculum, trainees should have 39 
dedicated time for simulation-based training with appropriate performance monitoring through 40 
truly effective feed-back systems, as the main advantage of computer simulators for surgical 41 
training is the opportunity they afford for independent learning. Yet, if the simulator does not 42 
provide relevant and truly useful instructional feedback to the user, then instructors need to be 43 
present to supervise and tutor the trainee.  44 
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 Relevant performance metrics [2-8] are therefore essential to the development of surgical 45 
simulator systems for optimal independent training, and the presentation of such metrics to the 46 
user in a way that boosts independent learning by facilitating measurable skill improvement is 47 
clearly the most important aspect of developing effective simulator systems [9]. Metric-based 48 
simulation ensures that training sessions are more than just simulated clinical procedures and gets 49 
rid of subjectivity in evaluating skill evolution, as there is no ambiguity about the progress of 50 
training. Benchmarking individual levels of proficiency on the performance levels of experts on a 51 
validated metric-based simulation system has well-established intrinsic face validity [9] and 52 
appears a better approach than benchmarking on some abstract performance concept based on 53 
expert consensus, for example. Building expert performance as a basis for skill assessment into 54 
simulator training programs ensures that the “pass” level is defined on realistic criteria set directly 55 
by the proficiency levels of individuals who are actually very experienced at performing the actual 56 
clinical procedure [9-13]. Artificial intelligence provides well-suited concepts for reinforcement 57 
learning procedures and allows building prior benchmark knowledge on expert performance into 58 
simulator training most effectively. Specific control procedures [11] based on metric-based 59 
benchmark criteria for automatized performance comparisons, leading to decisions of the “if then” 60 
kind without supervision, not only enable the generation of learning curves in individual 61 
performance at the end of sessions but also, more importantly, enable trial-by-trial feed-back at any 62 
given moment in time during training to help individuals reach optimal performance as swiftly as 63 
possible [13-21]. This constitutes a far more effective approach compared with merely assessing 64 
end-of-session performance status, or differences between users after training. This article here 65 
focuses on a generic early simulator training model for automatic skill evolution, well before 66 
novices are trained on more specific surgical simulator systems, or in clinical trials on animal 67 
models. The approach discussed here is based on a simple and universal psychophysical human 68 
performance model [22-29] that allows telling apart individual strategies during motor learning on 69 
the basis of individual speed-accuracy trade-off functions. On the basis of this model, data obtained 70 
on a pick-and-place task simulator for image-guided eye-hand-tool coordination training are 71 
discussed. How automatic performance control and feed-back can be implemented at various steps 72 
and in the simplest possible way is then made clear. The training model proposed ensures that 73 
novice trainees, at the earliest stages of simulator training, reach optimal precision levels in any 74 
image-guided performance simulator system capable of generating reliable and discerning 75 
measures of skill evolution with respect to 1) the time of task execution from tzero to tn at any 76 
moment of the procedure and 2) the precision with which the task is performed at critical steps of 77 
the procedure. 78 

2. Materials and Methods  79 
The evolution of individual performance measures relative to task speed and precision was 80 

monitored using a specifically designed simulator platform for image-based analysis of performance 81 
data relative to the time and precision of hand-tool movements in a computer controlled simulator 82 
task (pick-and-place). The technical aspects of this platform, which was used in several experimental 83 
studies, are described in detail in some of our previous work [2-6].  84 

