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Abstract  
Molecular dynamics (MD) simulations are playing an increasingly important role 
in structure-based drug discovery (SBDD). Here we review the use of MD for 
proteins in aqueous solvation, organic/aqueous mixed solvents (MDmix) and with 
small ligands, to the classic SBDD problems: binding mode and binding free 
energy predictions. The simulation of proteins in their condensed state reveals 
the solvent structure and preferential interaction sites (hot spots) on the protein 
surface. This information is largely transferable across all classes of protein 
ligands (from water to drugs) and can be used very effectively to understand 
ligand recognition and improve the predictive capability of well-established 
methods such as molecular docking. MD simulations for protein and drug or 
drug-like compounds are now being used but are still computationally expensive 
and can only be applied to specific cases. On the other hand, MDmix simulations 
can now be used in SBDD and we will describe the latest developments and 
implementations. We expect to see an increase in the application of these 
techniques to a plethora of protein targets to identify new drug candidates with 
the advent of new tools and faster computers.  
 
Keywords: Molecular Dynamics, CoSolvent Molecular Dynamics, Drug design, 
Fragment Screening, Docking.  
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Introduction  
 
The first revolution in structural biology, in the early 1990’s, created a high 
expectation for computational methods that could turn this information into drug 
candidates. A large body of methods emerged, and some drugs owe their 
existence – at least in part – to them.[1,2] But it is obvious that the impact of 
structure-based drug design (SBDD) has not met the expectations. For instance, 
out of 66 clinical candidates published in the 2016-2017 period, none originated 
as a virtual screening hit.[3] The fact is that predicting binding affinities (KA= 
1/KD= exp(-ΔGBIND/RT)) is terribly difficult, and one of the main compounding 
factors is the solvent’s effect. Contrary to many expectations, designing a good 
ligand is not a simple matter of finding a molecule that offers good shape, 
electrostatic and chemical complementarity to its protein target. Binding occurs in 
the presence of solvent and predictions will always fall short if not fully accounted 
for. Accurate predictions will unavoidably consider the protein and the ligand 
embedded in the solvent, as part of a condensed state with a great number of 
configurational possibilities. Molecular dynamics (MD) is uniquely suited to 
simulate such systems, identifying true ensembles that can be related to 
macroscopic observables. [4] Here we will review how MD can be used to 
understand the behavior of water, the universal biological solvent, on the protein 
surface, and to accurately predict its molecular association properties. We will 
then discuss how MD simulations of proteins in water and mixed solvents can be 
used to identify key interactions on their surface and be incorporated into 
computational docking to identify better drug candidates. 

We will start by showing that, far from being empty space, a protein’s binding site 
in the unbound state is occupied by water that does not behave as a 
homogeneous solvent. Rather, there are well-defined hydration spots and also 
regions where water density is much lower than in bulk solvent. This imprint 
determines binding in ways that were not initially expected. Solvation also affects 
the bound state and the binding pathways, thus the gold standard for 
computational methods is to recapitulate the binding process of a ligand to its 
target by means of molecular simulations that consider the solvent explicitly. As 
the timescale of the binding/unbinding events has an exponential relationship 
with molecular size[5], observing binding on a ‘computational microscope’ [6] is 
greatly facilitated when the ligand has only a few atoms, particularly if it can be 
simulated at high concentrations. In section two we will discuss applications and 
practical aspects of this approach (termed MD simulations with mixed solvents or 
MDmix for short). The use of simple ligands as probes to elucidate interaction 
preferences of protein binding sites has a long history in SBDD. Except for the 
crucial difference of including explicit solvation, MDmix-type simulations can trace 
their roots to Goodford’s GRID[7], Karplus’ MCSS [8] or the more recent FTmap. 
[9] All such methods assume that the behavior of the probe is transferable to 
bigger molecules. Their documented ability to locate binding hot spots confirm 
that this is at least partially true. But binding free energy is clearly a non-additive 
property, [10,11] thus it becomes necessary to consider the actual molecules of 
interest to obtain quantitative predictions. Once considered a dream, major 
advances in the field of molecular dynamics (See[12–14]  and references therein) 
have finally made it possible to directly simulate the binding and unbinding 
process of actual ligands to their targets. In sections three and four we will review 
applications with small ligands (fragments) and actual drugs, respectively. We will 
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conclude by discussing practical limitations and future perspectives for the 
application of those methods in drug discovery. 

