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Abstract: Mini-bioreactor systems enabling automatized operation of numerous parallel 23 
cultivations have been used to accelerate and optimize bioprocess development. As implementation 24 
of fed-batch conditions, multiple options of process control and sample analysis are possible, these 25 
systems represent valuable screening tools for large-scale production. However, the dynamic 26 
behavior of cultivations has not yet been considered regarding data evaluation and decision making 27 
during high-throughput screening in mini-bioreactors. In this study, the characterization of 28 
Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed in 48 29 
parallel fed-batch cultivations regarding 16 experimental conditions. Automated parallel process 30 
control, frequent sampling and analysis were implemented. Data-driven multivariate methods were 31 
developed to allow for fast, automated decision making as well as online predictive data analysis 32 
regarding endopolygalacturonase production. Using dynamic process information, a cultivation 33 
with abnormal behavior could be detected by principal component analysis as well as two clusters 34 
of similarly behaving cultivations, later classified according to the feeding rate. By decision tree 35 
analysis, cultivation conditions leading to an optimal recombinant product formation could be 36 
identified automatically. The developed method is easily adaptable and suitable for automatized 37 
process development reducing the experimental times and costs. 38 

Keywords: mini-bioreactors; parallelization; automation; digitalization; multivariate analysis; 39 
dynamic processes 40 
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1. Introduction 43 
Only few of the molecules developed in early-stage biotechnology research are entering 44 

industrial production, for instance due to strain failure in the large scale [1]. Hence, a more consistent 45 
bioprocess development from the screening to the production phase to accelerate strain selection 46 
while maintaining a high explanatory power of the experiments is needed [1–3]. To reduce the risk 47 
of potential failures during scale-up to industrial production, small-scale screening systems should 48 
mimic large-scale conditions. But since high throughput (HT) systems in the form of micro well plates 49 
focus on increase of throughput, a trade-off must be met sacrificing the sophistication of cultivations 50 
monitoring and controls and its relevance for industrial scale.  51 

Mini-bioreactor (MBR) systems, which have been described as scalable to benchtop bioreactors 52 
[4], are an effort to fill this gap. In comparison to lab-scale bioreactors, MBRs allow for a higher 53 
experimental throughput – e.g. the fast screening of large strain libraries [5] or a great number of 54 
experimental conditions [6,7] – while still enabling the implementation of large-scale process 55 
conditions such as feeding, closed loop controls and techniques for scale-down simulation [8,9]. 56 
Additionally, their integration into liquid handling robots allows for execution of multiple 57 
manipulations in parallel based on scripted and pre-programmed protocols – e.g. pH control, feeding 58 
as well as automated sampling and at-line analysis – by integration of laboratory devices [10] (Haby 59 
et al., 2018). Finally, due to the high number of parallel experiments, multiple experimental set-ups 60 
can be tested including replicates, which increases the reliability and transferability of the generated 61 
data for scale-up purposes. Still, there is a lack of tools to design and operate efficient experiments in 62 
such highly parallelized systems. Although some works address this issue with automation of 63 
experimental facilities towards smart platforms [11] and sequential designs, by which experimental 64 
data is processed by algorithms to design next experiments [12–14], as well as optimal experimental 65 
design methods [15], these methods use either static models (e.g. regression models) or require a 66 
thorough understanding of the strains to build mechanistic models (e.g. macro-kinetic growth 67 
models). 68 

Cultivations in MBRs have been performed in parallel previously: Two aeration concepts were 69 
tested for scalability in 24 MBRs in the ambr 15f system (Sartorius Stedim Biotech, Royston, UK) 70 
applying constant feed [16]. Biomass was sampled regularly, however sampling for offline analytics 71 
occurred seldomly and the analytics themselves were not automated. Screenings in 48 MBRs in the 72 
bioREACTOR 48 fermentation system (2mag AG, Munich, Germany) were performed regarding the 73 
performance of recombinant E. coli strains with product determination only at the end of the 74 
fermentation [5] or regarding recombinant Bacillus subtilis strains with samplings every 24 h as well 75 
as pH measurement every 30 min [17]. Hortsch et al. [18] performed growth media comparison for 76 
E. coli cultivations in 48 MBRs with regular biomass determination but limited offline sampling.  77 

However, to the best of the authors’ knowledge, the HT platforms described above have not yet 78 
reached a level of automation, parallelization and digitalization, that does not rely on manual steps 79 
during the cultivation, at-line and offline sample analysis and data evaluation. Additionally, in HT 80 
systems so far, decisions are taken based merely on the connection of the experimental design with 81 
the final outcome. Methods for automated data evaluation and decision making based on the 82 
dynamic behavior of a culture, have not been combined with MBR cultivations. 83 

In this study, an experimental run with 48 MBR fed-batch cultivations is performed, integrating 84 
efficient parallel operation routines, control of temperature, pH, and aeration for all MBRs, as well as 85 
multivariate methods for analysis of online and at-line data generated with advanced sensor 86 
technologies. Regarding experiments in MBR systems, traditional process control is difficult as the 87 
process engineer must operate 48 cultivations simultaneously and eventually optimize the process 88 
behavior. Decisions on corresponding operating conditions must be made in parallel for all 89 
cultivations, while comparative evaluation of the cultures in real-time is difficult due to the 90 
considerable amount of manipulated and controlled process parameters as well as the dynamically 91 
evolving process variables. Data-driven statistical methods presented here enable fast, automated 92 
and parallel decision making and online predictive data analysis for each cultivation. A digital 93 
platform facilitates central information storing, accessible to process engineers and process models. 94 
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As a case study, S. cerevisiae AH22 secreting a pectinase from Aspergillus niger [19] serves as a model 95 
organism for development of recombinant productions processes. Still, the developed methods can 96 
be applied to a wide range of expression systems.  97 

S. cerevisiae has been a production host for recombinant products such as insulin, Hepatitis B 98 
vaccine as well as growth hormones since the 1980s [20] and is still used for a wide range of products, 99 
e.g. therapeutical compounds [21], the antioxidant resveratrol [22], and also for production of 100 
enzymes in the food industry, for instance pectinases.  101 

