l Original Article

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Chlorpyrifos- and dichorfos-induced oxidative and neurogenic damage elicits neuro-cognitive deficits and increases anxiety-like behaviors in wild-type rats

Aminu Imam^{1,4*}, Nafeesah Abdulkareem Sulaiman¹, Aboyeji Lukuman Oyewole², Samson Chengetanai^{3,4}, Victoria Williams⁴, Musa Iyiola Ajibola⁵, Royhaan Olamide Folarin⁶, Asma'u Shehu Muhammad⁷, Sheu-Tijani Toyin Shittu⁸ and Salihu Moyosore Ajao¹

- ¹ Neuroscience Unit, Department of Anatomy, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria; imam.a@unilorin.edu.ng; abdulkareem99mona@gmail.com; moyoajao@yahoo.com
- Neurophysiology Unit, Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria; oyewole.al@unilorin.edu.ng
 - ³ Division of Basic Medical Sciences, National University of Science and Technology, Zimbabwe; schengetanai@gmail.com
 - ⁴ Comparative Neurobiology Unit, School of Anatomical sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, Republic of South Africa; victoriamarywilliams@gmail.com;
 - ⁵ Institute of Neuroscience, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan; musaiyiola@gmail.com
 - ⁶ Department of Anatomy, Olabisi Onabanjo University, Agoiwoye, Nigeria; royhaan.folarin@oouagoiwoye.edu.ng
 - Department of Human Anatomy, Faculty of Basic Medical Sciences, Federal University of Dutse, Jigawa state, Nigeria. Asmau.shehu@fud.edu.ng
 - Endocrinology and metabolism Research Unit, Department of Physiology, College of Medicine, University of Ibadan, Nigeria; toyinsts@yahoo.com
 - * Correspondence: imam.a@unilorin.edu.ng; Tel.: +23-481-6566-3947

Abstract: The mechanization of agricultural activities has led to indiscriminate deposition of toxic xenobiotics, including organophosphates in the biomes, and this has led to intoxication characterized with deleterious oxidative and neuronal changes. This study investigated the consequences of oxidative and neurogenic disruptions that follow exposure to two organophosphates, chlorpyrifos (CPF) and dichlorvos (DDVP) on neuro-cognitive performance and anxiety-like behaviors in rats Thirty-two adult male Wistar rats (150 - 170g) were randomly divided into 4 groups, orally exposed to normal saline (NS), DDVP (8.8mg/kg), CPF (14.9mg/kg) and DDVP+CPF for 14 consecutive days. On day 10 of exposures, anxiety-like behaviors and amygdala dependent fear learning were assessed using Open Field and Elevated Plus Maze paradigms respectively, while spatial working memory was assessed on day 14 in the Morris water maze paradigm, following 3 training trials each on days 11, 12 and 13. On day 15, the rats were euthanized, and their brains excised, hippocampus and amygdala removed, 5 of which were homogenized and centrifuged to analyze nitric oxide (NO) metabolites, total reactive oxygen species (ROS), and acetylcholinesterase (AChE) activity, and the other three processed for histology (cresyl violet stain) and proliferative marker (Ki67 immunohistochemistry). Marked (p≤0.05) loss in body weight, AChE depletion, and overproduction of both NO and ROS were observed after repeated exposure to individual and combined doses of CPF and DDVP. Insults from DDVP exposure appeared more severe owing to the observed greater losses in the body weights of exposed rats. There was also a significant (p≤0.05) effect on the cognitive behaviors recorded from the exposed rats, and these deficits were related to the oxidative damage and neurogenic cell loss in the hippocampus and the amygdala of the exposed rats. Taken together, these results provided an

- 50 insight that oxidative and neurogenic damages are central to the severity of neuro-cognitive
- 51 dysfunction and increased anxiety-like behaviors that follow organophosphate poisoning.
- 52 Keywords: oxidative damage; organophosphates; neurotoxicity; spatial working memory;
- 53 anxiety-related behaviors

1. Introduction

54

- 55 Indiscriminate deposition of xenobiotics into the environment has been associated with the increase
- 56 in accidental poisoning and non-specific multi-organ toxicity. Oxygen stress, a product of the
- 57 imbalance between the antioxidant systems of the body and the generation of free radicals, has been
- 58 implicated in the pathophysiology of the subsequent toxicity from exposure to many xenobiotics
- 59 and also in the development of many diseases [1-4]. Organophosphate pesticides are one major
- 60 example of xenobiotics that are intentionally released into the environment to control pests and
- 61 insects in households and agriculture, and their use has been accompanied by burdens of diseases
- 62 that result from accidental poisoning due to deposition in food substances, water and through
- 63 inhalation for the occupational workers [3]. Although the primary mechanisms of OPs poisoning is
- 64 through their irreversible inhibition of acetylcholinesterase (AChE), leading to cholinergic
- 65 dys-homeostasis [5], most of the destructive activities of these substances have been largely linked to
- 66 the oxidative damages, one of the widely implicated factors that complicate OPs induced toxicity
- 67 [6-12].
- 68 In addition OPs have been implicated in the induction of deleterious oxidative changes in various
- 69 organs in the body, their activities on antioxidant free-radical balance are of vital importance, since
- 70 free radicals are important mediators in the pathophysiology of most neurodegenerative diseases.
- 71 [13]. The neurologic effects of OPs toxicity is manifested as chronic organophosphate-induced
- 72 neuropsychiatric disorder (COPIND), which is characterized by cognitive deficits, depression,
- 73 anxiety and some personality problems [14,15]. All of these are associated with excessive generation
- 74 of reactive oxygen and nitrogen species (ROS and RNS), and or nitric oxides in the brain, as well as
- 75 reduction in anticholinesterase activities [8,9,16].
- 76 Evidently, increased oxidative damages have been implicated in adversely affecting psychological
- 77 and cognitive related functions through disruptions of normal neurogenesis in the hippocampus
- 78 and other potential hotspots within the brain [8,9,17-19]. Chronic and subchronic exposures to both
- 79 CPF and DDVP have resulted in wide range toxicity, including cardiotoxicity, neurotoxicity,
- 80 hepatotoxicity, renal toxicity, haematological toxicity, and immune system toxicity among others
- 81 [8,9,20-23]. Besides cholinesterase inhibition, these substances caused marked disruptions in normal
- 82 oxidative functions [8,9,20,21,24]. Thus, in this study, we investigated the neuro-cognitive
- 83
- consequences of uptake of two commonly used OPs, chlorpyrifos (CPF) and dichlorvos (DDVP) in
- 84 rats, with possible effects on oxidative stress and proliferative functions in the hippocampus and the
- 85 amygdala.