 
Solvent structure as a predictor of protein-ligand interaction sites  
  
Among the most relevant processes underlying the formation of protein-ligand 
complexes is the associated solvent reorganization at the contact surfaces, 
particularly that of the protein receptor. Water molecules bound to the ligand 
binding regions must either be displaced to allow direct protein-ligand contact or 
be retained, bridging specific protein-ligand interactions, as sometimes observed. 
The thermodynamics of this solvent reorganization process is a key contribution 
to the complex formation free energy and thus to the ligand binding affinity. Initial 
attention was paid to the role of tightly bound -or ordered- waters which after 
displacement by the incoming ligand were proposed to contribute favorably to the 
ligand affinity. [15,16]  
Explicit solvent Molecular Dynamics allows studying the structure and dynamics 
of water molecules, which as a consequence of the shape and charge distribution 
of protein surfaces, are distributed inhomogeneously in the solvation shell, giving 
rise to space regions where the probability of finding water molecules is 
significantly higher (or lower) than that of the bulk solvent, and where rotational 
and translational motions of each molecule vary significantly.  Wiesner et al. for 
example[17], found that confined waters can have residence times in the range of 
1 ns to 106 ns, while for the more mobile waters residence times were only 10-50 
ps. Further thermodynamic characterization of these surface waters can be 
achieved by means of the inhomogeneous fluid solvation theory (IFST) 
developed by Lazaridis et. al. [18] through the identification of the so-called 
Water Sites (WS) [19]. 
Water sites (sometimes also called hydration sites) are defined as confined 
space regions close to the protein surface showing a high probability of finding a 
water molecule inside them (water finding probability, WFP). They are defined by 
their position (whose coordinates correspond to the center of mass of all oxygen 
atoms from those water molecules that visit the site during the simulation 
timescale), their WFP, and their size (characterized by the R90 values, which 
describes in Angstrom the radius of the WS that contains a water molecule 90% 
of the time). WS are usually identified by applying a clustering algorithm to a 
collection of snapshots derived from MD simulations, and despite special cases, 
good convergence is achieved in 20-50ns [20].  
In addition to their application as detailed descriptors of the solvent structure,  the 
relevance of WS determination stems from their capacity to reveal key 
hydrophilic protein-ligand interaction sites, such as those established by ligand 
hydroxyl, carbonyl and carboxylate groups, among others. This is nicely 
exemplified by hydrophilic ligands such as carbohydrates, where several groups 
reported that the solvent structure in the receptor carbohydrate recognition 
domain, as revealed by the WS, mimics the framework of the sugar -OH groups, 
as shown in Figure 1. Moreover, detailed analysis of WS properties showed that 
those WS that are replaced by the incoming ligand-OH group tend to be those 
with higher WFP and establishing more interactions with the protein. 
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Figure 1. A) Superposition of S. nigra agglutinin II in complex with Lactose (PDB ID 
3CA4) showing how the WS (Orange transparent spheres) mimic the ligand -OH 
framework. B) E. coli AmpC beta-lactamase (PDB ID 1XGI)  WS.   
 
More recently, the role WS as predictors of protein-ligand interactions was 
extended beyond the sugars, again showing that WS, particularly those with high 
Probe Finding Probability (PFP), tend to be replaced by ligand hydrophilic groups 
that establish key interactions with the protein receptor, as shown in Figure 1B, 
for AMPc beta-lactamase.  
 
Having established the tight relationship between WS and protein-ligand 
interactions the next logical move was to apply this knowledge in the context of 
protein-ligand complex structure prediction (i.e docking methods) and 
determination of ligand binding free energies. However, before moving to this 
topic we will present the use of other solvents as tools for the prediction of 
protein-ligand interactions.  
 