For collecting the performance data shown in this paper here, a single camera view was 85 
generated through a 120° fisheye lens camera fully adjustable in 360°. The video input received from 86 
the camera was processed by a DELL Precision T5810 model computer equipped with an Intel Xeon 87 
CPU E5-1620 with 16 Giga bytes memory (RAM) capacity at 16 bits and an NVidia GForce GTX980 88 
graphics card. Experiments were programmed in Python 2.7 for Windows using the Open CV 89 
computer vision software library. The computer was connected to a high resolution color monitor 90 
(EIZO LCD ‘Color Edge CG275W’), which the Color Navigator 5.4.5 interface for Windows. The 91 
colors of objects visualized on the screen can be matched to LAB or RGB color space and the color 92 
coordinates for RGB triples can be retrieved from a look-up table at any moment in time. The 93 
task-action field consisted of a classic square shaped (45cm x 45cm) light grey LEGO board available 94 
worldwide in the toy sections of large department stores. Six square-shaped (4,5cm x 4,5cm) target 95 
areas were painted on the board at various locations in a medium grey tint (acrylic). In-between 96 
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these target areas, small LEGO pieces of varying shapes and heights were placed to add a certain 97 
level of complexity to both the visual configuration and the task and to reduce the likelihood of 98 
getting performance ceiling effects. In the pick-and-place task, a small (3cm x 3cm x 3cm) cube made 99 
of very light plastic foam but resistant to deformation in all directions had to be placed on the target 100 
areas in a specific order. The video input received by the computer from the fisheye camera 101 
generated raw image data within a viewing frame of 640 pixels (width) x 480 pixels (height). These 102 
data were processed to generate show-image data in a viewing frame of 1280 pixels (width) x 960 103 
pixels (height), the size of a single pixel on the screen being 0.32mm to ensure that the size of the 104 
task-action field viewed on the computer screen was identical to that in the real world. The training 105 
sessions were run under conditions of free viewing, with general illumination levels that can be 106 
assimilated to daylight conditions. The task-action field was illuminated by two lamps (40Watt, 6500 107 
K) which were constantly lit during the sessions. Participants were comfortably seated at a distance 108 
of approximately 75cm from the RA from the screen. Trainees were generally right-handed, as those 109 
for whom data are shown here. They were instructed to position the cube, with their dominant hand 110 
and using a forceps-like tool, as precisely and swiftly as possible on the center of each target, in the 111 
right order, as explained to them. Data from fully completed trial sets only were recorded. A fully 112 
complete trial set consists of a set of pick-and-place operations, from target to target in the right 113 
order and without dropping the object accidentally. Ten fully completed trial sequences were 114 
recorded in each training sessions. For single trial, the computer program generated data relative to 115 
the performance measures 'time' and 'precision'.  For ‘time’, the computer counted the CPU time (in 116 
seconds) from the moment the blue cube object was picked up by the participant to the time it was 117 
put on the next target. The rate for image-time data collection was between 25-30 Hz, with an error 118 
margin of less than 40 milliseconds for any of the time estimates. For ‘precision’, the computer 119 
program counted the cumulated number of blue object pixels at positions "off" the 3cm x 3cm central 120 
area of each of the five 4,5cm x 4,5cm target areas whenever the object was placed. The standard 121 
errors of these positional estimates, determined in a calibration procedure, were below 10 pixels. 122 
Individual time and precision data were written to an excel file by the computer program, with 123 
labeled data columns for the different conditions, and stored in a directory for subsequent analysis. 124 

All experiments were conducted in conformity with the Helsinki Declaration relative to 125 
scientific experiments on human individuals with the full approval of the ethics board of the 126 
corresponding author's host institution (CNRS). All participants were volunteers and provided 127 
written informed consent. Their identity is not revealed. Some of the data shown here are from eight 128 
training sessions of two novices with no experience in image-guided or other surgical procedures 129 
(absolute beginners), as in [2-5]. The data relating to the expert performance measures, shown here 130 
for comparison, were recorded from a single training session of a highly skilled expert endoscopic 131 
surgeon with more than 30 years of experience in image-guided surgery but no training at all in this 132 
specific pick-and-place simulator task here.   133 

3. Results 134 

In several of our previous studies, simulator training data relative to time (in seconds) and 135 
precision (in pixels) of image-guided pick-and-place task performance were recorded from a total 136 
population of 30 individuals, including absolute beginners, novice surgeons without specific 137 
experience in image-guided simulator training, and expert surgeons with variable experience in 138 
image-guided surgery. Some of these data have been made available and discussed in our previous 139 
work [2, 3, 5].  140 

