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Abstract

We have shown in previous work that the equivalence of the Heisenberg and
Schrödinger pictures of quantum mechanics requires the use of the Born and Jordan
quantization rules. In the present work we give further evidence that the Born—Jordan
rule is the correct quantization scheme for quantum mechanics. For this purpose we
use correct short-time approximations to the action functional, initially due to Makri
and Miller, and show that these lead to the desired quantization of the classical
Hamiltonian.
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I. Motivation and Background

A. Weyl versus Born and Jordan

There have been several attempts in the literature to find the “right”quantization
rule for observables using either algebraic or analytical techniques.7,22,29,30,33,37,41 In a
recent paper14 we have analyzed the Heisenberg and Schrödinger pictures of quantum
mechanics, and shown that if one postulates that both theories are equivalent, then
one must use the Born—Jordan quantization rule

(BJ) xmp` −→ 1

m+ 1

m∑
k=0

x̂kp̂`x̂m−k, (1)

and not the Weyl rule1

(Weyl) xmp` −→ 1

2m

m∑
k=0

(
m

k

)
x̂kp̂`x̂m−k (2)

for monomial observables. The Born—Jordan and Weyl rules yield the same result
only if m < 2 or ` < 2; for instance in both cases the quantization of the product xp
is 1

2(x̂p̂+ p̂x̂). One can also show that the product pf(x) is, for any smooth function
f of position alone, given in both cases by the symmetric rule

pf(x) −→ 1

2
(p̂f(x) + f(x)p̂).

It follows that if H is a Hamiltonian of the type

H =

n∑
j=1

1

2mj
(pj −Aj(x))2 + V (x)

one can use either the Weyl or the Born—Jordan prescriptions to get the the corre-
sponding quantum operator, which yields the familiar expression

Ĥ =

n∑
j=1

1

2mj

(
−i~ ∂

∂xj
−A(x)

)2

+ V (x).

(See Section C). Since this Hamiltonian is without doubt the one which most often
occurs in quantum mechanics one could ask why one should bother about which is the
“correct”quantization. It turns out that this question is just a little bit more than
academic: there are simple physical observables which yield different quantizations in
the Weyl and Born—Jordan schemes. One interesting example is that of the squared
angular momentum: writing r = (x, y, z) and p = (px, py, pz) the square of the
classical angular momentum

` = (ypz − zpy)i+ (zpx − xpz)j+ (xpy − ypx)k (3)

is the function `2 = `2x + `2y + `2z where

`2x = x2p2
y + y2p2

x − 2xpxypy (4)

1To be accurate, it was McCoy32 who showed that Weyl’s quantization scheme leads to formula
(2).
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and so on. The Weyl quantization of `2x is

( ̂̀2x)W = x̂2p̂2
y + x̂2

yp̂
2
x − 1

2(x̂p̂x + p̂xx̂)(ŷp̂y + p̂yŷ) (5)

while its Born—Jordan quantization is

( ̂̀2x)BJ = x̂2p̂2
y + x̂2

yp̂
2
x − 1

2(x̂p̂x + p̂xx̂)(ŷp̂y + p̂yŷ)− 1
6~

2; (6)

similar relations are obtained for `2y and `
2
z so that, in the end,

( ̂̀2)W − ( ̂̀2)BJ = 1
2~

2. (7)

This discrepancy has been dubbed the “angular momentum dilemma”6; in15 we have
discussed this apparent paradox and shown that it disappears if one systematically
uses Born—Jordan quantization.

B. The Kerner and Sutcliffe approach to quantization

As we have proven in,14,16 Heisenberg’s matrix mechanics,23 as rigorously con-
structed by Born and Jordan in3 and Born, Jordan, and Heisenberg in,4 explicitly
requires the use of the quantization rule (1) to be mathematically consistent, a fact
which apparently has escaped the attention of physicists, and philosophers or histo-
rians of Science. In the present paper, we will show that the Feynman path integral
approach is another genuinely physical motivation for Born—Jordan quantization of
arbitrary observables; it corrects previous unsuccessful attempts involving path inte-
gral arguments which do not work for a reason that will be explained. One of the most
convincing of these attempts is the paper28 by Kerner and Sutcliffe. Elaborating on
previous work of Garrod9 Kerner and Sutcliffe tried to justify the Born—Jordan rule
as the unique possible quantization (see Steven Kauffmann’s26,27 brilliant discussion
of this work). Assuming that Ĥ is the quantization of some general Hamiltonian
H, they write as is usual in the theory of the phase space Feynman integral the
propagator as