2. Materials and Methods

- 88 2.1. Chemicals and drugs
- 89 DDVP (PubChem Substance ID 329756736) and CPF (PubChem Substance ID 329756699)
- 90 PESTANAL®, analytical standard were purchased from Sigma (Sigma-Aldrich)(St. Louis, MO, USA),
- 91 while the normal saline solution was prepared in our laboratory.
- 92

86

87

- 95 2.2. Animals and experimental design
- 96 Thirty-two adult male Wistar rats weighing between 150g and 170g were obtained from the
- 97 University of Ilorin biological garden, Ilorin. They were housed in cages and fed with standard
- 98 laboratory diet and water ad libitum, in the animal holding unit of the Faculty of Basic Medical
- 99 Sciences, College of Health Sciences, University of Ilorin, Ilorin. The rats were exposed to a 12 hours'
- light/dark cycle at room temperature for 7 days before the commencement of the experiments. All
- rats were handled in accordance with the standard guide for the care and use of laboratory animals.
- 102
- 103 2.3. Treatment Schedule
- The rats were randomly divided into four groups (n=8) as follows:
- Group 1 (control)- were given normal saline (1 ml/kg orally) daily for 14 days
- Group 2- were given DDVP (8.8 mg/kg orally) daily for 14 days [8,20,21]
- Group 3- were given CPF (14.9 mg/kg orally) daily for 14 days [9]
- Group 4- were given DDVP (8.8 mg/kg orally) plus CPF (14 mg/kg orally) daily for 14 days
- All procedures were scheduled and carried out during the early phase of the day between 07:00 and
- 110 08:30 hours, and treatments were given for fourteen consecutive days.
- 111
- 112 2.4. Ethical approval
- 113 This research work was approved by the University of Ilorin ethical review committee (UERC)
- 114 (UERC/ASN/2017/856), following the recommendation of the College of health sciences ethical
- review committee, in compliance with the Institutional Animal Care and Use Committee (IACUC).
- 116
- 117 2.5. Body and brain weight evaluation
- The body weights of all the rats were recorded after acclimatization at the first day of the exposures
- as initial weight and at the last day of exposure as the final weight. Thus, the differences between the
- 120 two weights were calculated and recorded as the weight changes. The brain weights of all rats were
- recorded after the sacrifice, and a ratio of the brain to final body weight was calculated and recorded.
- 122
- 123 2.6. Behavioral evaluations
- The rats were subjected to behavioral evaluations on the 14th day of the treatment to assess, short
- term memory, long term memory and reference memory in the Morris water maze paradigm.
- 126
- 127 2.6.1. *Morris water maze procedure*
- 128 The Morris water maze (MWM) apparatus is the most commonly used model to test spatial learning
- and memory. To evaluate spatial memory, rats were tested in a circle shaped black pool filled with
- 130 23–24°C water (pool dimensions: 60cm deep × 136cm diameter). The pool was divided to four
- quadrants with boundaries labelled north (N), east (E), south (S) and west (W) and a circular
- platform (10cm diameter, 28cm high) was submerged about 2cm below water surface in the central
- area of the southwest quadrant of the pool. Animals were allowed to swim until they found, mount
- and remained on the platform for 15s. If they were not able to find the platform after 60s of
- swimming, they were guided to the platform by examiner and were allowed to stay on it for 15s. The
- rats were then removed from the pool, dried and placed in their holding bin for 5 min. Trials were
- recorded by a video system. Animals received a training session consisting of three trials per session

- 138 (once from each starting point) for 3 days (days 11, 12 and 13), with each trial having a maximum 139 duration of 60s and a trial interval of approximately 30s. Twenty-four hours after the acquisition 140 phase, the time taken to locate the hidden platform (escape latency) was recorded as long term 141 memory (LTM), an average of the escape latency of the two subsequent trials was recorded as the 142 short term memory (STM). A probe test was conducted by removing the platform, and allowing the 143 rats to swim freely in the pool for 60s; the time spent in the target quadrant which had previously 144 contained the hidden platform was recorded as the reference memory (14th day). The time spent in 145 the target quadrant indicated the degree of relative memory consolidation which had taken place 146 after learning [25].
- 148 2.6.2. Anxiety-like behaviors and fear learning
- The rats were subjected to behavioral evaluations on the 13th day of the exposures to evaluate, anxiety related behaviors and fear related learning in the open field test (OFT) and the elevated plus maze (EPM) paradigms.
- 153 *OFT Procedure:*