Here, the training data of two novices with no experience in image-guided simulator training, 141 
and of one highly proficient expert surgeon with more than 20 years of experience in image-guided 142 
endoscopic surgery but no training in the specific simulator task are compared and discussed. 143 
Differences in the individual speed-precision trade-off functions and in the individual evolution of 144 
task execution times and task precision across sessions are brought to the fore to highlight 145 
spontaneously occurring individual learning strategies that lead to consider the AI enhanced 146 
training model proposed thereafter. The first analysis shows the individual trade-off functions 147 
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between task execution time (in seconds) and precision, expressed here in terms of a score that takes 148 
the cumulated number of off-target pixels for a given session with ten repeated trial-sets of five pick 149 
and place operations. The higher the cumulated off-target score, the lesser the trainee’s precision. To 150 
get these individual trade-off functions, the times taken for each of ten repeated trial sets are sorted 151 
in ascending order (x-axis) and plotted against their corresponding precision scores (y-axis) for each 152 
training session (Figure 1). 153 

  

 154 

Figure 1. The individual trade-off functions between task execution time (in seconds) and precision, 155 
expressed in terms of the cumulated number of off-target pixels for a given session with ten repeated 156 
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trial-sets of five pick and place operations. A higher cumulated off-target score reflects a lesser 157 
precision in a given session. The functions show data of an expert with more than 20 years of 158 
experience in image-guided precision surgery from a single simulator training session (graph on the 159 
left) for comparison with data of two novices from eight successive training sessions revealing two 160 
naturally occurring and radically different task strategies, one focused on precision (graph in the 161 
middle) and one focused on speed (graph on the right). 162 

Comparison between the individual trade-off functions reveal two naturally occurring and 163 
radically different training strategies of the two novices. One of them clearly focused on speed 164 
(Figure 1, graph on right), in other words on doing the task as fast as he/she can, with task execution 165 
times less than half those of the expert with 20 years of experience. Across the eight training 166 
sessions, this trainee is getting progressively faster, but the precision score does not improve as 167 
training progresses and fails to evolve towards any stable performance pattern across the eight 168 
sessions, as shown by the extent of scatter in this trainee’s individual speed-precision trade-off 169 
functions for each session. Even in the last session, the precision scores for the ten trial-sets are 170 
poorer and highly unstable compared with the consistent and rather stable precision scores of the 171 
expert’s single session performance (Figure 1, graph on left), bearing in mind that this expert had no 172 
previous training in this specific simulator task here. The other novice’s strategy is clearly far more 173 
focused on precision, as is made clear by the individual speed-precision trade-off functions of from 174 
the eight training sessions (Figure 1, graph in middle). This novice starts, in the first two sessions, 175 
with times in the range of those from the single session of the expert, then gets progressively faster 176 
and, ultimately, becomes faster than the expert who had no further training in the task. The 177 
precision scores of this novice also improve consistently as training progresses and, ultimately, in 178 
the last training session attain a level of stability that is comparable to that of the expert.  179 
 Plotting the data for time and precision of the same three trainees as a function of the sequence 180 
of the trials across the sessions (a single session for the expert and eight successive training sessions 181 
of the two novices) gives a clear overview of the individual evolution of each performance 182 
parameter and their relative variability/stability. The novice focused on precision (Figure 2, graph 183 
on left) displays a wider range of task execution times with a steeper learning curve compared with 184 
the data from the novice focused on speed (Figure 4, graph on left), whose task execution times are 185 
scattered around the lowest possible ceiling level, indicating that this trainee clearly started off way 186 
too fast. The expert gets naturally and consistently faster in a single session (Figure 3, graph on left). 187 
The most revealing learning curves are those for the parameter relative to precision, showing 188 
moderate scatter and a clear learning trend for the novice focused on precision (Figure 2, graph on 189 
right), and extensive scatter with no learning trend at all for the novice focused on speed (Figure 4, 190 
graph on right). The expert’s precision data show almost no scatter at all, indicating a highly stable 191 
performance level and a slight trend towards better precision as trials progress in a single session 192 
(Figure 3, graph on right). 193 