〈x|e−
i
~ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1

∏N
k=1〈xk|e

− i
~ Ĥ∆t|xk−1〉 (8)

where xN = x and x0 = x′ are fixed and ∆t = t/N . They thereafter use the
approximation

〈xk|e−
i
~ Ĥ∆t|xk−1〉 ≈

1

2π~

∫
e
i
~S(x,x′,p,∆t)dp (9)

the function S being given by

S(x, x′, p,∆t) = p(x− x′)−H(x, x′, p)∆t (10)

where H is the time average of H over p fixed and x = x(t), that is

H(x, x′, p) =
1

∆t

∫ ∆t

0
H(x′ + s

x− x′
∆t

, p)ds. (11)

Notice that introducing the dimensionless parameter τ = s/∆t, formula (11) can be
written in the more convenient form

H(x, x′, p) =

∫ 1

0
H(τx+ (1− τ)x′, p)ds (12)
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which is the usual mathematical definition of Born—Jordan quantization: see de Gos-
son13,16 and de Gosson and Luef.20

Taking the limit ∆t → 0 the operator Ĥ can then be explicitly and uniquely
determined, and Kerner and Sutcliffe show that in particular this leads to the Born—
Jordan ordering (1) when their Hamiltonian H is a monomial xmp`. Unfortunately
(as immediately2 noted by Cohen5) there are many a priori equally good constructions
of the Feynman integral, leading to other quantization rules. In fact, argues Cohen,
there is a great freedom of choice in calculating the action p(x − x′) −H appearing
in the right-hand side of (11). For instance, one can choose

S(x, x′, p,∆t) = p(x− x′)−H(1
2(x+ x′), p)∆t (13)

which leads for xmp` to Weyl’s rule (2), or one can choose

S(x, x′, p,∆t) = p(x− x′)− 1
2(H(x, p) +H(x′, p))∆t, (14)

which leads to the symmetric rule

xmp` −→ 1

2
(x̂mp̂` + p̂`x̂m). (15)

This ambiguity shows —in an obvious way —that Feynman path integral theory does
not lead to an uniquely defined quantization scheme for observables. However —and
this is the main point of the present paper —while Cohen’s remark was mathematically
justified, Kerner and Sutcliffe’s insight was right (albeit for the wrong reason).

C. What we will do

It turns out that the formula (10) for the approximate action that Kerner and
Sutcliffe “guessed”has been justified independently (in another context) by Makri and
Miller34,35 and the present author11 by rigorous mathematical methods. This formula
is actually the correct approximation to action up to order O(∆t2) (as opposed to the
“midpoint rules”commonly used in the theory of the Feynman integral which yield
much cruder approximations); it follows that Kerner and Sutcliffe’s formula (9) indeed

yields a correct approximation of the infinitesimal propagator 〈xk|e−
i
~ Ĥ∆t|xk−1〉, in

fact the best one for calculational purposes since it ensures a swift convergence of
numerical schemes. This is because for short times ∆t the solution of Schrödinger’s
equation

i~
∂ψ

∂t
(x, t) =

 n∑
j=1

−~2

2mj

∂2

∂x2
j

+ V (x)

ψ(x, t) (16)

with initial condition ψ(x, 0) = ψ0(x) is given by the asymptotic formula

ψ(x,∆t) =

∫
K(x, x′,∆t)ψ0(x′)dnx′ +O(∆t2); (17)

the approximate propagator K being defined, for arbitrary time t, by

K(x, x′, t) =
(

1
2π~
)n ∫

exp
(
i
~
[
p(x− x′)− (Hfree(p) + V (x, x′))t

])
dnp, (18)

2Cohen’s rebukal was published in the same volume of J. Math. Phys. in which Kerner and
Sutcliffe published their results.
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where, by definition, Hfree(p) is the free particle Hamiltonian function, and the two-
point function

V (x, x′) =

∫ 1

0
V (τx+ (1− τ)x′)dτ

is the average value of the potential V on the line segment [x′, x].