Besides rapid growth and a well-characterized genome, S. cerevisiae offers greater robustness in 102 
industrial processes, GRAS (Generally Regarded As Safe)-status, secretion of very few endogenous 103 
proteins and direction of recombinant proteins correctly-folded into the culture supernatant, which 104 
simplifies purification [19,21,23,24]. Yeasts are capable of posttranslational modifications, even 105 
though the glycosylation pattern is high in mannose [20] and genetic engineering of the secretory 106 
pathways in S. cerevisiae is difficult [25,26]. Factors, such as promoters, leading sequences and 107 
expression cassette copy numbers, leading to high expression of one product in one strain, might not 108 
be effective for another strain or product. HT systems can contribute to an accelerated strain 109 
characterization and selection. Automated treatment for competence and transformation in high-110 
throughput manner as described in [27,28] will help in constructing heterologous yeast strains 111 
producing desired target molecules.  112 

To achieve an optimal production of recombinant products, important factors to consider during 113 
the process are the maximization of the biomass and the cultivation time so to improve the product 114 
yield. Additionally, the optimal growth rate for protein production, the reduction of ethanol 115 
production and similar by-products due to overflow conditions should be considered. S. cerevisiae 116 
produces ethanol not only during oxygen limitation due to the Pasteur effect, but also aerobically 117 
when the substrate concentrations exceeds a critical strain-specific value [29]. This effect known as 118 
Crabtree effect or overflow metabolism is caused by a maximum in the respiration capacity [30] and 119 
has been described as an escape strategy to avoid accumulation of intracellular sugars to toxic levels 120 
[31]. Ethanol is resorbed by the cells when the preferred substrate – namely fermentable sugars such 121 
as glucose – is exhausted. However, growth on ethanol is slower than growth on glucose, while 122 
increasing the oxygen demand [29,32]. 123 

Given that during strain development, parameters such as the maximal growth rate or optimal 124 
production conditions are not well known, design of experiments (DoE) is applied to statistically 125 
determine which experimental input influences the studied system in a way that leads to the most 126 
informative experiments and should guide process optimization through experiments sequentially 127 
approaching the optimal target conditions. By these methods experiments not resulting in knowledge 128 
gain are avoided, thereby minimizing the time and resources needed for process development. In the 129 
case of E. coli, model-based approaches for optimal experimental design [34] have been used to 130 
identify dynamical cultivation parameters applying an online approach for experimental re-design 131 
in mini-bioreactor platforms [15,35,36]. However, these methods require a macro-kinetic model, 132 
which is not always available for the organism of interest. Closing that gap, data-driven statistical 133 
models are combined with knowledge-driven deterministic models building so-called “hybrid 134 
models”, which can be flexibly defined given the available process knowledge and data [37]. 135 

With regards to the challenging goals of industry 4.0 [2], smart digital solutions should not only 136 
be used to support the process development procedure but to operate sophisticated robotic facilities 137 
such that the information of each experimental run is maximized. For this purpose, four technical 138 
aspects are crucial: i) centralized online data storage and handling for real-time monitoring and 139 
visualization, ii) mathematical methods for data analysis to support decisions during operation, iii) a 140 
full integration of all operated devices, sensors and stakeholders in one accessible and consistently 141 
updated digital platform, and iv) an efficient workflow with proper scheduling assistance and 142 
resource availability. 143 

144 
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2. Materials and Methods  145 

2.1 Strain and culture storage 146 
Cultivations were performed using S. cerevisiae AH22 (leu2-1, leu2-112, his4-519, can1, cir+, 147 

mating type a), harboring the plasmid pPG6 constructed for the heterologous expression of 148 
endopolygalacturonase (EPG) from A. niger [19,38]. The recombinant strain pPG6 M27 showing 149 
improved pectin hydrolysis was used previously [39]. Stock cultures were stored in 1 mL aliquots 150 
with 20 % glycerol at -80°C. 151 

2.2 Media 152 
For all cultivations modified WMVIII minimal medium containing NH4H2PO4 0.25 g L-1, NH4Cl 153 

5.48 g L-1, MgCl2·6H2O 0.25 g L-1, CaCl2·2H2O 0.1 g L-1, KH2PO4 2.0 g L-1, MgSO4· 7H2O 0.55 g L-1, myo-154 
inositol 75 mg L-1, EDTA 11.69 mg L-1 , ZnSO4·7H2O 1.75mg L-1, FeSO4·7H2O 0.5 mg L-1, CuSO4· 5H2O 155 
0.1 mg L-1, MnCl2·4H2O 0.1 mg L-1, Na2MoO4· 2H2O 0.1 mg L-1, nicotinic acid 10 mg L-1, pyridoxin-HCl 156 
25 mg L-1, thiamine-HCl 10 mg L-1, biotin 2.5 mg L-1, calcium pantothenate 50 mg L-1, histidine 100 mg 157 
L-1 and 0.01% Antifoam 204 (Sigma Aldrich, St. Louis, Missouri, USA) was used [39]. The WMVIII 158 
medium was complemented with glucose in different concentrations as a carbon source. 159 

2.3 Precultures 160 
The first preculture was inoculated from one cryo vial into 25 mL modified WMVIII medium, 161 

which was supplemented with 40 g L-1 glucose, 1.5 g L-1 sodium glutamate, and buffered with 5% 162 
citrate-phosphate buffer (pH 6) in a 100 mL UltraYieldTM flask covered with AirOtopTM Enhanced 163 
Seal (both Thomson Instrument Co, Oceanside, California, USA). The preculture was incubated for 164 
24 h at 30 °C and 180 rpm in an orbital shaker (Lab-Therm LT-X, Adolf Kühner AG, Basel, 165 
Switzerland; 50 mm amplitude). 166 

A second preculture was inoculated from the first preculture to an optical density at 600 nm 167 
(OD600) of 0.3 into 100 mL medium in a 500 mL flask and cultivated under the same conditions as the 168 
first preculture for 24 h.  169 