147

152

161

- The animals were exposed to a trial in the OFT to evaluate anxiety related behaviors in rats following DDVP and/or CPF exposures. The rats were individually placed in the centre of the apparatus and time spent in the centre and immobility period were recorded in a 5 minute session and all animals were monitored in a balanced design during the procedures. For analysis, trial was performed in a well illuminated wooden box, divided into 4×4 squares. It has been reported that preference or avoidance of central squares may provide an evaluation of the anxiety level in the rats [26,27].
- 162 *EPM Procedure*:
- 163 To evaluate amygdala dependent or fear related learning, the rats were exposed to two trials in the 164 EPM paradigm. The consisted of 2 open arms, surrounded by a short edge to prevent falls, and two 165 enclosed arms erected in such a way that the 2 open arms were opposite each other. The maze was 166 raised about 35cm above the ground with a stable stand and the arms of the maze were connected by 167 a central platform. At each of the two trials, each rat was gently placed on an open arm, positioned to 168 face away from the central platform and the closed arms. The time it takes the rats to recognise the 169 treat and move to the closed arms was recorded as the transfer latency, while the first trial was for 170 acquisition; the second was used as a measure of fear learning. The principle of this experiment is 171 primarily based on the aversion of rats to heights and open spaces [9].
- 173 2.7. Biochemical evaluation
- At the end of the treatment period, the animals were euthanised with an overdose of ketamine (10 mg/kg ip) and the brains were quickly dissected out and weighed. Blocks of hippocampal and amygdala tissues(from Bregma –2.5 mm to –4.5 mm) were removed from the brains of five rats from each group, dipped in 30% sucrose solution, homogenized and portions centrifuged at 2500 revolutions per minute for 10 minutes and the supernatant collected into tubes containing the reagents for the NO and ROS analysis.

Peer-reviewed version available at Toxics 2018, 6, 71; doi:10.3390/toxics604007

5 of 16

ROS was measured by monitoring the increasing fluorescence of DCFH-DA following a previously described procedure using flow cytometry (Partec, Deutschland) equipped with a 488 nm argon ion laser and supplied with the Flomax software and the signals were obtained using a 530 nm band pass filter (FL-1 channel). Each determination was based on the mean fluorescence intensity of 10,000 counts [28]. The remaining tissue homogenate was added to the Griess reagents, sulfanilamide and naphthyl ethylene diamine solutions to measure nitrate/nitrite production (NO metabolites). Absorbance was measured with the aid of a microplate reader and the levels of NO metabolites were calculated from standard curve [29]. The remaining portions of the homogenized hippocampal tissues were placed in phosphate buffer with 1% Triton-X 100 and centrifuged at 5000rpm for 10 minutes. The following reagents were used; 35µL of 5mM dithio-bisnitrobenzoic acid, also known as Ellman's reagent (DTNB), 10µL of 75 mM acetylthiocholine (ATCh) and 50mM phosphate buffer (pH 8.0). Protein concentration in brain homogenates was quantified using a Bradford assay and AChE activity was calculated in micromoles of ATCh hydrolysed per hour per milligram of protein and was expressed as percentage of control activity and measured values in micromole per hour per milligram of protein.

2.8. Tissue processing and Histopathology

After euthanasia and extraction the brains of three rats from each groups, the brains were fixed in 10% formalin for 24 hours, hippocampal and amygdala blocks (from Bregma –2.5 mm to –4.5 mm) were removed, dehydrated through ascending grades of alcohol, cleared in xylene and embedded in paraffin blocks. Every second and third hippocampal and amygdala tissues sections (5µm in thickness) were stained with Nissl stain and/or immunostained to reveal Ki67 proliferative nuclei protein, analyzed under an AmScope 40X-2500X LED Lab Compound microscope, and photographed using the AmScope 5.0 MP USB Still Photo & Live Video Microscope Imager Digital Camera 5MP, manufactured by iscope corp., USA.

2.8.1. Immunohistochemistry for Ki-67

The Ki-67 is a chromosome-associated protein present during division (G1, S, G2, and M phases but absent from cells at rest, G0). Sections from paraffin embedded hippocampal blocks were incubated for epitope retrieval in citrate buffer, pH 6.0, at 90°C for 40 minutes, followed by incubation in endogenous peroxidase blocking reagent, 0.6% H2O2 in Tris-buffered saline (TBS)-Triton (0.05% Triton X-100 in TBS, pH 7.4) for 30 minutes at room temperature. Thereafter, sections were pre-incubated in 2% serum (normal goat serum) + 0.1% bovine serum albumin (BSA) + 0.25% Triton in TBS for 60 minutes at room temperature. Afterwards, sections were incubated with polyclonal rabbit-anti-lyophilized-Ki-67p antibody (Novocastra, Newcastle, UK; 1:5,000 in preincubation solution) overnight at 4°C. Incubation with biotinylated goat anti-rabbit IgG (1:1,000 + 2% normal goat serum + 0.1% BSA in TBS; Vector lab, CA, USA;1:250) was performed for 2 hours at room temperature followed by incubation with streptavidin-biotin complex (Vectastain Elite ABC kit) and stained with 3,3′-diaminobenzidine (DAB) as chromogen. Until incubation with TBS alone.

221 2.8. Statistical Analysis

Data from the morphometry, behavior and biochemical assays were analyzed using one-way analysis of variance (ANOVA) and subjected to post hoc Bonferroni's multiple comparison test. The results are expressed as mean±SEM. Statistical analyses were performed using Graphpad Prism software (version 5.0, La Jolla, CA). Values of p≤0.05 were considered statistically significant.