• In Section II we discuss the accuracy of Kerner and Sutcliffe’s propagator by
comparing it with the more familiar Van Vleck propagator; we show that for
small times both are approximations to order O(t2) to the exact propagator of
Schrödinger’s equation.

• In Section III we show that if one assume’s that short-time evolution of the
wavefunction (for an arbitrary Hamiltonian H) is given by the Kerner and Sut-
cliffe propagator, then H must be quantized following the rule (12); we there-
after show that when H is a monomial xmp` then the corresponding operator
is given by the Born—Jordan rule (1), not by the Weyl rule 2.

Notation 1 The generalized position and momentum vectors are x = (x1, ..., xn)
and p = (p1, ..., pn); we set px = p1x1 + · · ·+ pnxn. We denote by x̂j the operator of
multiplication by xj and by p̂j the momentum operator −i~(∂/∂xj).

II. On Short-Time Propagators

In this section we only consider Hamiltonian functions of the type “kinetic energy
plus potential”:

H(x, p) = Hfree(p) + V (x) , Hfree(p) =

n∑
j=1

1

2mj
p2
j . (19)

These are the simplest physical Hamiltonians, both from a classical and a quantum
perspective.

A. The Van Vleck Propagator

Consider a Hamiltonian function of the type (19) above; the corresponding
Schrödinger equation is

i~
∂ψ

∂t
(x, t) =

 n∑
j=1

−~2

2mj

∂2

∂x2
j

+ V (x)

ψ(x, t). (20)

We will denote by K(x, x′, t) = 〈x|e− i
~ Ĥt|x′〉 the corresponding exact propagator:

ψ(x, t) =

∫
K(x, x′, t)ψ0(x′)dnx′ (21)

where with ψ0(x) is the value of ψ at time t = 0. The function K(x, x′, t) must thus
satisfy the boundary condition

lim
t→0

K(x, x′, t) = δ(x− x′). (22)
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It is well-known (see e.g. Gutzwiller,21 Schulman,40 de Gosson,11 Maslov and
Fedoriuk36) that for short times an approximate propagator is given by Van Vleck’s
formula

K̃(x, x′, t) =
(

1
2πi~

)n/2√
ρ(x, x′, t)e

i
~S(x,x′,t) (23)

where

S(x, x′, t) =

∫ t

0

(∑n
j=1

1
2mj ẋj(s)

2 − V (x(s)
)
ds (24)

is the action along the classical trajectory leading from x′ at time t′ = 0 to x at time
t (there is no sum over different classical trajectories because only one trajectory
contributes in the limit t→ 034) and

ρ(x, x′, t) = det

(
−∂

2S(x, x′, t)

∂xj∂x′jk

)
1≤j,k≤n

(25)

is the Van Vleck density of trajectories11,21,40; the argument of the square root is
chosen so that the initial condition (22) is satisfied.11,12 It should be emphasized that
although the Van Vleck propagator is frequently used in semiclassical mechanics, it
has nothing “semiclassical”per se, since it is genuinely an approximation to the exact
propagator for small t —not just in the limit ~→ 0. In fact:

Theorem 2 Let ψ̃ be given by

ψ̃(x, t) =

∫
K̃(x, x′, t)ψ0(x′)dnx′

where ψ0 is a tempered distribution. Let ψ be the exact solution of Schrödinger’s
equation with initial datum ψ0. We have

ψ(x, t)− ψ̃(x, t) = O(t2). (26)

In particular, the Van Vleck propagator K̃(x, x′, t) is an O(t2) approximation to the
exact propagator K(x, x′, t):

K(x, x′, t)− K̃(x, x′, t) = O(t2) (27)

for t→ 0 and hence
lim
t→0

K̃(x, x′, t) = δ(x− x′).

Proof. Referring to de Gosson11 (Lemma 241) for details, we sketch the main lines
in the case n = 1. Assuming that ψ0 belongs to the Schwartz space S(Rn) of rapidly
decreasing functions, one expands the solution ψ of Schrödinger’s equation to second
order:

ψ(x, t) = ψ0(x) +
∂ψ

∂t
(x, 0)t+O(t2).