2.4 Main culture 170 
The main culture was inoculated from the second preculture to an OD600 of 0.3 into 300 mL of 171 

the modified WMVIII medium, which was supplemented with 20 g L-1, respectively 30 g L-1 glucose. 172 
Under sterile conditions 10 mL of the inoculated medium were transferred into 48 mini-bioreactors 173 
of the pre-sterilized bioREACTOR 48 fermentation system (2mag AG, Munich, Germany). The set 174 
points of the circulation thermostat and the reflux cooler were 30 °C and 4°C respectively. The 175 
cultures were aerated with 5 L min-1 of pressurized air and the stirrer speed was kept constant at 2400 176 
rpm during the cultivation. Dissolved oxygen tension (DOT) and pH were measured by fluorescence 177 
sensors (PreSens Precision Sensing GmbH, Regensburg, Germany). The pH sensors were calibrated 178 
to a range of pH 5-8 and the DO sensors were adjusted with a two-point calibration under oxygen-179 
free conditions by introducing nitrogen and under oxygen-saturation. The pH was controlled at 6.0 180 
by titration of 3.5 M NH3 (one-sided control). 181 

An initial batch phase of around 12 h was followed by a fed-batch phase with small bolus 182 
additions of a concentrated glucose stock solution every 5 min via the Freedom Evo liquid handling 183 
station (LHS) (Tecan, Männedorf, Switzerland), as described by (Haby et al., 2018). The concentration 184 
of the feed stock was 100 g L-1 or 500 g L-1 for higher feed rates to lower the volume increase.  185 

After the cultivation, the final volume was measured to calculate the evaporation rate. For 186 
determination of the cell dry weight 1.5 mL of culture broth was collected in duplicates in pre-dried 187 
Eppendorf tubes and centrifuged. The supernatant was discarded, and the cell pellet was dried at 188 
75°C for more than 48 h.  189 

 190 
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2.5 Sampling 191 
From every mini-bioreactor 250 µL of culture volume was taken column-wise with the 8-channel 192 

pipette of the Freedom Evo LHS and pipetted into 96 well microtiter plates containing 15 µL dried 2 193 
M anhydrous NaOH per well to inhibit cell activity (Haby et al., 2018). 194 

During the batch phase samples were drawn column-wise in 5-min intervals, the at-line analysis 195 
(as described in 2.6) was performed in single determination without replicates. After beginning of 196 
the fed-batch phase samples were drawn every 20 min from the eight reactors of one column, 197 
consequently each mini-bioreactor is sampled every 2 h. Here, the at-line analysis was performed in 198 
double determination. 199 

2.6 At-line and offline analysis 200 
As at-line values OD600 and glucose concentration were determined as descripted by Haby et al, 201 

2018. Additionally, the remaining supernatant was immediately sealed and stored at -20°C for offline 202 
analysis. The ethanol concentration was determined offline using the Cedex Bio HT Analyzer (Roche 203 
Diagnostics International Ltd, Risch, Switzerland). The detection range of ethanol using the Cedex 204 
Analyzer Ethanol Bio HT Kit (ETOHB) is 0.5 to 10.1 g L-1. However, as the samples had to be diluted 205 
with an equal amount of deionized water prior to analysis due to their small volume, the lower 206 
detection limit was 1 g L-1. The volumetric enzymatic activity (EA) of EPG was determined by a 207 
colorimetric assay with 2-methyl-2-benzothiazolinonehydrazone (MBTH) in 96-well plate format 208 
using the Hamilton LHS as described elsewhere [39].  209 

2.7 Experimental design 210 
The cultivations in the 48 mini-bioreactors were performed under 16 experimental conditions in 211 

triplicate based on a fractional factorial design. Two batch lengths – determined by an initial glucose 212 
concentration of either 20 g L-1 or 30 g L-1 –, three feed profiles – exponential, linear and constant –, 213 
three feed rates – 0.0875 h-1, 0.125 h-1 and 0.35 h-1 – and an optional “hunger phase” – a period of 2 h 214 
after batch end, where no substrate was supplied – were applied. The full experimental plan is 215 
provided in table 1. 216 

Table 1. Cultivation details. The experimental conditions regarding each mini-bioreactor are shown, 217 
including the fed-batch profile, feed rate, initial substrate concentration S0 and occurrence of a hunger 218 
phase. 219 

Condition Profile Feed rate S0 Hunger phase 
1 Exponential 0.0875 h-1 30 g L-1 - 
2 Exponential 0.175 h-1 30 g L-1 - 
3 Exponential 0.35 h-1 30 g L-1 - 
4 Constant 0.175 h-1 30 g L-1 - 
5 Exponential 0.0875 h-1 20 g L-1 - 
6 Exponential 0.175 h-1 20 g L-1 - 
7 Exponential 0.35 h-1 20 g L-1 - 
8 Constant 0.175 h-1 20 g L-1 - 
9 Linear 0.175 h-1 30 g L-1 - 

10 Linear 0.35 h-1 30 g L-1 - 
11 Linear 0.175 h-1 30 g L-1 2h 
12 Linear 0.35 h-1 30 g L-1 2h 
13 Linear 0.175 h-1 20 g L-1 - 
14 Linear 0.35 h-1 20 g L-1 - 
15 Exponential 0.0875 h-1 20 g L-1 2h 
16 Exponential 0.35 h-1 20 g L-1 2h 

 220 
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2.8 Calculation of feed rates 221 
The feed rates were calculated based on an initial feed rate F0: 222 𝐹଴ = µ௦௘௧𝑆௜ ∗ 𝑌௑/ௌ ∙ 𝑋଴ ∙ 𝑉଴ (1)

where µset [h-1] represents the set-point of the specific growth rate, Sin [g L-1] the glucose concentration 223 
in the feed, YX/S [g g-1] the biomass yield coefficient, V0 [L] the starting volume and X0 [g L-1] the 224 
biomass concentration present at the start of the cultivation in each mini-bioreactor [g L-1]. YX/S was 225 
estimated to 0.5 [g g-1] according to [38], determined for the same recombinant strain. 226 

In the first feed phase with a duration of 12 h, the feed was increased either exponentially or 227 
linearly, or kept constant. The exponential feed Fexp [L h-1] was calculated from the initial feed rate F0, 228 
the set growth rate µset and the time t [h]: 229 Fୣ୶୮ (t) = F଴ ∙ eµ౩౛౪(୲) (2)

The linear and constant feed in the first feed phase were based on the total amount of glucose 230 
fed in a respective exponential feed (Appendix A). Therefore, all cultivations received the same 231 
amount of glucose after the first feed phase (Figure 1). 232 