 
Mixed Solvents simulations in drug design 
 

While water is the universal biological solvent, organic solvents are ubiquitous in 
the laboratories. Some exceptional proteins remain active in neat organic 
solvents and have been explored as catalysts in industrial applications.[21] More 
frequently, the buffers used in chemical and structural biology contain small 
concentrations of organic solvents. Most proteins preserve their structure and 
function in the presence of 1-5% of DMSO and other common organic 
molecules.[22] This fact led to the independent observation by NMR and X-ray 
crystallography that solvents bind preferentially to the active sites of proteins. 
[23,24] Systematic studies on proteins crystals showed an increasing number of 
solvent interaction sites as the solvent concentration was increased, and some 
degree of selectivity for various solvents.[25,26] The most frequently occupied 
regions coincided with key interaction sites for the substrates, which agreed with 
the recently postulated notion of ‘hot spots’, i.e. regions on the protein surface 
that provide most of the binding affinity. [27] Interestingly the same authors also 
showed that the computational methods available at the time GRID [7] and 
MCSS[8,28] did a mediocre job at predicting binding sites due to the use of 
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implicit solvation and neglect of entropic contributions. [25,26] While the 
possibility of detecting binding sites by crystallography or NMR with mixed 
solvents was enticing, the method had limited practical impact because proteins 
and their crystals rarely withstand high solvent concentrations. Retrospectively, it 
may seem surprising that it took more than 20 years to perform analogous 
experiments using molecular dynamics, but it wasn’t until the late 00’s that MD 
simulation could routinely explore sufficiently long timescales to ensure 
meaningful results. In 2009 the Barril’s lab published the first MD application of 
mixed solvents. In this work, the probe solvent was isopropanol to capture in a 
single molecule the hydrophobic and hydrogen bond donor and acceptor 
moieties that are common in drug-like molecules. The aim was to detect binding 
sites and quantify their potential to bind drug-like molecules.[29] This property 
often referred to as ‘druggability’ (but note the parallelism with the term 
‘ligandability’ [30] is crucial to predicting the probabilities of successful 
development of a drug candidate tackling a particular site. [31] The authors noted 
that “in addition to a prediction for the [druggability of the] whole site, one also 
obtains a map of the interaction preferences”. Independently and almost 
simultaneously, MacKerell’s lab described another mixed solvent approach that 
focused precisely on this application. [32] In this case, the solvents used were 
propane as an aliphatic probe, benzene as aromatic probe and water itself was 
used as a polar probe. Probe interaction maps (called FragMaps) showed an 
excellent correlation with the binding modes of existing ligands. Since then, a 
large number of contributions have emerged. Besides druggability [33–35] and 
binding site mapping, [36,37] mixed solvents have also been used to predict 
water displaceability,[38,39] to probe protein flexibility and detection of more 
druggable conformations [40] or cryptic pockets [41–43] or to re-score docking 
poses.[44,45] As the diverse implementations and applications of mixed-solvent 
MD have been extensively reviewed by Ghanakota and Carlson,[46] we will place 
emphasis on the issue of convergence, which is essential for correct predictions. 

 

Figure 2. Exhaustive sampling of solvent-protein configurational space enables 
quantification of binding free energies. The figure is taken from [47] 

 

Convergence of mixed solvents MD is determined by three interrelated aspects 
that merit individual discussion: simulation time, solvent concentration, and 
protein flexibility. 

1) Simulation time should be sufficient to observe multiple binding and unbinding 
events. Naturally, the accuracy of the predictions increases and variability 
decreases as the number of observations (N) increases. Ns as low as 5 are 
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sufficient for qualitative applications but must reach hundreds to be truly 
quantitative.[5] The other factor determining the total simulation time is the 
residence time of the solvent (t1/2= ln 2/koff; koff∝exp(−ΔG⧧/RT).[48] For barrierless 
dissociation (ΔGBIND=-ΔGTS) t1/2 depends on the binding free energy, which can 
increase almost linearly with the number of atoms. [49] Thus, simulation times 
should increase exponentially with the size of the solvent. But the pathways 
leading to and from particular binding sites may be hindered, particularly for large 
ligands, resulting in ΔGBIND<<-ΔGTSand, in consequence, much larger t1/2. 
Conventional recipes suggest running several replicas of 10-40ns each, for a 
total timeframe of 50-100ns. This is sufficient to ensure qualitative convergence 
of the published solvents on the surface of the protein. But direct counting of the 
number of binding/unbinding events or other forms of measuring convergence 
should always be used. 

Solvent concentration increases sampling effectiveness. Not only due to the 
increase in effective on-rate (i.e. the number of binding events), but also because 
multiple binding sites can be sampled simultaneously. But the behavior of the 
organic solvent should remain ideal (i.e. as in infinite dilution) to avoid artifacts 
caused by solvent-solvent interactions in the unbound state (e.g. inhomogeneous 
dilution, phase separation). Particular solutions to this problem include the 
introduction of repulsive terms between solvent molecules, [32] or the use of 
amphiphilic molecules that are highly soluble and do not self-aggregate. [50] 
Additionally, protein dynamics should not be excessively perturbed by the 
solvent.[51] Considering that most solvents are denaturants at high 
concentrations, concentrations should be kept relatively low (<5%), the protein 
could be artificially constrained, or simulation times should be much shorter than 
the denaturation time. 