Taking into account the fact that ψ is a solution of Schrödinger’s equation this can
be rewritten

ψ(x, t) =

[
1 +

t

i~

(
− ~

2

2m

∂2

∂x2
+ V (x)

)]
ψ0(x) +O(t2). (28)

6
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Expanding the exponential eiS/~ in Van Vleck’s formula (23) at t = 0 one shows,
using the estimate (32) in Theorem 3, that we also have

ψ̃(x, t) =

[
1 +

t

i~

(
− ~

2

2m

∂2

∂x2
+ V (x)

)]
ψ0(x) +O(t2); (29)

comparison with (28) implies that ψ(x, t)−ψ̃(x, t) = O(t2). By density of the Schwartz
space in the class of tempered distributions S ′(Rn) the estimate (26) is valid if one
chooses ψ0(x) = δ(x− x0), which yields formula (27) since we have∫

K̃(x, x′, t)δ(x− x0)dnx′ = K̃(x, x0, t)

and ∫
K(x, x′, t)δ(x− x0)dnx′ = K(x, x0, t).

Let us briefly return to the path integral. Replacing the terms 〈xk|e−
i
~ Ĥ∆t|xk−1〉

in the product formula (8) with K̃(xk−1, xk−1,∆t) one shows, using the Lie—Trotter

formula,11,40 that the exact propagator K(x, x′, t) = 〈x|e− i
~ Ĥt|x′〉 is given by

〈x|e−
i
~ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1

∏N
k=1K̃(xk−1, xk−1,∆t). (30)

This formula is often taken as the starting point of path integral arguments: observ-
ing that the expression (23) is in most cases3 diffi cult to calculate (it implies the
computation of an action integral, which can be quite cumbersome) people working
in the theory of the Feynman integral replace the exact action S(x, x′, t) in (23) with
approximate expressions, for instance the “midpoint rules”that we will be discussed
below. Now, one should be aware that this legerdemain works, because when taking
the limit N → ∞ one indeed obtains the correct propagator, but it does not imply
that these midpoint rules are accurate approximations to S(x, x′, t).

B. The Kerner—Sutcliffe propagator

We showed above that the Van Vleck propagator is an approximation to order
O(t2) to the exact propagator. We now show that the propagator proposed by Kerner
and Sutcliffe in28 approximates the Van Vleck propagator also at order O(t2). Hence

Van Vleck = Kerner—Sutcliffe +O(t2).

We begin by giving a correct short-time approximation to the action.

Theorem 3 The function S defined by

S(x, x′, t) =

n∑
j=1

mj

(xj − x′j)2

2t
− V (x, x′)t (31)

3The free particle and the harmonic oscillator are noticeable cases where the action integral can be
explicitl claculate and thus yields an exlicit formula for the propagator, but mathematically speaking
this fact is rather a consequence of the theory of the metaplectic group11,12
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where V (x, x′) is the average of the potential V along the line segment [x′, x] :

V (x, x′) =

∫ 1

0
V (τx+ (1− τ)x′)dτ.

satisfies for t→ 0 the estimate

S(x, x′, t)− S(x, x′, t) = O(t2). (32)

For detailed proofs we refer to the aforementioned papers34,35 by Makri and
Miller, and to our book11; also see de Gosson and Hiley.17,18 The underlying idea
is quite simple (and already appears in germ in Park’s book,39 p.438): one remarks
that the function S = S(x, x′, t) satisfies the Hamilton—Jacobi equation

∂S

∂t
+

n∑
j=1

1

2mj

(
∂S

∂xj

)2

+ V (x) = 0 (33)

and one thereafter looks for an asymptotic solution

S(x, x′, t) =
1

t
S0(x, x′) + S1(x, x′)t+ S2(x, x′)t2 + · · ·.

Insertion in (33) then leads to

S0(x, x′) =
n∑
j=1

mj

(xj − x′j)2

2

and S1(x, x′) = −V (x, x′) hence (31). Notice that this procedure actually allows one
to find approximations to S to an arbitrary order of accuracy by solving successively
the equations satisfied by S2 ,S3, .. (see34,35 for explicit formulas).