After 12 h the feed was switched to an equal constant feed for all feed profiles. To ensure the 233 
same feeding conditions, the feed rate applied in this feed phase was the same for all feed profiles 234 
corresponding to the same feed rate. As the feeding was applied using the semi-continuous method 235 
of small bolus additions every 5 min, the feed rates were discretized into pulses of 5-min intervals, 236 
adapted from (Anane et al., 2018). Due to the limitation in total volume in the mini-bioreactor, the 237 
feed was limited to 30 µL per pulse, shortening the first fed-batch phase in some cultivations. 238 

For calculation of the feed volumes as well as for the data processing and multivariate analysis, 239 
explained in the following, MATLAB 2016a, respectively 2017a was used (The MathWorks, Inc., 240 
Natick, Massachusetts, USA). 241 

 242 

 
Figure 1. Schematic overview of the feed profiles. In the first feed phase exponential (green), 243 

linear (orange) or constant feed (blue) is applied according to the experimental plan, followed by a 244 
constant feed (here after 5 h) for all cultivations in the second feed phase. As the calculation of the 245 
linear and constant feed is based on the respective exponential feed, all cultivations receive the same 246 
amount of glucose during the cultivation, relative to the biomass concentration at the feed start. 247 

2.9 Data processing 248 
To efficiently access the large amount of data, which are produced during this experiment, 249 

methods to read the data from the central database (Haby et al., 2018) were developed. Processing 250 
and visualization of the cultivation data was implemented using MATLAB. A flexible framework 251 
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allows easy adaptation of the number of mini-bioreactors, experimental information and calculations 252 
for all mini-bioreactors. 253 

The different feed and evaporation rates led to differing volumes in the mini-bioreactors. To 254 
simplify comparison, the OD600 values were normalized to the start volume of 10 mL considering the 255 
evaporation and the dilution by feed, base and medium addition. All other measurements were not 256 
normalized, so the concentrations might be affected by dilution. Regarding the specific EA, the 257 
volume difference had no influence and the values therefor did not have to be adapted. 258 

The specific growth rate µ [h-1], the substrate consumption rate qS [gsubstrate (gbiomass h)-1] and the 259 
specific product formation rate qP [U (gbiomass h)-1] were determined by the following equations: 260 µ = ୪୬൫௑ಿ,మ൯ି୪୬൫௑ಿ,భ൯௧మି௧భ    (3)

𝑞ௌ = ௌమିௌభ(௧మି௧భ)∙௑  (4)

𝑞௉ = ா஺௩మିா஺௩భ(௧మି௧భ) ∙ ଶ௑మି௑భ   (5)

where X [g L-1] refers to the biomass concentration, XN [g L-1] refers to the normed biomass 261 
concentration, S [g L-1] to the substrate concentration, t [h] to the cultivation time and EAv [U mL-1] 262 
to the volumetric enzyme activity. 263 

2.10 Multivariate statistical analysis 264 
The data generated from the MBR was analyzed using statistical tools to aid process 265 

optimization based on the parallel experiments. The resulting three dimensional dataset (runs × 266 
variables × times) was unfolded in batch-wise manner [40] to obtain a table with the rows spanning 267 
the different experiments and the columns distinguishing different variables at different time points. 268 

Firstly, for a dynamic comparison of the multivariate process behavior of the runs, batch-wise 269 
unfolded (BWU) principal component analysis (PCA) [41] using the biomass, glucose and ethanol 270 
concentration, pH, DOT, base additions and volumes as input was performed. Score plots were used 271 
to abnormally behaving reactors and reactors that performed similarly. Statistically significant 272 
clusters were then identified in the score space automatically using k-means clustering algorithm 273 
[42]. Correspondingly, clusters were characterized based on the design of experiments using a 274 
classification tree analysis [43].  275 

Additionally, for predicting the product characteristic based on the process behavior, a 276 
prediction model to estimate the EPG activity was developed using BWU historical partial least 277 
square regression (PLSR) model [44]. Thus, for instance, to build a prediction model for EPG activity 278 
at 22 h in addition to the design variables, the measured variables, namely biomass, glucose and 279 
ethanol concentration, pH, DOT and volumes maximally until this time were used as input for the 280 
model. A variable selection routine to identify the most important variables and crucial measurement 281 
time point was implemented. Variables were added one at a time and the mean of the 10-fold cross 282 
validation [42] error was monitored to identify the variable combination providing the minimum 283 
mean root mean square error of cross validation (RMSECV). The RMSECV was computed regarding 284 
the total number of cross validations Nruns, the predicted values Ypred and the observed values Yact using 285 
the following formula:  286 

𝑅𝑀𝑆𝐸𝐶𝑉 = ඩ 1𝑁௥௨௡௦  ෍ ቆ𝑌௜௣௥௘ௗ − 𝑌௜௔௖௧𝑌௜௔௖௧ ቇଶேೝೠ೙ೞ
௜ୀଵ  (6)

Finally, the experimental conditions that could simultaneously minimize ethanol production 287 
and maximize EPG activity were identified using regression tree analysis [43]. Four independent 288 
regression trees were developed to predict the four targets, ethanol and EPG activity at 22 h and 35 289 
h, using feeding profile, feed rate, initial substrate concentration and hunger phase data. The decision 290 
paths, i.e. the applied experimental conditions, leading to high EPG activity and low ethanol 291 
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concentrations were identified in all the decision trees. The thus identified optimal experiments for 292 
production were evaluated for overlapping cultivation conditions, for example the same feeding rate 293 
or profile, to ascertain a suitable design.  294 

3. Results 295 
Screening and process development under fed-batch conditions in stirred MBRs enable strain 296 

phenotyping closer to industrial conditions while still reducing the experimental time and effort. 297 
To achieve this, a procedure for process control, sampling and analysis for 48 parallel mini-298 

bioreactor cultivations in a HT platform (Figure 2) was developed. S. cerevisiae AH22 producing 299 
recombinant EPG was characterized in HT in the milliliter scale regarding the best growth conditions 300 
for optimization of the final and specific product concentration. 301 

Sixteen combinations of cultivation conditions – including different batch lengths, feed profiles 302 
and rates as well as a hunger phase – were performed in triplicates, and the results were compared 303 
regarding growth behavior, glucose consumption, ethanol and EPG production. 304 