3. Results

The exposures to both DDVP and CPF in the present study resulted in differential effects on indirect metabolic markers (body weight, brain weight and brain-body weight ratio), AChE activities, ROS levels, NO levels, histoarchitecture an distributions of proliferative nuclei proteins in the hippocampus and the amygdala, and the anxiety-related behavious, fear learning and spatial working memory in the exposed rats.

3.1. Morphometric changes following exposure to DDVP and CPF

Subchronic exposures to 1/10 ratios of the oral highest tolerable dosages of both CPF and DDVP, seperately and in combination markedly caused loss of body weight over a period of 14 consecutive exposures (Figure 1A). But, the observed body weight loss was more in the DDVP only exposed rats, and what may be a conflicting effect with less weight loss in the combined exposed rats (Figure 1A). There was also a significant ($p \le 0.05$) loss in brain weight of the exposed rats, with relatively more loss observed in the DDVP only exposed rats' brains (Figure 1B).

Figure 1: Exposures to DDVP and CPF results in loss of body and brain weight (A) Body weight of control and exposed/treated rats (B) Brain weight of control and exposed/treated rats. Double asterisks (**) indicates significant ($p \le 0.05$) reduction when compared with all groups, while single asterisk (*) indicates significant ($p \le 0.05$) when compared with NS. Using one-way analysis of variance (ANOVA) and subjected to post hoc Bonferroni's multiple comparison test.

3.2. Effects of DDVP and CPF exposures on spatial working memory

Exposures to DDVP and/or CPF significantly (p \leq 0.05) delayed the latency to the submerged platform (escape latency) in the exposed rats in both tests for LTM (Figure 2A), STM (Figure 2B), and MWM paradigm. Although, this effect is relative to the three exposure modalities in the LTM, the combined exposures to DDVP and CPF caused more (p \leq 0.05) delay in the latency to the hidden platform, followed by the DDVP only exposure, when compared with the control (Figure 2A and B). The separate exposures to DDVP or CPF consequently resulted in avoidance (p \leq 0.05) of the platform

7 of 16

quadrant, during the probe test for reference memory (R, while their combination surprisingly did have no effect on RF (Figure 2C).

Figure 2: Exposure to DDVP and CPF impaired LTM, STM and reference memory (A) Long-term memory (escape latency); (B) Short-term memory (escape latency); and (C) Reference memory (% time in the platform-quadrant) tests in the MWM paradigm. Double asterisks (**) indicates significant ($p \le 0.05$) reduction when compared with NS and DDVP+CPF rats (Fig. 2C), while single asterisk (*) indicates significant ($p \le 0.05$) increase when compared with NS (Fig. 2A) and or CPF (Fig. 2B).

3.3. DDVP and CPF exposures increased anxiety-like behavious

The latency to the closed arm, an indirect measure of fear learning, in the EPM paradigm, was significantly (p \leq 0.05) delayed by exposures to both DDVP and CPF, seperately and in combination (Figure 3A) in the exposed rats. Both DDVP and CPF also caused marked increase in freezing periods, an indication of fear, in the exposed rats. This observation was corroborated by the significant (p \leq 0.05) reduction in time spent at the centre squares by the rats, indicating anxiety-related responses (Figures 3B and C).

8 of 16

Figure 3: The effects of oral exposures to normal saline (NS), dichlorvos (DDVP) or/and chlorpyrifos (CPF) on: A) fear learning (transfer latency) in the elevated plus maze paradigm; B and C) anxiety related behavious (freezing period and time in center squares) in the open field test paradigm. Double asterisks (**) indicates significant (p \leq 0.05) increase (Fig. 3A and B) or decrease (Fig. 3C) when compared with NS, other groups and/or CPF rats only; while single asterisk (*) indicates significant (p \leq 0.05) increase when compared with NS (Fig. 3A and B). Using one-way analysis of variance (ANOVA) and subjected to post hoc Bonferroni's multiple comparison test.

3.4. DDVP and CPF exposures inhibit Anticholinesterase in the Amygdala and hippocampus

Exposures to the two OPs used in this study, DDVP and CPF, either seperately or combined resulted in a significant depletion in both amygdaloid (Figure 4A) and hippocampal (Figure 4B) AChE levels in the exposed rats when compared with the control's. Although the inhibition of AChE activities in both brain regions are in relative patterns, the basal (control) AChE activities was more in the hippocampal region, thus the inhibiting effects of the OPs on the hippocampal may be more.

Figure 4: The effects of oral exposures to normal saline (NS), dichlorvos (DDVP) or/and chlorpyrifos (CPF) on: A) amydaloid AChE activities; and B) hippocampal AChE activities in the exposed rats.

Double asterisks (**) indicates significant (p≤0.05) decrease when compared with the NS rats. Using one-way analysis of variance (ANOVA) and subjected to post hoc Bonferroni's multiple comparison test.

291

292

293

294

288

289

290

3.5. Effects of DDVP and CPF exposures on oxidative stress markers (ROS and NO) in the Amygdala and hippocampus

295 296 297 Consecutive oral DDVP and/or CPF exposure in rats, caused a relative ($p \le 0.05$)increase in both nitric oxide (NO) and total reactive oxygen species (ROS) levels in the amygdala and the hippocampus of the exposed rats (Figures 5A-D). Although, no marked differences were observed in the pattern of the effects on both NO and ROS levels, CPF exposure did not result in a significant change in the hippocampal ROS level (Figure 5D).