Let us now set
H(x, x′, t) = Hfree(p) + V (x, x′)

where

V (x, x′) =

∫ 1

0
V (τx+ (1− τ)x′)dτ

is the averaged potential.
Let us now show that the propagator postulated by Garrod9 and Kerner and

Sutcliffe28 is as good an approximation to the exact propagator as Van Vleck’s is. We
recall the textbook Fourier formula(

1
2π~
)n ∫

e
i
~p(x−x

′)p`jd
np =

(
−i~ ∂

∂xj

)`
δ(x− x′). (34)

Theorem 4 Let K = K(x, x′, t) be defined (in the distributional sense) by

K(x, x′, t) =
(

1
2π~
)n ∫

e
i
~ (p(x−x′)−H(x,x′,p)t)dnp. (35)

and set

ψ(x, t) =

∫
K(x, x′, t)ψ0(x′)dnx′. (36)

Let ψ be the solution of Schrödinger’s equation with initial condition ψ0. We have

ψ(x, t)− ψ(x, t) = O(t2). (37)

The function K is an O(t2) approximation to the exact propagator K:

K(x, x′, t)−K(x, x′, t) = O(t2). (38)
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Proof. It is suffi cient to prove (37); formula (38) follows by the same argument as
in the proof of Theorem 2. To simplify notation we assume again n = 1; the general
case is a straightforward extension. Expanding for small t the exponential in the
integrand of (35) we have

K(x, x′, t) =
(

1
2π~
)n ∫

e
i
~p(x−x

′)(1− i

~
H(x, x′, p)t)dp+O(t2)

= δ(x− x′)− it

~

∫
e
i
~p(x−x

′)H(x, x′, p)dp+O(t2)

and hence

ψ(x, t) = ψ0(x)− it

~

∫
e
i
~p(x−x

′)H(x, x′, p)dp+O(t2).

We have ∫
e
i
~p(x−x

′)H(x, x′, p)dnp =

∫
e
i
~p(x−x

′)
(
p2

2m
+ V (x, x′)

)
dp;

Using the Fourier formula (34) we get(
1

2π~
)n ∫

e
i
~p(x−x

′) p
2

2m
dp = − ~

2

2m

∂2

∂x2
δ(x− x′)

and, noting that V (x, x) = V (x),(
1

2π~
)n ∫

e
i
~p(x−x

′)V (x, x′)dp = V (x, x′)δ(x− x′)

= V (x)δ(x− x′).

Summarizing,

K(x, x′, t) = δ(x− x′) +
it

~

(
− ~

2

2m

∂2

∂x2
+ V (x)

)
δ(x− x′) +O(t2) (39)

and hence

ψ(x, t) = ψ0(x)− it

~

(
− ~

2

2m

∂2

∂x2
+ V (x)

)
+O(t2).

Comparing this expression with (28) yields (38).

C. Comparison of short-time propagators

We have seen above that both the Van Vleck and the Kerner—Sutcliffe propaga-
tors are accurate to order O(t2):

K(x, x′, t)− K̃(x, x′, t) = O(t2). (40)

K(x, x′, t)−K(x, x′, t) = O(t2) (41)

and hence, of course,
K̃(x, x′, t)−K(x, x′, t) = O(t2). (42)

Let us now study the case of the most commonly approximations to the action used
in the theory of the Feynman integral, namely the mid-point rules

S1(x, x′, t, t′) =

n∑
j=1

mj

(xj − x′j)2

2t
− 1

2
(V (x) + V (x′))t (43)

9
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and

S2(x, x′, t) =

n∑
j=1

mj

(xj − x′j)2

2t
− V (1

2(x+ x′))∆t. (44)

We begin with a simple example, that of the harmonic oscillator

H(x, p) =
p2

2m
+

1

2
m2ω2x2

(we are assuming n = 1). The exact value of the action is given by the generating
function

S(x, x′, t) =
m

2 sinωt
((x2 + x′2) cosωt− 2xx′); (45)

expanding the terms sinωt and cosωt in Taylor series for t → 0 yields the approxi-
mation

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t+O(t2). (46)

It is easy to verify, averaging 1
2m

2ω2x2 over [x′, x] that

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t

is precisely the approximate action provided by (31). If we now instead apply the
midpoint rule (43) we get