Protein flexibility also determines convergence. Ideally, proteins should be 
allowed complete conformational freedom, but sampling the configurational 
space of regular proteins requires excessively long timeframes. Not only that, but 
it also complicates interpretation of results, as many hotspots are conformation-
specific and not representative of the whole ensemble.[52] Constraining the 
mobility of protein atoms, on the other hand, is a straightforward way of 
increasing convergence. But this can lead to overestimation of some hot spots 
and missing others. As a compromise, for many applications, it is useful and 
correct to use weak restraints that prevent conformational drift but allow sampling 
of the local conformational space.[52] Contrarily, if the goal is to induce 
conformational changes in the protein, such as the opening of cryptic pockets, 
simulations should be extended to the µs scale. [41–43] 

 
Small ligands and Fragment Screening 
 
Midway between solvent-sized and drug-like molecules, we find the so-called 
fragments. Fragment-based drug discovery initial hits are small molecules 
(roughly 10 to 20 non-hydrogen atoms) that are then grown and optimized to 
become standard drugs (30-40 atoms). [53] Considering the industrial interest 
and the small size of the molecules, the use of MD as a screening technique 
raises considerable interest. In this approach, each compound in the virtual 
screening collection would be considered a probe that would be subjected to long 
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MD simulations in the presence of the target protein. Probes that bind would then 
be considered fragment hits.  
 
At present, molecular docking is the tool of choice for virtual fragment screening. 
Pioneering work by Shoichet’s Lab in this area led to the conclusion that although 
virtual fragment screening is adequate, with hit rates of 14.5% [54] and correct 
pose prediction, it mostly finds low specificity molecules. The effectiveness of this 
method for screening and de novo design are well documented in the literature. 
[55–59] Docking is particularly well suited for fragment screening since the 
molecules used as fragments are small and not very flexible (less than three 
rotatable bonds). Nevertheless, if the binding site is not known, it can lead to 
many false positives. Consensus strategies, like the ones used in FTMap [9], has 
been used to identify new binding sites. However, in shallow interfaces, as seen 
in many protein-protein interactions(PPI) sites, the lack of proper treatment for 
the receptor flexibility can be a drawback for these strategies[60].  
 
MD is an essential tool to include receptor flexibility and therefore to compute the 
binding free energy[1,61]. Both FEP and Kinetic parameter estimation methods 
have been used for fragment discovery, while FEP has been successful for 
rescoring [62,63]. On the other hand, recent works have focused on the 
determination of the binding kinetics of small molecules and fragments from MD 
simulations. [64–67] Many methods rely on an intelligent design of the analysis 
strategy to predict the kinetic binding parameters koff, mainly using Markov State 
Models [68]. Although most of the reports use molecular simulations to 
characterize the binding kinetics of known fragments/small molecules[69–71], 
there are some reports on fragment-based screening from “first principles” using 
molecular simulations[72]. De Frabritis’s Lab [73] recently presented a proof of 
concept of fragment-based screening using MD. They screened a library of 129 
fragments (6 to 16 heavy atoms) using short simulations (100ns), applying a bias 
and analyzing the trajectories with Markov State Models (MSMs). Although the 
authors found promising fragments binding (8mM) to the receptor surface 
(CXCL12), the computational expense is still prohibitive (380,000 GPU hours).  
 
Work at D. E. Shaw Research sets the bar for quantitative prediction for 
fragment-based drug discovery.[5] They explored the binding thermodynamics 
and kinetics of 7 molecules of 4 to 10 heavy atoms to FKBP protein. After 
hundreds of direct observations of binding and unbinding events, they computed 
the kon, koff and binding affinities. They showed a perfect agreement with FEP 
simulations, demonstrating that when convergence is ensured, direct simulation 
of the binding equilibrium by molecular dynamics, can be a quantitative tool. 
Unfortunately, the RMSE of the computed binding free energy with experimental 
values is 2.1 kcal/mol, which illustrates the challenges that still lie ahead. 
 