 194 
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Figure 2. The evolution of task execution times (left) and precision (right) of the novice trainee focused 195 
on precision showing a clear learning trend for each performance parameter, with moderate extent of 196 
scatter (variability) in the data, shown here as a function of the sequence of the repeated trial-sets (10 197 
per session) across eight successive training sessions. 198 

 199 

Figure 3. The evolution of task execution times (left) and precision (right) of the expert surgeon from 200 
a single simulator session showing a short-term training effect on task execution times and a close to 201 
perfectly stable performance level for precision. 202 

 203 

Figure 4. The evolution of task execution times (left) and precision (right) of the novice trainee 204 
focused on speed, with task execution times scattered around the lowest possible ceiling level, and 205 
extensive scatter of the precision parameter with no learning trend at all, indicating that this trainee 206 
started off much too fast. 207 

 The performance data relative to time and precision from the simulator training sessions of 208 
three individuals compared here and their differential evolution with training show three typical 209 
profiles providing clear proof of concept that the pixel-based precision measures of our simulator 210 
system are well-suited to give a reliable and discerning measure for task precision, i.e. a measure 211 
that allows 1) a clear performance distinction between a surgical expert and a novice trainee, and 2) 212 
a clear distinction between novices who adopt radically different task strategies during learning. 213 
The speed-accuracy trade-off functions provide direct insight into the nature of these strategies, as 214 
shown previously. They also provide a quantitative basis for what could be considered a general 215 
model of effective, and possibly AI-guided, simulator training for any image-guided task where 216 
precision matters critically, as in surgical training.  217 
 As shown and discussed in some of our previous work [2, 3, 5], the strategy differences 218 
between novices in simulator training for image-guided hand-tool movements vary between the 219 
two extreme cases shown here, which leads to general conclusions that need to be taken into 220 
account by any system which automatically monitors the evolution of individual performance in 221 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2018                   doi:10.20944/preprints201810.0379.v1

Peer-reviewed version available at Information 2018, 9, 316; doi:10.3390/info9120316

http://dx.doi.org/10.20944/preprints201810.0379.v1
http://dx.doi.org/10.3390/info9120316


 7 of 13 

 

view of either a reinforcement or a correction of task strategies: The performance strategy of trainees 222 
who start off too fast needs to be corrected to enable effective precision learning, while the 223 
performance strategy of trainees who focus on being as precise as possible should be reinforced 224 
because they will naturally and without any further instructions get faster with training. When an 225 
individual precision performance can be considered optimal and stable, then and only then the 226 
trainee may be instructed to try to get even faster. The performance profile of an expert can serve as 227 
a benchmark profile to generate in-built system knowledge of what the desired performance profile 228 
of a novice should look like after successful training on a given simulator.  229 
 On these grounds, we propose a system that automatically corrects for individual strategy at 230 
any moment in time during training, and enables trainees to reach the optimal speed-precision 231 
strategy as swiftly as possible during training by receiving appropriate feed-back. Such a system 232 
must be able to: 233 
 234 
 - generate reliable and discerning measures (parameters) relative to time and precision of  235 
  individual performance at any moment in time during training 236 
 - compare an individual parameter measure relative to time and precision at any moment in  237 
  time during training with the desired parameter value based on an already known  238 
  (“learnt”) performance profile of an expert user  239 
 - provide feed-back to the user at any moment in time during training about what he/she needs 240 
  to focus on to optimize his/her performance as swiftly as possible   241 
 242 