S1(x, x′, t) = m
(x− x′)2

2t
− m2ω2

4
(x2 + x′2)t

which differs from the correct value (46) by a term O(∆t). Similarly, the rule (44)
yields

S2(x, x′, t) = m
(x− x′)2

2t
− m2ω2

8
(x+ x′)2t

which again differs from the correct value (45) by a term O(t). It is easy to understand
why it is so by examining the case of a general potential function, and to compare
V (x, x′), 1

2(V (x) +V (x′)), and V (1
2(x+x′). Consider for instance V (x, x′)−V (1

2(x+
x′). Expanding V (x) in a Taylor series at x = 1

2(x + x′) we get after some easy
calculations

V (x, x′) = V (x) + V ′(x)(x− x′) +
1

2
V ′′(x)(x− x′)2 +O((x− x′)3)

= V (1
2(x+ x′)− 1

12V
′′(1

2(x+ x′))(x− x′)3 +O((x− x′)3)

hence V (x, x′)− V (1
2(x+ x′) is different from zero unless x = x′ (or if V (x) is linear)

and hence the difference between S(x, x′, t) and S2(x, x′, t) will always generate a
term containing t so that S(x, x′, t) − S2(x, x′, t) = O(t) (and not O(t2)). A similar
calculation shows that we will also always have S(x, x′, t) − S1(x, x′, t) = O(t). De-
noting by K1(x, x′, t) and K2(x, x′, t) the approximate propagators obtained from the
midpoint rules (43) and (44), respectively, one checks without diffi culty that we will
have

K(x, x′, t)−K1(x, x′, t) = O(t)

K(x, x′, t)−K2(x, x′, t) = O(t)

where K(x, x′, t) is the Kerner—Sutcliffe propagator (35) (in these relations we can of
course replace K(x, x′, t) with the van Vleck propagator K̃(x, x′, t) since both differ
by a quantity O(t2) in view of Theorem 4.
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III. The Case of Arbitrary Hamiltonians

A. The main result

We now consider the following very general situation: we assume that we are
in the presence of a quantum system represented by a state |ψ〉 whose evolution is
governed by a strongly continuous one-parameter group (Ut) of unitary operators
acting on L2(Rn); the operator Ut takes an initial wavefunction ψ0 to ψ = Utψ0. It
follows from Schwartz’s kernel theorem24 that there exists a function K = K(x, x′; t)
such that4

ψ(x, t) =

∫
K(x, x′; t)ψ0(x′)dnx′ (47)

and from Stone’s42 theorem one strongly continuous one-parameter groups of unitary
operators that there exists a self-adjoint (generally unbounded) operator Ĥ on L2(Rn)
such that

ψ(x, t) = e−
i
~ Ĥtψ0(x); (48)

equivalently ψ(x, t) satisfies the abstract Schrödinger equation (Jauch25)

i~
∂ψ

∂t
(x, t) = Ĥψ(x, t). (49)

We now make the following crucial assumption, which extrapolates to the general
case what we have done for Hamiltonians of the type classical type “kinetic energy plus
potential”: the quantum dynamics is again given by the Kerner—Sutcliffe propagator
(35) for small times t, i.e.

K(x, x′, t) = K(x, x′, t) +O(t2) (50)

the approximate propagator being given by

K(x, x′, t) =
(

1
2π~
)n ∫

e
i
~ (p(x−x′)−H(x,x′)t)dnp (51)

where H is this time the averaged Hamiltonian function

H(x, x′, p) =

∫ 1

0
H(τx+ (1− τ)x′, p)dτ. (52)

Obviously, when H = Hfree + V the function H reduces to the function Hfree + V
considered in Section II.

This assumption can be motivated as follows (see de Gosson,16 Proposition 15,
§4.4). Let

S(x, x′, t) =

∫
γ
pdx−Hdt

be Hamilton’s two-point function calculated along the phase space path leading from
an initial point (x′, p′, 0) to a final point (x, p, t) (the existence of such a function for
small t is guaranteed by Hamilton—Jacobi theory; see e.g. Arnol’d2 or Goldstein10).
That function satisfies the Hamilton—Jacobi equation

∂S

∂t
+H(x,∇xS) = 0.