298

299

300

301

302

303

304

Figure 5: The effects of oral exposures to normal saline (NS), dichlorvos (DDVP) or/and chlorpyrifos (CPF) on: NO levels (A: amydala and B:hippocampus); and ROS levels (C:amygdala and D: hippocampus) in the exposed rats. Single asterisk (*) indicates significant (p≤0.05) increase when compared with the NS rats. Using one-way analysis of variance (ANOVA) and subjected to post hoc Bonferroni's multiple comparison test.

305

306

307

3.6. Effects of DDVP and CPF exposures on the distributions of proliferative nuclei (Ki67) in the hippocampus and the histoarchitecture

308 309

310

311

Histological Nissl granulation stain revealed no marked effects on either the connus ammonis regions (CA1 and 3) and the dentate gyrus following exposures to DDVP, CPF or combined when compared with the control (NS). However, there is qualitatively more glia-like small sized intensely stained cells in the DDVP and/or CPF exposed CA regions and the dentate gyrus (glia activation)

(Figure 6), with also some vacuolations mostly in the DG of the exposed rats. Furthermore there was is reduced presence of proliferative cells marker, Ki67 immunoreactive nuclei proteins in the CA1 and 3, and DG of the DDVP and/or CPF exposed rats, most especially in the subgranular zone of the dentate gyrus (Figure 7).

Figure 6: The effects of oral exposures to normal saline (NS), dichlorvos (DDVP) or/and chlorpyrifos (CPF) on: the hippocampal connus ammonis 1 and 3 (CA1 and 3), and the dentate gyrus (DG) in the exposed rats. There was no marked changes following either DDVP and/or CPF when compared with the control (NS). Scale bar $50\mu m$.

Figure 7: The effects of oral exposures to normal saline (NS), dichlorvos (DDVP) or/and chlorpyrifos (CPF) on: the distributions of Ki67 nuclei proteins in the hippocampal connus ammonis regions (CA1 and 3), and the dentate gyrus (DG) in the exposed rats. White arrows indicate the Ki67 immunoreactive proteins in the respective regions, with reduced nuclei in the DDVP and/or CPF exposed rats compared to the control. Scale bar $50\mu m$.

331 4. Discussion

346

347

348

349

350

351

352

353

354

355

356

357

358

359

332 Organophosphates poisoning account for a high percentage of reported toxicities from chemical 333 exposure around the world, posing growing threats to public health, and with more concerns as they 334 are continuously deposited in water bodies and the biomes [30,31]. Toxicities from these substances 335 are primarily linked to the irreversible inhibition effects on acetylcholinesterase (AChE) in the blood 336 and the nervous systems, thus having the ability to affect general body functions and personality 337 related functions [8,9,30-32]. In the present study sub chronic oral exposures to two most commonly 338 used broad spectrum OPs worldwide, separately, and in combination was sufficient to markedly 339 deplete the levels of AChE in the hippocampus and the amygdala, in a pattern relative to what we 340 recently found with CPF only exposure on the amygdala, and with the dichlorvos in discrete brain 341 regions, including the cerebellum, hippocampus, frontal cortex, medulla, spinal cord and occipital 342 cortex [9,32]. This is no surprise, as it further confirms the earlier established mechanism of OPs 343 activities in the brain. In separate studies in the literature, DDVP and CPF have been reported to 344 cause significant inhibition of AChE in the brains of rats [8,9,33,34], of which most of its induced 345 toxicities have been attributed.

However, there is growing evidence suggesting that, although AChE inhibition contributes greatly to the toxicities and remains the primary mechanism of action of OPs, their effects on redox processes, antioxidant functions and on lipid peroxidation, are greatly implicated in the chronic outcomes following poisoning [8-12,32]. Exposing rats to 1/10th of the oral tolerable dosages of DDVP, CPF and their combination in the present study, significantly caused an increase in total reactive oxygen species (ROS) and nitric oxides (NO) levels in the hippocampus and amygdala of the exposed rats. Further corroborating previous findings on the activities of OPs on anti-oxidant defense and on general oxidative functions, and more than the AChEI, these are very much implicated in the neurotoxic effects of OPs poisoning, including the neuro-cognitive impairments and cell death [9,32,35-37]. The oxidative damages following exposures to OPs may further contribute to its detrimental effects on health, as it has been linked to loss of biological functions in cells, and contributing to the pathophysiological factors for various life threatening diseases, like respiratory, cardiovascular and renal diseases, carcinogenesis and neurodegenerative disorders [3,4].

360 It is expected, that the induced AChE dys-homeostasis and most importantly, the oxidative 361 dysfunctions may affect metabolic functions, since it has been implicated in different metabolic 362 related diseases [3,4,11]. Thus, we recorded the changes in body weight at the initiation and 363 termination of the experiment, and this revealed a significant loss in body weight, supported by a 364 subsequent low brain weight following exposures to DDVP, CFP and their combination, with more 365 effects observed with DDVP exposure. These findings are affirmed by previous findings, where a 366 loss in both body and brain weights were recorded following exposures to different OPs, including 367 CPF and DDVP [9,32,38-40].