H How this may be achieved is illustrated on the example of a single five-step trial of the simulator 243 
task here (Figure 5). A single trial of the image guided pick-and-place task has several (here five, but 244 
it could be any n in any other system) successive steps. The system starts counting task execution 245 
time from the moment the object is picked up by the user with the surgical tool (t0) and ongoing 246 
time can be communicated to the trainee at any moment (tn) from then until the object is placed on 247 
the last of several (here five) successive targets.  248 
  Placing the object on a given target is a critical step of the procedure where precision 249 
matters as users are instructed to place the object with the surgical tool on the central area of each 250 
target as precisely as possible. This is a challenging task and involves specific visual attention to fine 251 
eye-hand-tool coordination for placing the target optimally as the precise borders of the target 252 
center are only known by the system in terms of pixel coordinates, but not visible to the user. The 253 
user only sees the borders of the targets as such in the image guiding his/her action, and the object 254 
that needs to be placed centrally is smaller than the target area.  255 

 256 
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Figure 5. System flowchart of a single trial of the image guided pick-and-place task with n successive 257 
critical “place object” steps. The system starts counting task execution time from the moment the 258 
object is picked up by the user with the surgical tool (t0). Ongoing time can be communicated to the 259 
trainee at any moment (tn) from then together with the precision score (pn) until the object is placed 260 
on the last targets. The data from a single training session shown in the graphs here above represent 261 
the cumulated values Ttotalx10 and Ptotalx10 from a sequence of ten successive trials per session. 262 

At each such critical step of the procedure, the system counts the number of pixels corresponding to 263 
the object in the image that do not coincide with the pixels that define the central area of a target 264 
known by the system and are therefore “off-target” in terms of the task constraints as given (“place 265 
object as centrally on target as possible”). Hence, the smaller this measure, the greater the user’s 266 
precision at a given critical step. This precision score (pn) also can be communicated to the trainee an 267 
any critical moment in time (tn) of the procedure. 268 
 On the basis of such a system, which automatically monitors the evolution of individual 269 
performance parameters at any given moment in time during training, it is possible to suggest a 270 
simple AI enhanced system for the control, in terms of either reinforcement or correction, of 271 
performance strategies of trainees to ensure effective precision learning. It goes without saying that 272 
priority needs to be placed on precision rather than speed, especially in surgical training, and 273 
trainees get faster naturally, as shown here above, once they have adopted the right strategy for 274 
working on their precision. As is shown here, a single dataset from a single expert can provide 275 
effective benchmark data for building prior knowledge into the system and these “learnt” data can 276 
be exploited for automatic performance feed-back to the user at any moment in time during 277 
training. The data from our expert here were from a single session. In an ideal world, expert data 278 
could be collected from multiple simulator sessions, as many as necessary, to allow for even more 279 
direct trial-by-trial comparisons where the observed data of a trainee at a given moment of the 280 
procedure for a given session Sn are compared to the “ideal” data of an expert for the corresponding 281 
moment of the procedure and session Sn of a training sequence.  282 
 Taken into account the general insight gained from the performance analyses here above 283 
(Figures 1-4), leads to suggest a generic AI enhanced control system that makes decisions based on  284 
in-built knowledge of expert data as shown here below (Figure 6). 285 
 286 
 287 

 288 
 289 
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Figure 6. Model for the automatic reinforcement/correction of individual performance strategies during 290 
training based on data from a single expert (“learnt” system knowledge) to generate appropriate 291 
feed-back. No more than four cases (1, 2, 3 and 4) need to be considered. Any simulator system which 292 
automatically and reliably collects individual performance data for time and precision (parameters) can 293 
be transformed into an AI enhanced system for the control, in terms of either reinforcement or correction, 294 
of performance strategies of trainees to ensure effective precision learning.  295 