 305 

 
Figure 2. The robotic HT platform for cultivation in 48 MBRs and automated sampling and 306 

analysis. Shown are the Tecan LHS including the MBR system, the Hamilton LHS connected by a 307 
linear transfer unit. 308 

3.1. Growth and carbon metabolism 309 
The fed-batch phase started after 15 h for cultivations with a lower initial substrate concentration 310 

of 20 g L-1 and after 16.55 h for cultivations with a higher initial substrate concentration of 30 g L-1 as 311 
well as for cultivations, where a hunger phase was applied. The initial biomass concentration at tfeedstart 312 
was 1.70 ± 0.28 g L-1.  313 

 314 
 315 
 316 
 317 
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 318 
 319 
 320 

         (a) (b)        (c) 
Figure 3. Measurement data is shown regarding the designs 1, 2 and 3 – exponential feed with feed 321 
rates of (a) 0.0875 h-1, (b) 0.175 h-1 and (c) 0.35 h-1, initial substrate concentration S0 = 30 g L-1 and no 322 
hunger phase. The DOT and pH, biomass and glucose concentration as well as ethanol concentration 323 
and specific enzyme activity are shown. The mean and standard deviation are shown regarding 324 
duplicate measurements for biomass and glucose concentration and regarding triplicate 325 
measurements for specific enzyme activity. The three MBR cultivations performed under the same 326 
conditions are shown in different colors, the start of the feed and the constant fed-batch phase are 327 
shown by the vertical dashed, respectively dashed-dotted line. Interactive versions of the plots can be 328 
found online: https://www.tu-berlin.de/?200026  329 

The highest feed rate of 0.35 h-1 led to the highest biomass concentrations (Figure 3), the lower 330 
feed rates of 0.0875 h-1 and 0.175 h-1 resulted in comparable growth behavior and final cell density. 331 
Regarding exponential growth at different feed rates, similar biomass and glucose concentration were 332 
observed for the two different initial substrate concentrations, though a slightly higher biomass 333 
concentration was reached for 30 g L-1. The feed profile (Figure 4) and the hunger phase did not have 334 
an observable influence. The cultures grew at a growth rate between of 0.18 ± 0.05 h-1 in the batch 335 
phase (Figure 5a). During the first fed-batch phase, the growth rate was alternating between µ = 0.04-336 
0.1 h-1 for cultivations fed at a feed rate of 0.0875 h-1, µ = 0.06 to 0.1 h-1 for a feed rate of 0.175 h-1 and 337 
µ = 0.15 to 0.2 h-1 for a feed rate of 0.35 h-1, respectively (Figure S2). The growth rate was lower in the 338 
beginning of the first feed phase – especially for cultivations with hunger phase – indicating a lag 339 
phase. After the begin of the constant fed-batch phase, the growth rate declined. Especially regarding 340 
the biomass concentrations, a high reproducibility between the replicates could be reached (Figure 341 
S1). 342 

 343 
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         (a) (b)        (c) 

Figure 4. Cultivation data regarding growth at different feed profiles applying a feed rate of 0.175 h-344 
1. Measurement data is shown regarding the designs 2, 4 and 9 – (a) exponential, (b) linear and (c) 345 
constant feed at a feed rate of 0.175 h-1 with an initial substrate concentration S0 = 30 g L-1 and no 346 
hunger phase. The DOT and pH, biomass and glucose concentration as well as ethanol concentration 347 
and specific enzyme activity are shown. The mean and standard deviation are shown regarding 348 
duplicate measurements for biomass and glucose concentration and regarding triplicate 349 
measurements for specific enzyme activity. The three MBR cultivations performed under the same 350 
conditions are shown in different colors, the start of the feed and the constant fed-batch phase are 351 
shown by the vertical dashed, respectively dashed-dotted line. Interactive versions of the plots can be 352 
found online: https://www.tu-berlin.de/?200026  353 

 354 
 355 
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         (a) (b) 

Figure 5. Specific rates for growth rate µ, substrate consumption qS and product formation qP are 356 
shown regarding (a) exponential feed at a feed rate of 0.175 h-1, an initial substrate concentration S0 of 357 
20 g L-1 and no hunger phase, and regarding (b) constant feed at a feed rate of 0.175 h-1, an initial 358 
substrate concentration S0 of 20 g L-1 and no hunger phase. The rates are calculated using the mean of 359 
the respective measurements. The three MBR cultivations performed under the same conditions are 360 
shown in different colors, the start of the feed and the constant fed-batch phase are shown by the 361 
vertical dashed, respectively dashed-dotted line. Interactive versions of the plots can be found online: 362 
https://www.tu-berlin.de/?200026 363 

The substrate uptake rate during the batch was 1.34 ± 0.34 gsubstrate (gbiomass h)-1. The substrate 364 
consumption rate increased in the first feed phase for the cultivations fed exponentially or linearly 365 
(see for example Figure 5a). Regarding the cultivations receiving constant feed (see for example 366 
Figure 5b), the substrate consumption rate increased in the first part of this feed phase to decrease 367 
afterwards due to the decreasing availability of substrate regarding the biomass. After the shift to the 368 
constant feed, the substrate consumption rate decreased. 369 

Glucose accumulated depending on the feed rate, for some cultivations fed at the highest feed 370 
rate of 0.35 h-1 as early as around 20 h cultivation time. Though, glucose accumulation could be 371 
observed for all cultivations, even the cultivations fed at the lowest feed rate, after around 40 h of 372 
cultivation. After 30-40 h, the cells in all mini-bioreactor cultivations (Figure S1) entered a phase of 373 
growth stagnation, although glucose was present in the cultivation medium, partly at high 374 
concentrations.  375 

 376 
An increase in pH was observed for all cultivations, starting slightly later in cultivations fed at 377 

lower feed rates. The DOT signal was very irregular and oxygen limitation was detected for some 378 
cultivations for a short time, possibly due to repeated clogging of the aeration ports for the individual 379 
MBRs. However, no effects could be seen on growth and ethanol production regarding cultures with 380 
and without short-time oxygen limitation – e.g. regarding the triplicates fed at a growth rate of 0.0875 381 
h-1 (Figure 3). 382 
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3.2. Recombinant protein production 383 
The plasmid for EPG production is equipped with the constitutive ADHI promoter, so the 384 

enzyme is produced from the beginning of the cultivation. 385 
The volumetric and specific enzyme activity increased during the batch and first h of fed-batch 386 

phase, though mainly remained constant or decreased towards the end of the fermentation, only 387 
increasing slightly for the cultivations fed at a feed rate of 0.0875 h-1.  388 