368 An observation into the possible effects of these substances on neural functions and survival related 369 proteins, and structures, revealed a consequent qualitative depletion of the proliferative nuclei 370 marker (Ki67 proteins) in the hippocampal CA regions and the dentate gyrus of the DDVP, CPF and 371 combined DDVP+CPF exposed rats. This was complemented by the observed increase in intensely 372 stained nuclei-like glia, most especially in the dentate gyrus. These suggest possible damaging 373 effects on potential neurogenesis and a buildup of a possible shut down of regenerative activities in 374 the brains of the exposed rats. This can be strengthened with findings from previous studies, where 375 exposures to neurotoxic compounds have reported to result in mark loss neurogenic cells in 376 laboratory rodents [41,42]. Our previous examination of effects of CPF exposure on amygdala AChE 377

activities, oxidative markers and expression of Ki67 proteins, further support these findings [9].

378 A healthy hippocampus, with preserved neurogenesis is linked to enhancing psycho-cognitive 379 functions, while any damage that affects this, have been claimed to affect cognitive activities [43]. 380 Thus, we investigated possible effects on anxiety-like behaviors and spatial working memory in the 381 exposed rats. In congruence with the above, sub chronic exposures to either of DDVP and/or CPF 382 significantly increased anxiety-like behaviors and impaired spatial working memory behaviors 383 respectively. These dysfunctions in psychosocial related and cognitive functions following exposure 384 to the two OPs used in this study cannot be unrelated to the combined effects of the observed 385 oxidative damages, weight loss, diminished proliferative nuclei in the hippocampus and the 386 amygdala. And these can be strongly supported by the relative neuro-cognitive deficits that follows 387

exposures to different insecticidal compounds, including OPs [9,17,37,44,45].

388

389

5. Conclusions

- 390 In conclusion, sub chronic oral exposures to DDVP and CPF, separately or in combination imposed
- 391 hippocampal and amygdala oxidative damages and subsequent depletion of neurogenic nuclei in
- 392 the hippocampus and dentate gyrus. These might have contributed to the psycho-cognitive deficits
- 393 and increased anxiety-like behaviors that were observed following AChE inhibitions in the studied
- 394 brain regions.

395

- 396 Author Contributions: The authors' individual contributions to this research are as follows:
- 397 Conceptualization, AI; Formal analysis, AI, NAS, ALO, SC, VW, MIA, ROF and ASM; Investigation,
- 398 AI, NAS and ALO; Project administration, MSA; Resources, MSA; Supervision, MSA; Validation, AI,
- 399 ALO and STS; Visualization, AI, NAS, ALO, SC and VW; Writing - original draft, AI, NAS and MIA;
- 400 Writing - review & editing, AI, NAS, ALO, SC, VW, MIA, ROF, ASM, STS and MS.

401

- 402 Funding: This research received no external funding.
- 403 Acknowledgments: The authors appreciate the research incentives supports from the Deanship Research
- 404 support of the Faculty of Basic Medical Sciences, University of Ilorin, Ilorin that provides some of the
- 405 consumables used in this study, Also, the technical assistance of Ms. Ali Hussain of the Immunohistochemistry
- 406 and histology laboratory, School of Anatomical Sciences, Faculty of Health Sciences, University of the
- 407 Witwatersrand, South Africa.
- 408 **Conflicts of Interest:** The authors declare no conflict of interest.

409 References

- 410 Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer's disease 411 brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative 412 stress. Free Rad Biol Med 2002, 32, 1050-60, https://doi.org/10.1016/S0891-5849(02)00794-3
- 413 2. Abdollahi, M.; Rainba, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticide and oxidative stress: a review. Med. 414 Sci. Monitor 2004, 10, RA141-RA147, ID: 11677.
- 415 Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: evidences, mechanisms, and 416 perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157-177, https://doi.org/10.1016/j.taap.2013.01.025.
- 417 Jabłońska-Trypuć, A. Pesticides as inducers of oxidative stress. React. Oxyg. Species 2017, 3, 96-110,
- 418 Pereira, E.F.; Aracava, Y.; DeTolla, L.J.; Jr, Beecham, E.J.; Basinger, G.W.; Jr, Wakayama, E.J.; Albuquerque, 419 E.X. Animal models that best reproduce the clinical manifestations of human intoxication with 420 organophosphorus compounds. Pharmacol. Exp.Ther. 2014, 350 (2),313-321, 421 https://doi.org/10.1124/jpet.114.214932.
- 422 Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, 423 W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental neurotoxicity of the organophosphorus

- insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. *J. Neurochem.* 2017, 142, 162–177, https://doi.org/10.1111/jnc.14077.
- 426 7. Costa, L.G. Organophosphorus compounds at 80: some old and new issues. *Toxicol. Sci.* 2018, 162 (1), 427 24–35, https://doi.org/10.1093/toxsci/kfx266.
- 428 8. Imam, A.; Ogunniyi, A.; Ibrahim, A.; Abdulmajeed, W.I.; Oyewole, L.A.; Lawan, A.H.; Sulaimon, F.A.; 429 Adana, M.Y.; Ajao, M.S. Dichlorvos induced Oxidative and Neuronal responses in rats: Mitigative Efficacy of Nigella sativa (black cumin). Niger. J. Physiol. Sci. 2018a, 33, 83-88,
- 431 9. Imam, A.; Sulaiman, N.A.; Oyewole, A.L.; Amin, A.; Shittu, S-T.T.; Ajao, M.S. Pro-Neurogenic and Antioxidant Efficacy of Nigella sativa Oil reduced Vulnerability to Cholinesterase Dysfunction and Disruption in Amygdala Dependent Behaviors in CPF Exposure. JKIMSU 2018b, 7(3), 1-12,
- 434 10. Pearson, J.N.; Patel, M. The role of oxidative stress in organophosphate and nerve agent toxicity. *Ann. N.* 435 *Y. Acad. Sci.* 2016, 1378, 17–24, doi: 10.1111/nyas.13115
- 436 11. Wang, X.; Martínez, M.A.; Dai, M.; Chen, D.; Ares, I.; Romero, A.; Castellano, V.; Martínez, M.; Rodríguez, J.L.; Martínez-Larrañaga, M.R.; Anadón, A.; Yuan, Z. Permethrin-induced oxidative stress and toxicity and metabolism. A review. *Environ. Res.* 2016, 149, 86–104, https://doi.org/10.1016/j.envres.2016.05.003
- 439 12. Wang, X.; Anadón, A.; Wu, Q.; Qiao, F.; Ares, I.; Martínez-Larrañaga, M.R.; Yuan, Z.; Martínez, M.A. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. *Annu. Rev. Pharmacol. Toxicol.* 2018, 58, 471–507, doi: 10.1146/annurev-pharmtox-010617-052429.
- 442 13. Figueiredo, T.H.; Apland, J.P.; Braga, M.F.M.; Marini, A.M. Acute and long-term consequences of exposure to organophosphate nerve agents in humans. *Epilepsia*. 2018, 00, 1–8, doi: 10.1111/epi.14500.
- 444 14. Harrison, V.; Mackenzie Ross, S.J. An emerging concern: Toxic fumes in airplane cabins. *Cortex* 2016, 74, 297–302, https://doi.org/10.1016/j.cortex.2015.11.014.
- 446 15. Michaelis, S.; Burdon, J.; Vyvyan Howard, C. Aerotoxic Syndrome: a New Occupational Disease? *Public Health Panorama*. 2017, Published online June.
- 448 16. Fatma, M.E. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. *Food Chem. Toxicol* 2011, 49; 1346–1352, doi: 10.1016/j.fct.2011.03.018
- 451 17. Kodali, M.; Hattiangady, B.; Shetty, G.A.; Bates, A.; Shuai, B.; Shetty, A.K. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. *Brain Behav Immun*. 2018, 69, 499–514, doi: 10.1016/j.bbi.2018.01.009
- 455 18. Sánchez-Santed, F.; Colomina, M.T.; Herrero Hernández, E. Organophosphate pesticide exposure and neurodegeneration. *Cortex* 2016, 74, 417–426, https://doi.org/10.1016/j.cortex.2015.10.003.
- 457 19. Yan, D.; Zhang, Y.; Liu, L.; Yan, H. Pesticide exposure and risk of Alzheimer's disease: a systematic review and meta-analysis. *Sci. Rep.* 2016, 6, 32222, https://doi.org/10.1038/srep32222.
- 459 20. Ajao, M.S.; Adebayo, S.; Imam, A.; Ibrahim, A.; Adana, M.Y.; Alli-Oluwafuyi, A.; Kareem, S.B. Protective Effect of Nigella Sativa (Black Caraway) Oil on Oral Dichlorrvos Induced Hematological, Renal and Nonspecific Immune System Toxicity in Wistar rats. *Iran. J. Toxic.* 2017a, 11(6), 1-5,
- 462 21. Ajao, M.S.; Abdussalam, W.A.; Imam, A.; Amin, A.; Ibrahim, A.; Adana, M.A.; Sulaimon, F.A.; Atata, J.A. Histopathological and Biochemical evaluations of the antidotal efficacy y of Nigella sativa oil on organophosphate induced hepatotoxicity. *Res. J. of Health Sci.* 2017b, 15(1), 18-20,
- 465 22. Kingsley, C.K.; Solomon, N.I.; Odudu, A. Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics 2016, 4, 28, doi: 10.3390/toxics4040028
- 468 23. Arthur, S.; Ran, M.; Sigal, E.; Noah, L-C.; Yossi, R.; Shai, S.; Michael, K.; Amos, K.; Yoram, E. QT Prolongation as an Isolated Long-Term Cardiac Manifestation of Dichlorvos Organophosphate Poisoning in Rats. *Cardiovasc Toxicol.* 2017, DOI 10.1007/s12012-017-9409-z.
- 471 24. Suleiman, F.A.; Annas, O.M.; Muftau, S.; Stephen, A.A.; Favour, O.M. Alleviating Effect of Phyllanthusniruri on Sensorimotor and Cognitive Changes Induced by Subacute Chlorpyrifos Exposure in Wistar Rats. *American Journal of Medicine and Medical Sciences* 2012, 2(3), 50-58, doi: 10.5923/j.ajmms.20120203.05
- 475 25. Imam, A.; Ajao, M.S.; Ajibola, M.I.; Amin, A.; Abdulmajeed, W.I.; Lawal, A.Z.; Alli-Oluwafuyi, A.; 476 Akinola, O.B.; Oyewopo, A.O.; Olajide, O.J.; Adana, M.Y. Black seed oil reversed scopolamine-induced

- 477 Alzheimer and corticohippocampal neural alterations in male Wistar rats. *Bull Fac. Pharm. Cairo Uni.* 478 2016a, 54 (1), 1-106, https://doi.org/10.1016/j.bfopcu.2015.12.005
- 479 26. Imam, A.; Ajao, M.S.; Akinola, B.O.; Ajibola, M.I.; Ibrahim, A.; Amin, A.; Abdulmajeed, A.I.; Lawal, Z.A.; 480 Ali-Oluwafuyi, A. Repeated Acute Oral Exposure to Cannabis Sativa Impaired Neurocognitive Behaviours and Cortico-hippocampal Architectonics in Wistar Rats. *Niger. J. Physiol. Sci.* 2016b, 31,
- 482 27. Imam, A.; Ajao, M.S.; Amin, A.; Abdulmajeed, W.I.; Ajibola, M.I.; Ibrahim, A.; Olajide, O.J.; Balogun, W.G. Cannabis Induced Moto-Cognitive Dysfunctions in Wistar Rats: Ameliorative efficacy of Nigella sativa.