 296 
The four cases to be considered by the system may be summarized as follows. 1) At a given moment 297 
tn in a training session Sn the trainee is as fast as or faster than the expert and less precise. In this 298 
case, the system needs to alert him/her to slow down and start focusing on precision. This is the 299 
classic case of a trainee focused on speed who tries to do the task as fast as he/she can and thereby 300 
compromises the swift evolution of his/her precision score. 2) At a given moment in a training 301 
session the trainee is slower than the expert and less precise. In this case, especially at early 302 
moments of training, the system needs to instruct the trainee to keep going, as he/she should get 303 
more precise and faster naturally. 3) At a given moment in a training session the trainee is slower 304 
than the expert and as precise or more precise. In this case, the system needs to instruct the trainee 305 
to try to go a little faster. 4) At a given moment the trainee is faster than or as fast as the expert and 306 
as precise or even more. In this case the trainee has beaten the expert. It this occurs, especially early 307 
in a training sequence, there is either a problem with the simulator task (i.e. the task does not 308 
produce adequate performance data that allow discriminating between levels of expertise, which is 309 
a problem that needs to be fixed), or the trainee is not a true novice.  310 
  311 
4. Discussion 312 
 313 
Surgical simulator training requires new forms of sensorimotor learning, an adaptive process that 314 
leads to improvement in performance through practice. This adaptive process consists of multiple 315 
distinct learning processes [28, 29]. Hitting a target, or even getting closer to it generates a form of 316 
implicit reward where the trainee increasingly feels in control. Successful error reduction, which is 317 
associated with specific commands relative to the specific motor task [24], can be optimized by 318 
gibing the trainee the right external feed-back. In this feed-back process, the integration of 319 
information from multiple senses (vision, touch, audition, proprioception) leads to improved 320 
adjustments in body, arm, or hand movements leading to perform the task with greater precision. 321 
Subjects are able to make use of error signals relative to the discrepancy between a desired and the 322 
actual movement or hand-tool-position, or a discrepancy between visual and proprioceptive 323 
estimates of body, arm, or hand positions [22, 28, 29]. The effective, if possible computer controlled, 324 
monitoring of strategies relative to speed-accuracy trade-offs in individual performance learning is 325 
a critical aspect of the skill assessment process given that cognitive theories of motor learning 326 
predict that strategy differences occur spontaneously when novices train to perform a motor task 327 
in a limited number of sessions [23-26], as is the case in laparoscopic simulator training. 328 
Conditional accuracy functions relate the duration of trial or task execution to a precision index 329 
reflecting the accuracy of the performance under conditions given. A variable relationship between 330 
speed and precision reflects hidden aspects of learning a beginner is usually not aware of [25]. In 331 
the fully trained expert, the trade-off between speed and precision does not vary. For the skill 332 
evaluator, the individual speed-accuracy trade-offs allow assessing whether a trainee is 333 
progressing, and this knowledge needs to be made available as early as possible in the training 334 
process. Simply comparing the skill levels of different trainees at the end of the process is not the 335 
right approach. What is needed are clear benchmark criteria for what the ideal performance of a 336 
successful trainee is to look like at the end of training. Such benchmark knowledge can be built into 337 
the computer controlling the simulator task on the basis of results from a certain number of 338 
training sessions of a surgical expert, as shown in our example here above. 339 
 Surgical simulators may be more or less task specific, or more or less "realistic" when compared 340 
with actual surgical task constraints they are supposed to train for. Many of them provide highly 341 
task specific feed-back, and the skills learnt on a given simulator may not transfer to other simulator 342 
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tasks. One of the most important advantages of a simulation is to facilitate efficient training of skill 343 
outside the clinical context, which reduces the risk for patients. Different definitions of the notion 344 
of skill itself have produced different approaches to simulation-based surgical training. As pointed 345 
out by others previously [9, 10, 18], it is not always clear if more skilled individuals perform better 346 
on their assessments than less skilled or experienced individuals (construct validity), whether 347 
individuals who perform well on their evaluations will also perform well on other similar or 348 
vaguely related tasks (concurrent validity), or whether an assessment based on simulator training 349 
will predict future performance in the real-world context (predictive validity). Faced with this 350 
problem of providing reliable performance standards, it is essential that the system, the task, the 351 
metrics used to control performance learning during the task, and the mechanisms for providing 352 
feedback have somehow been validated by an expert to ensure that the training criteria and skill 353 
assessment provided by the system match those required real surgical tasks. Many different 354 
simulator tasks exist, which poses a problem of generalization of learning curves and skill transfer. 355 
The task model and control procedures suggested here should be implemented at the earliest 356 
stages of "dry lab" simulator training on eye-hand-tool coordination tasks that allow for computer 357 
controlled criteria for precision p at time t (Figure 7, for illustration). The early training task should 358 
successfully tell apart the performance levels of a surgical expert not trained on the simulator, as in 359 
the case discussed here above, and the performance levels of novice trainees. If an early training 360 
system satisfies this criterion, then it is indeed likely to measure critical aspects of surgical skill that 361 
will transfer to real surgical tasks and, ultimately, produce a valid selection of trainees that are 362 
likely to perform well in more specific tasks on physical models and in the clinical context, where 363 
direct supervision by experts will enable to promote individual expertise and excellence at the 364 
highest levels of surgical proficiency (Figure 8).  365 
  366 