There is significant scope for cross-fertilization between mixed solvent MD and 
fragment-based drug discovery that has not been extensively explored. For 
instance, fragments often bind to multiple binding sites on the protein surface[74] 
which could potentially be identified by cosolvent MD. Fragments can also induce 
opening of new cavities (cryptic pockets). Gervasio’s research on an exciting tool 
to address this topic, which combines co-solvent MD and advanced sampling 
(SWISH), helped to discover cryptic pockets. [41,42]. Specifically, simulations on 
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NPC2, p38α, LfrR, and hPNMT were performed and due to the combined nature 
of SWISH and CoSolvent, MD was able to find all the cryptic pockets. Once in 
the binding site, the information derived from the cosolvent MD simulations could 
potentially be used to predict binding modes and affinities, or to guide the 
fragment evolution process. Work in this area has been done by MacKerell’s 
Group with the SILCS methodology. They used the information derived from Co-
Solvent MD to derive so-called FragMaps[32]. These grids were used to rank 
different ligands and to determine the free energy of binding.  
 
Molecular Dynamics Simulations of Drugs or Drug-like compounds 
 
Molecular Dynamics simulations could be used to study the free energy of 
binding of a drug or a drug-like molecule( 30-40 heavy atoms) to a protein. This 
would require the sampling of several binding and unbinding events and 
therefore unbiased MD runs of at least hundreds of microseconds. Direct 
observation of drugs binding to their target has been an outstanding achievement 
of MD applications. Unbiased simulations have revealed the binding pathways of 
dasatinib to Src kinase [75] and  Alprenolol binding to the β2 Adrenergic G 
protein-coupled receptor [64]. However, due to the long timescale involved in the 
dissociation of a drug from its target, direct observation of several unbinding 
events is not possible. Massive short unbiased simulations in conjunction with 
Markok State analysis has been used to study Benzamidine binding to 
Trypsin[68]. On the other hand, biased simulations can be used to study the PMF 
of drug binding. Cavalli published a first study of the kind, showing that it was 
possible to discern active from inactive compounds of the beta-hydroxyacyl-ACP 
dehydratase of Plasmodium falciparum using steered MD. [76]. Since then, a 
large variety of biasing potentials have been investigated and applied to the 
problem. [77] Even then, the problem remains computationally prohibitive. For 
instance, the study of a single inhibitor of p38 MAP kinase that is a fragment of 
Doramapimod (BIRB 796) and dissociates 4 orders of magnitude faster than the 
parent compound took 6.8 μs of production simulations and a total CPU time of 
2.5 million core-hours. [78] In addition, identification of the reaction coordinate is 
often a trial and error process that takes considerable human time and is difficult 
to automatize. [77] Intriguingly the initial steps of the dissociation may already 
provide useful information, [79] but full reconstruction of the process and 
quantitative binding affinity estimates remain a major challenge that is only 
applicable to particularly relevant protein-drug pairs. 
 
For higher throughput applications, docking is widely used to predict protein-
ligand interactions and has become extremely useful for virtual screening of huge 
collections of small molecules.[80–82] Most popular docking methods show that 
success rates are highly system-dependent, with an overall good performance for 
pose prediction with binding free energy errors of 2-3 kcal/mol for small drug-like 
molecules and in the absence of significant receptor conformational 
adjustment.[83] However, it is well known that better results can be obtained by 
adjusting the docking protocol using previous knowledge for a particular system, 
such as binding sites or crucial molecular interactions.[84,85] 
 
The term “biased docking” (or “guided docking”) refers to the use of additional, 
experimental or in silico, information to influence the outcome of a docking 
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experiment, e.g. use of chemical information to favor a certain orientation and 
conformation of a ligand inside the binding site. The source of this information 
can be either the protein target structure or its known ligands. A protein-derived 
bias extracts the information directly from the protein surface and its available 
molecular interactions and generates a chemically complementary representation 
of the surface with more weight on particularly important residues, e.g. those 
confirmed to be essential for the activity by point mutations. As we discussed 
before the use of probe atoms, functional groups, small molecules (e.g. Mixed 
solvents) or molecular fragments is another approach to detect important 
interaction sites or hotspots without involving actual ligands. In this way, a 
protein-derived pharmacophore is obtained and defines energetically favorable 
binding site locations for docked compounds. A currently common technique for 
obtaining these hotspots is to run molecular dynamics simulations with small 
probes (see Mixed Solvents section). The hotspots can then be used to adjust 
the docking protocol, e.g. by adding a restriction towards the formation of a given 
protein-probe interaction. Recently, Arcon et al. showed that determination of 
water and/or ethanol sites derived from molecular dynamics simulations in mixed 
solvents allow identification of over 79% of all protein-ligand interactions, 
especially those that are most important for the binding.[45] They also stated how 
this knowledge could be used to improve docking. On the other hand, a ligand-
derived bias extracts the information from the known ligands for a particular 
protein target, for example, a particular substructure such as the core of a 
congeneric series. Several protein-ligand complex structures are available and 
the conserved interactions of the co-crystallized ligands (ligand-derived 
pharmacophore) can be inferred and used to improve docking accuracy [85,86]. 
 