 484 *Malays. J. Med. Sci.* 2016c, 23(5), 17-28,
- 485 28. Ahadpour, M.; Eskandari, M.R.; Mashayekhi, V. Mitochondrial oxidativestress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria. *Drug ChemToxicol*. 2016, 39(2), 224–232, doi: 10.3109/01480545.2015.1092039.
- 488 29. Bargi, R.; Asgharzadeh, F.; Beheshti, F.; Hosseini, M.; Sadeghnia, H.R.; Khazaei, M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017, 96, 173–184, doi: 10.1016/j.cyto.2017.04.015.
- 491 30. Farrukh, J.; Quazi, S.H.; Sangram, S. Interrelation of Glycemic Status and Neuropsychiatric Disturbances in Farmers with Organophosphorus Pesticide Toxicity. *Open Biochem J.* 2016, 10, 27-34, DOI: 10.2174/1874091X01610010027.
- 494 31. Quazi, S.H.; Jamal, F.; Rastogi, S.K. Effect of organo-phosphorus on biochemical parameters on agricultural workers. Asian J. Biochem. 2012, 7(1), 37-45. http://dx.doi.org/10.3923/ajb.2012.37.45
- 496 32. Imam, A.; Adeboye, M.; Abdulmajeed, W.I.; Alli-Oluwafuyi, A.; Amin, A.; Ibrahim, A.; Gwadabe, S.; 497 Popoola, N.G. Dichlorvos Induced AChE Inhibition in Discrete Brain Regions and the Neuro-Cognitive Implications: Ameliorative Effectof Nigella Sativa. *Iran. J. Toxic.* 2018c, 12 (5), 11-16
- 499 33. Flora, S.J.S.; Dwivedi, N.; Deb, U.; Kushwaha, P.; Lomash V. Effects of co-exposure to arsenic and dichlorvos on glutathione metabolism, neurological, hepatic variables and tissue histopathology in rats.

 501 Toxicology Research 2014, 3, 23, DOI: 10.1039/c3tx50038a
- 502 34. Hui-Ping, W.; Yu-Jie, L.; Ying-Jian, S.; Wei-Yuan, H.; Jia-Xiang, C.; Ding-Xin, L.; Ming-Yuan, X.; Yi-Jun, W. Subchronic Neurotoxicity of Chlorpyrifos, Carbaryl, and Their Combination in Rats. *Environ Toxicol* 2013, 29(10),1193-200, doi: 10.1002/tox.21851
- 505 35. Abolaji, A.O.; Ojo, M.; Afolabi, T.T.; Arowoogun, M.D.; Nwawolor, D.; Farombi, E.O. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. *Chem. Biol. Interact.* 2017, 25(270), 15-23, doi: 10.1016/j.cbi.2017.03.017.
- 36. Neeraj, S.; Vivek, L.; Jie, L.; Phang, P.; Ahmed, A.; Bharathi, P.; Dharmin, R.; Souvarish, S.; Huajun, J.; Vellareddy, A.; Anumantha, G.K.; Arthi, K. Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated. *Neurobiol Dis.* 2018, 117, 82-113, doi: 10.1016/j.nbd.2018.05.019.
- 513 37. Rasha, M.H.; Wafaa, R.M.; Hany, A.O. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. *Pestic. Biochem. Physiol.* 2018, https://doi.org/10.1016/j.pestbp.2018.08.008
- 516 38. Hariri, A.T.; Moallem, S.A.; Mahmoudi, M.; Hosseinzadeh, H. The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological genotoxicity indices in rats. Phytomedicine 2011, 18, 499–504, doi: 10.1016/j.phymed.2010.10.001.
- 519 39. Varsha, S.; Rupali, P. In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. *Mol Cell Biochem* 2013, DOI 10.1007/s11010-013-1899-9
- 521 40. Xu, M-Y.; Wang, P.; Sun, Y-J.; Wu, Y-J. Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. *Toxicology* 2017, http://dx.doi.org/10.1016/j.tox.008
- 523 41. Nixon, K.; Crews, F.T. Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. *J Neurochem.* 2002, 83(5), 1087-1093,
- 525 42. Taffe, M.A.; Kotzebue, R.W.; Crean, R.D.; Crawford, E.F.; Edwards, S.; Mandyam, C.D. Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates. *Proc Natl Acad Sci U S A.* 2010, 15, 107(24), 11104–11109, doi: 10.1073/pnas.0912810107
- 528 43. Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. *Proc Natl Acad Sci U S A*. 1999, 96(23), 13427-13431,

Peer-reviewed version available at Toxics 2018, 6, 71; doi:10.3390/toxics6040071

- 530 44. Parihar, V.K.; Hattiangady, B.; Shuai, B.; Shetty, A.K. Mood and memory deficits in a model of Gulf War Illness are linked with reduced neurogenesis, partial neuron loss, and mild inflammation in the hippocampus. *Neuropsychopharmacology* 2013, 38, 2348–2362, doi: 10.1038/npp.2013.158.
- 533 45. Kohman, R.A.; Rhodes, J.S. Neurogenesis, inflammation and behavior. *Brain Behav. Immun.* 2013, 27, 22–32, doi: 10.1016/j.bbi.2012.09.003