Rather constant product formation rates between 150 and 400 U (gbiomass h)-1 could be observed 389 
until 23 h of cultivation. However, the productivity decreased until the end of the cultivation (Figure 390 
4c and 5c). 391 

The highest final yield and final specific yield for EPG were obtained for the cultivations with 392 
an initial substrate concentration of 30 g L-1, which were fed exponentially at a µset = 0.0875 h-1 without 393 
hunger phase. Specific enzyme activities of up to 1511.9 ± 27.2 U gbiomass-1 were obtained after around 394 
23 h cultivation time (other replicates: 1239.8 ± 49.8 U gbiomass-1; 1013.5 ± 37.1 U gbiomass-1) and 1540.0 ± 395 
278.8 U gbiomass-1 after around 37 h (other replicates: 1439.7 ± 91.3 U gbiomass-1; 1293.8 ± 127.1 U gbiomass-1) 396 
(Table S2). The volumetric enzyme activity after 37 h was 9.09 ± 0.58 U mL-1 (other replicates: 8.59 ± 397 
1.56 U mL-1; 7.82 ± 0.77 U mL-1). 398 

The cultivations with an initial substrate concentration of 20 g L-1 showed a similar EPG 399 
expression profile compared to the 30 g L-1. 400 

3.3. Ethanol formation 401 
During the batch phase around 5-10 g L-1 ethanol are produced. In cultivations fed at a rate of 402 

0.0875 h-1 the remaining ethanol was taken up by co-metabolism of glucose and ethanol, and 403 
decreased below the detection rate. Ethanol was present at rather constant concentrations of around 404 
3 g L-1 in cultivations fed at a rate of 0.175 h-1, while ethanol accumulating up to 15 g L-1 occurs in 405 
cultivations fed at a rate of 0.35 h-1. In most cultivations fed at the rate of 0.35 h-1 the ethanol 406 
concentration declined after a cultivation time of 30 h to increase again until the end of the cultivation. 407 

3.4. Multivariate analysis for information extraction 408 
First, BWU–PCA was performed for each measurement time point by using the historic process 409 

information until the considered time point for analysis. Thus, at every time point, the routine was 410 
able to identify batches showing abnormal behavior. Figure 6 shows score plots of the BWU-PCA 411 
scores for all 48 runs incorporating their process history until 22 h. It can be identified that one run 412 
falls distinctly apart from all the other batches at both time points, i.e. that such abnormality can be 413 
detected early in the process. This was identified to be run 46 (marked in black in Figure 6a), which 414 
experienced a failure during the experiments. The pH and DOT sensors were not working properly 415 
resulting in incorrect culture handling. For future analysis, this outlier was removed.  416 

In addition, runs that were similar were identified using the k-means clustering algorithm 417 
resulting in three clusters as shown in Figure 6a. A decision tree analysis highlighted that the two 418 
characteristic clusters (marked orange and green) were determined by the feeding rate and were 419 
segregated into the lower feed rates of 0.0875 h-1 and 0.175 h-1 and the high feed rate of 0.35 h-1. 420 
However, the other manipulated variables in the experimental design, i.e. feeding profile, hunger 421 
phase and initial substrate concentration did not show significance in determining the similarity of 422 
runs. Nonetheless, these might be indeed important to further understand peculiarities of the process 423 
behavior in each of the major clusters as well as to explain the product characteristics. It is important 424 
to highlight that the abnormal behavior of run 46 can be detected within the first hour of the process 425 
duration, while the distinctly different evolution of the process can be segregated from 22 h. Although 426 
in this simple case the outlier can be even detected visually based on the process information, such a 427 
tool is generally useful to identify pro-actively abnormal and different process behavior so to suggest 428 
on improved operating conditions or abort the process. 429 

 430 
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(a) (b) 

(c) (d) 
Figure 6. Real-time outlier identification and batch characterization using PCA. (a) Clusters 1 (red 431 
circles) with 17 observations, cluster 2 (green circles) with 30 observations and the outlier (black 432 
circle) detected after 24 h of cultivation; (b) Prediction of PLSR model using all history and variable 433 
selection against experimental value of volumetric EPG activity at 35 h. (c) RMSECV (see 2.10) of the 434 
PLSR models built based on different amounts of history (with variable selection). (d) Experimental 435 
values of volumetric EPG activity at 35 h of batch against the model prediction built using the history 436 
until 24 h (with variable selection). 437 

 438 
With regards to the second goal, historic PLSR models were built to predict the analytically 439 

costly EPG activity based on the simple-to-access process measurements. For the EPG prediction at 440 
two measurement times, 22 h and 35 h, an average RMSECV of 21.45 ± 12% and 23.30 ± 12% was 441 
obtained, respectively. The prediction results for the latter case are additionally visualized in Figure 442 
5b where one can observe that most of the 47 runs are decently predicted while few runs are either 443 
under- or over-estimated. The limitation of such predictions can be noise in the measurements of 444 
process variables and EPG (highlighted by error bars). Especially, the analytics for the latter should 445 
be improved to decrease variability and provide a more consistent basis for prediction. On the other 446 
hand, the linear structure of the model is likely not to capture all the peculiarities of the biological 447 
system, so that mechanistically valid non-linear terms are likely to be of advantage. 448 