The improved performance of knowledge-based biased docking is highlighted by 
the different options available in the most common docking programs. For 
example, Glide[87] and GOLD[88] allow hydrogen bonds and substructure-based 
constraints, while Glide also permits metal restraints to enforce coordination 
geometries. On the other hand, rDock[82] and MOE[89] are able to constrain 
generated poses to satisfy pharmacophores and thus bias the results towards 
important interactions and also perform knowledge-based template guided (or 
tethered) docking. DOCK6[90] has a conformational search option to bias the 
sampling towards poses in accordance with a defined set of known ligand 
structures. AutoDock[80] and DOCK3[91] were subjected by us[20] and 
others[92,93] to implementations considering the energy accounted from water 
displacement through inhomogeneous solvation theory for guiding the docking. 
Lopez et al have proposed a scheme to add a bias to AutoDock [20] that has 
been recently implemented for performing biased docking with AutoDock4 
(AutoDock-Bias, In preparation Arcon et al. 2018). The versatile definition of the 
different types of biases in AutoDock-Bias accounts for all of the above cases. It 
allows guided docking towards pharmacophoric interactions in a straightforward 
way for hydrogen bond and hydrophobic/aromatic interactions. Furthermore, it 
allows to get ideal interaction patterns for a specific protein structure, thus easily 
defining interactor locations. In addition, the capability of modifying any specific 
energy map and assigning any bias potential strength permits the precise 
localization of any desired atom (e.g. metal) or group (e.g. substructure core of a 
congeneric ligand series or for fragment growth) in a defined region space 
relative to the target protein. Finally, the specific energy map modification may 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2018                   doi:10.20944/preprints201810.0360.v1

Peer-reviewed version available at Molecules 2018, 23, 3269; doi:10.3390/molecules23123269

http://dx.doi.org/10.20944/preprints201810.0360.v1
http://dx.doi.org/10.3390/molecules23123269


also be used as an anchor for covalent docking studies. Since we addressed the 
problem of incorporating single target information, in the present discussion we 
omitted potentials used for docking scoring functions [94–96] generally derived 
for diverse protein-ligand complexes. 
 
In summary, mixed solvents simulations can lead to the identification of hot spots 
that can then be used in biased docking. The bias may affect the conformational 
search and/or scoring of the obtained poses.  
 
 
Conclusions and Perspectives  
 
Molecular Dynamics simulations in an explicit solvent are needed for accurate 
drug design. As the thermodynamics of the solvent reorganization upon drug 
binding is a key contribution to the complex formation free energy and thus to the 
ligand binding affinity. Therefore, accurate predictions have to consider the 
protein and the ligand embedded in the solvent, as part of a condensed state and 
have to account for the great number of configurational possibilities. On the other 
hand, explicit water MD allows studying the structure and dynamics of water 
molecules and therefore the identification of Water Sites, that are relevant for 
their capacity to reveal key hydrophilic protein-ligand interaction sites. MD 
application of mixed solvents allows to detect binding sites and quantify their 
potential to bind drug-like molecules. In term, the identified hot spots can then be 
used as a bias in docking simulations to better identify drug candidates.  

Mixed solvent MD with co-solvent of no more than 10 heavy atoms is feasible 
and as we have described in this review can clearly contribute to drug design but 
has not yet been fully exploited. With the advent of new web services and user-
friendly software, good algorithms to analyze the simulations and faster 
computers we expect to see an increase in the application of these techniques to 
a plethora of protein targets. Docking simulations have not increased accuracy 
for drug-protein conformational predictions in the last decade but most probably 
will get one step better in the near future with the increased use of knowledge-
based algorithms. MDMix will also help to obtain more accurate binding free 
energy estimations but much effort of the community is needed in order to derive 
new algorithms that are not only able to estimate the free energy contribution of 
drug-protein interactions but also the free energy of protein and drug desolvation.  
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