 367 
 368 

Figure 7. Illustration of computer controlled precision coding, based on pixel coordinates, for individual 369 
performance training in an image-guided simulator task of the pick and place type, as also described in 370 
our previous work [2, 5]. What the user sees on the screen in front of him/her is a camera view of an action 371 
space of the kind shown in the image at the bottom here. When the task instruction is, for example, to 372 
place a small object as swiftly and as precisely as possible on exactly the center of each of the three larger 373 
square shaped target areas, the computer may use the reference image coordinates, indicated here in the 374 
image on top by the red dotted lines, and compare them with the coordinates of the actual tool-object 375 
movements and/or positions of a given individual at a given trial momentum. Only the system "knows" 376 
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the desired reference coordinates, and uses them to compute a task precision score (p) in terms of the 377 
number of pixels by which the tool-object position or tool-object trajectory produced by the user at a 378 
critical moment in time (t) during the task deviates from the supposedly ideal reference coordinates in 379 
any direction in space. Based on the known performance score of an expert built into the system, 380 
automatic feed-back may be provided to the user at any moment during training to control and/or correct 381 
his/her speed-accuracy trade-off. 382 

 383 
Finally, whatever the simulator, a single performance metric inevitably gives a partial assessment of 384 
user performance [18]. Task completion time as a sole criterion has been explicitly demonstrated to 385 
be a poor or even misleading measure of surgical skill [1, 19]. Some metrics assume a simple global 386 
optimum value, such as a minimal tool path length, or a minimal completion time, and other 387 
quantities such as forces [4, 19] or velocities [21, 30-33], whose ideal values may vary in relation to 388 
changes in conditions, may have to be considered. Analysis of expert performance only can give 389 
insight into the nature of such dependencies and help develop better simulators.  390 
 391 

 392 
 393 
 394 

Figure 8. Speed-accuracy control on novice strategies in early training systems based on experts' 395 
benchmark performance data allows selecting for critical aspects of surgical skill that will transfer to 396 
further training on physical models in increasingly realistic surgical tasks. Ultimately, this will produce a 397 
valid selection of trainees that are likely to perform well at the highest levels of training under the direct 398 
supervision of an expert. 399 

 400 
The fact that not all the important elements of surgical proficiency have been explored yet, does not 401 
change the heuristic validity of the general model for unsupervised training proposed here in this 402 
article. The model can, in principle, be adapted to any simulator system that exploits a criterion for 403 
task precision in task time. It is based on previously validated cognitive models of human 404 
performance learning showing that the individual speed-precision strategies of novices, which 405 
occur spontaneously and unconsciously [2, 22, 24, 25], can seriously compromise precision learning 406 
at all further stages of training if they are not controlled and corrected for as early as possible in the 407 
process. In robot-assisted surgical procedures, for example, where the camera moves along with the 408 
tool, for example [10-16], metrics such as camera movement frequency, camera movement duration, 409 
or camera movement interval are important indicators of technical skill, i.e. the 410 
proficiency/precision with which the trainee controls the tool, combined with other performance 411 
metrics such as task completion time, economy of tool motion, or master workspace range. A 412 
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decision model for unsupervised training procedures of the kind proposed here in this article could 413 
also be adapted to such performance criteria on the basis of device-specific expert performance 414 
benchmark data. 415 
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