A further goal of this predictive analysis was the evaluation of the possibility to forecast the final 449 
volumetric EPG activity based on a shorter duration of process history, i.e. not only to build a soft 450 
sensor for the protein activity based on easier-to-access process measurements but also to anticipate 451 
the activity in advance so to provide an early basis for decision taking. Figure 6c shows the RMSECV 452 
distribution obtained for different amounts of process history used for prediction. One can observe 453 
that the process outcome can already be accurately predicted after 24 hours. The two significant drops 454 
of the RMSECV distributions at 15 and 21 hours signify that important information on the process 455 
characteristics are added here. The latter observation is also in line with the one from Figure 6a where 456 
only after 22 h a clear separation of the two process regimes was evident. The first observation is very 457 
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likely to be related to the start of feeding, while the second observation could be interpreted as the 458 
time point when the response of the fermentation process to the culture conditions including the 459 
feeding profile is clearly established. The importance of such analysis is highlighted in Figure 6d, 460 
which shows the PLSR model predictions based on process history until 24 hours to forecast the final 461 
volumetric EPG activity. Error bars signify the standard deviation of the predictions, while the red 462 
cross helps to distinguish low productivity runs (EPG < 3 U mL-1) from high productivity runs (EPG 463 
> 3 U mL-1). Although, the error is rather high regarding the model prediction, probably due to 464 
deviations between the triplicates of cultivations performed under the same conditions and 465 
measurement errors, the model can detect a trend in the culture behavior. With few exceptions, after 466 
two thirds of the process duration the model can therefore clearly forecast whether under the given 467 
operating conditions, the volumetric EPG activity 11 hours later will be low or high. This enables in 468 
the future to optimize the process conditions in real-time based on such predictions. However, further 469 
improvements of the model could be achieved by increasing the accuracy of the measurements and 470 
improving the outlier detection.  471 

Besides the consideration until which time point the process must be quantified, Table 2 targets 472 
the analysis based on the variable selection routine, which time points in particular provide important 473 
and unique process information to predict volumetric EPG activity. In fact, the sampling scheme 474 
could be drastically reduced, measuring instead of 28 samples (11 for biomass, 11 for glucose and 6 475 
for ethanol) only 17 samples, while retaining the predictive power of the corresponding two models.  476 

Table 2. Important measurement times for biomass, glucose and ethanol concentration that provide 477 
crucial information for the volumetric EPG activity prediction model. 478 
 Biomass [h] Glucose [h] Ethanol [h] 

EPG (22h) 12, 13, 16, 19, 22  0.3, 16, 19 16, 22 
EPG (35h) 16, 22, 27, 32 12, 13, 27, 30 16, 22, 35 

 479 
Finally, the multi-target characteristics of yeast fed-batch development shall be considered, 480 

namely the adaptation of the process operation mode so to have a high product formation while 481 
minimizing ethanol production [39]. This was addressed through regression tree analysis of the 482 
manipulated process conditions to the four characteristics of interest, i.e. the volumetric EPG activity 483 
and ethanol concentration, both measured at 22 h and 35 h. Table 3 shows optimal paths for each of 484 
the four characteristics resulting in similar distributions of the considered variable (represented by 485 
mean and standard deviation). For instance, for ethanol at 22 h three possible process operation 486 
selections were identified, while for the volumetric EPG activity at 35 h one sequence of critical 487 
decisions for process variables was obtained. Regarding all four characteristics, recurring conditions 488 
were exponential feeding at a feeding rate of 0.0875 h-1 with an initial substrate concentration of 30 g 489 
L-1 and no hunger phase, which were thus identified as the most appropriate conditions. The 490 
regression tree analysis confirms the observations made for ethanol accumulation and volumetric 491 
EPG activity in the previous sections but additionally identifies other equivalent possibilities. With 492 
further targets to be considered in the future as well as additional process parameters tested, this 493 
approach offers a stream-lined procedure for model-based decision taking for process optimization. 494 
  495 
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Table 3. Optimal conditions regarding the feed rate and profile, the initial substrate concentration S0 496 
and the presence of a hunger phase identified by decision tree analysis for high volumetric EPG 497 

activity and low ethanol production. Each row in the table corresponds to an optimal combination 498 
of process conditions for the considered target variable. The total number of runs performed under 499 

these conditions is given as well as he mean and standard deviation of the ethanol concentration 500 
and volumetric EPG activity is given regarding those runs. The symbol ‘-’ indicates that any value of 501 

this variable is acceptable. Conditions which lead to an optimal result regarding both ethanol 502 
concentration and volumetric EPG activity at both time points are underlined. 503 

 Feed 
rate [h-1] 

Feed profile S0  
[g L-1] 

Hunger 
phase [h] 

Number 
of runs [#] 

Mean Std 

Ethanol 
(22h) (g L-1) 

0.0875 
0.175 
0.175 

- 
Linear 

Constant/Exponential 

- 
- 

30 

- 
- 
- 

9 
9 
6 

1299 
1521 
1498 

418 
577 
518 

Ethanol 
(35h) (g L-1) 

0.0875 
0.175 

Linear/Exponential 
Linear 

- 
- 

0 
- 

6 
6 

951 
1381 

350 
568 

EPG (22h) 
(U mL-1) 

- 
0.175 

Constant/Exponential 
Linear 

30 
30 

- 
0 

12 
6 

2.6 
2.4 

0.7 
0.8 

EPG (35h) 
(U mL-1) 

0.0875 Constant/Exponential - - 6 5 2 

  504 
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4. Discussion 505 
In this study, 16 experimental conditions were carried out in triplicates in 48 MBRs to evaluate 506 

the influence of substrate availability and feeding strategy on recombinant protein production in S. 507 
cerevisiae. Cultivation, sampling and at-line analysis were performed automatically on the high 508 
throughput platform. Data handling – from raw data processing to the visualization and predictive 509 
modeling – was performed standardized and automated with minimal human input to rapidly gain 510 
process information and decision support from the enormous amount of data, which was collected 511 
during the experiment.  512 

MBR platforms allow to combine the advantages of both microtiter plates and benchtop-scale 513 
bioreactors resulting in high experimental throughput and high information gain [4]. They thus are 514 
an important step towards consistent bioprocess development. Multiple replicates of the cultivations 515 
with the same experimental conditions were included and high comparability between experiments 516 
was achieved as the batch variability was reduced compared to the sequential approach. The latter is 517 
also important, as it has been shown that the history of the cells has a strong influence on the results 518 
obtained in the following cultivation [39,45].  519 

A maximum specific product formation rate of 400 U (gbiomass h)-1 was observed at the lowest feed 520 
rate of 0.0875 h-1 and 250 U (gbiomass h)-1 at a feed rate of 0.175 h-1. This is comparable to the rates 521 
achieved at similar dilution rates of 0.08 to 0.11 h-1 in change-stat cultivations of S. cerevisiae AH22 522 
expressing EPG as reported earlier [39]. The actual growth rate was around 30% of the set growth 523 
rate and was thus less than expected. Reasons for the growth inhibition might be the metabolic 524 
burden of recombinant protein production [46], the negative effect of ethanol on sugar and amino 525 
acid transport [47] or – in case of the higher feed rates – of the overflow metabolism [48]. Also, 526 
oscillations in substrate availability – which are introduced here by the semi-continuous feed – have 527 
been shown to lead to a reduction in growth [49,50]. The growth arrest, occurring here after 30-40 h, 528 
could be caused by the metabolic stresses which are applied during recombinant protein production 529 
[51], the depletion of some medium components or the accumulation of self-produced toxic by-530 
products, including but not exclusively ethanol [31]. It was shown that accumulation of lactic and 531 
acetic acid lead to reduced growth and substrate consumption and increase ethanol production [52]. 532 
However, during the cultivations described here, neither lactic nor acetic acid were accumulated to 533 
concentrations reported to have a negative influence (Table S3). Ethanol production, reducing the 534 
yield, started in the cultivations fed at feed rate of 0.175 h-1, which is lower than the critical dilution 535 
rate for ethanol production µcrit = 0.2 h-1 in change-stat cultivations [39]. Again, oscillating sugar 536 
concentration might be the reason for increased ethanol production [49]. While the intermittent 537 
feeding in the MBR system is able to resemble substrate-gradients in large-scale production 538 
processes, and thus is a suitable tool for scale-down simulation (Anane et al. 2018), it results in cell 539 
stress. An improvement of the cultivation conditions can be achieved by enzymatic glucose release 540 
mimicking continuous fed-batch conditions [53]. 541 

Principal component analysis supported as a visualization tool the identification of outliers and 542 
varying process behavior. In the future, such tools can be pro-actively integrated into the experiments 543 
so to stop strongly deviating runs or identify potentially abnormal features to adapt the 544 
corresponding process conditions and control them towards the targets. Predictive models based on 545 
PLSR showed that soft sensors can be built based on simple-to-access process data to reliably quantify 546 
EPG activity. Such predictions can be obtained only after two thirds of the process duration enabling 547 
to pro-actively forecast the productivity of given operation conditions and support decision taking 548 
to improve or abort the low producing runs. Moreover, the embedded variable selection tool enabled 549 
to quantify the minimal number and characteristic time points of measurement yielding sufficient 550 
information content, i.e. an effective process analytical scheme. Given the two targets, namely high 551 
volumetric yield and low ethanol production, super-imposed regression trees enabled to identify 552 
important process parameters and their desired levels to fulfill these targets. A combination of the 553 
lowest feed rate of 0.0875 h-1, an exponential feed with an initial substrate concentration of 30 g L-1 554 
and no hunger phase resulted in the highest volumetric yield of ~8.5 U mL-1 (mean of triplicates) in 555 
comparison to a volumetric yield of ~2.1 U mL-1 regarding the design with the lowest yield. For future 556 
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analysis, these tools must be directly implemented into the experimental platform so to enable real-557 
time decision taking and process optimization. Like this, an even better evaluation of the potential of 558 
such automated HT technology for efficient process development can be achieved. The real-time 559 
adaptations based on the model predictions will pave the path to better process understanding and 560 
the creation of a digital twin of the process. Several sequential iterations of such an experiment will 561 
enable to not only design an optimal process in the Quality by Design (QbD) perspective, i.e. to 562 
identify the settings of the Critical Process Parameters (CPP) resulting in optimal Critical Quality 563 
Attributes (CQA), but will also provide a technologically and economically optimal operation 564 
procedure with regards to the dynamic control structure, sampling scheme and reporting base for 565 
the involved decision takers. 566 

Bottlenecks of HT methods still exist but have shifted from experimental throughput to offline 567 
analysis, data handling and evaluation [4]. Frequent sampling of up to 48 cultivations in parallel over 568 
several days results in many samples, i.e. during the presented cultivation 744 samples were taken. 569 
Although methods and devices for HT sample preparation and analysis already exist – e.g. a HT 570 
method for cell disruption [11] – exploiting the full potential of HT screening remains a challenge, 571 
particularly with regards to online product quality characteristics quantification [54], and requires 572 
fast analytical methods suitable for parallelization. Thus, quantitative tools for prediction and 573 
decision support will remain a key enabler of the successful realization of such automated 574 
technology. In this work, a PLSR based model was developed to predict the EPG activity based on 575 
simple-to-access process quantities. More dynamic measurements of this quantity would in the 576 
future enable to build a real-time sensor for this product characteristic. Moreover, the developed 577 
models can be further intensified through integration of existing process knowledge so to generate 578 
hybrid process models [37]. 579 

The developed method provides a remarkable advancement towards the goals of industry 4.0 580 
based on an efficient, parallelized and automated system for cultivation and analytics as well as a 581 
predictive digital framework for data management and analysis. A further intensification of the 582 
technology towards additional analytical capabilities, complete integration of hardware and software 583 
technologies, enabling adaptive process control and integration of all involved stakeholders and 584 
process know-how into such a self-learning digital platform, will revolutionize the current 585 
procedures of process development through a broadly applicable, automated robotic platform. 586 

 587 
588 
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Appendix A 606 

The linear feed Flin [L h-1] was calculated by:  607 𝐹௟௜௡(𝑡) = 𝐹଴ + 𝑎 ∙ 𝑡 (A1)

 608 
where a represents the linear increase in the feed rate. The slope a is determined by the integral of the 609 
exponential feed A as follows:  610 𝐴 = ׬ (𝐹଴ + 𝑎 ∙ 𝑡)𝑑𝑡௧೐೙೏௧బ = [𝐹଴ ∙ 𝑡 + ଵଶ 𝑎 ∙ 𝑡ଶ]௧బ௧೐೙೏ = 𝐹଴ ∙ (𝑡௘௡ௗ − 𝑡଴) + ଵଶ 𝑎 ∙ (𝑡௘௡ௗଶ − 𝑡଴ଶ)   

↔ 𝑎 = ଶ൫஺ିிబ∙(௧೐೙೏ି௧బ)൯௧೐೙೏మ ି௧బమ  

 

(A2)

The constant feed Fconst [L h-1] is calculated as follows:  611 𝐹௖௢௡௦௧(𝑡) = 𝑏 = ஺௧೐೙೏ି௧బ  
 

(A3)

 612 
613 
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