4This equality is sometimes postulated; it is in fact a mathematical fact which is true in quite
general situations.
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One then shows that the function

S(x, x′, t) = p(x− x′)−H(x, x′, p)t

where p is the momentum at time t is an approximation to S(x, x′, t), in fact

S(x, x′, t)− S(x, x′, t) = O(t2).

Here is an example: choose H = 1
2p

2x2 (we are assuming here n = 1); then

S(x, x′, t) =
(ln(x/x′))2

2t
.

Using the formula

H(x, x′, p) =
1

6
p2(x2 + xx′ + x′2)

one shows after some calculations involving the Hamiltonian equations for H that

S(x, x′, t) =
(ln(x/x′))2

2t
+O(t2)

(see,16 Chapter 4, Examples 10 and 16 for detailed calculations).
We are now going to show that the operator Ĥ can be explicitly and uniquely

determined from the knowledge of K(x, x′, t).

Theorem 5 If we assume that the short-time propagator is given by formula (51)
then the operator Ĥ appearing in the abstract Schrödinger equation (49) is given by

Ĥψ(x) =
(

1
2π~
)n ∫

e
i
~p(x−x

′)H(x, x′, p)ψ(x′)dnpdnx′. (53)

Proof. Differentiating both sides of the equality (47) with respect to time we get

i~
∂ψ

∂t
(x, t) = i~

∫
∂K

∂t
(x, x′, t)ψ0(x′)dnx′;

since K itself satisfies the Schrödinger equation (49) we thus have

Ĥψ(x, t) = i~
∫
∂K

∂t
(x, x′, t)ψ0(x′)dnx′.

It follows, using the assumptions (50) and (51), that

Ĥψ(x, t) = i~
∫
∂K

∂t
(x, x′, t)ψ0(x′)dnx′ +O(t)

and hence, letting t→ 0,

Ĥψ0(x) = i~
∫
∂K

∂t
(x, x′, 0)ψ0(x′)dnx′. (54)

Introducing the notation

S(x, x′, t) = p(x− x′)−H(x, x′, p)t

12
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we have

∂K

∂t
(x, x′, t) =

(
1

2π~
)n i

~

∫
e
i
~S(x,x′,t)∂S

∂t
(x, x′, t)dnp′

=
(

1
2π~
)n 1

i~

∫
e
i
~S(x,x′,t)H(x, x′, p′)dnp′.

Taking the limit t→ 0 and multiplying both sides of this equality by i~ we finally get

Ĥψ0(x) =
(

1
2π~
)n ∫

e
i
~p(x−x

′)H(x, x′, p′, t′)ψ0(x′)dnp′dnx′

which proves (53).
We will call the operator Ĥ defined by (53) the Born—Jordan quantization of the

Hamiltonian function H. That this terminology is justified is motivated below.

B. The case of monomials

Let us show that (53) reduces to the usual Born—Jordan quantization rule (1)
when H = xmp` (we are thus assuming dimension n = 1). We have here

H(τx+ (1− τ)x′, p) = (τx+ (1− τ)x′)mp`

hence, using the binomial formula,

H(τx+ (1− τ)x′, p) =

m∑
k=0

(
m

k

)
τk(1− τ)m−kxkp`x′m−k. (55)

Integrating from 0 to 1 in τ and noting that∫ 1

0
τk(1− τ)m−kdτ =

k!(m− k)!

(m+ 1)!

we get

H(x, x′, p) =
1

m+ 1

m∑
k=0

xkp`x′m−k

and hence, using the definition (53) of Ĥ,

Ĥψ(x) =
1

2π~(m+ 1)

m∑
k=0

∫ ∞
−∞

e
i
~p(x−x

′)xkp`x′m−kψ(x′)dpdx′

=
xk

2π~(m+ 1)

m∑
k=0

∫ ∞
−∞

(∫ ∞
−∞

e
i
~p(x−x

′)p`dp

)
x′m−kψ(x′)dx′.

In view of the Fourier inversion formula (34) we have

1

2π~

∫ ∞
−∞

e
i
~p(x−x

′)p`dp = (−i~)`δ(`)(x− x′) (56)

so that we finally get

Ĥψ(x) =
1

m+ 1

m∑
k=0

xk(−i~)`
∂`

∂x`
(xm−kψ),

which is equivalent to (1) since p̂` = (−i~)`∂`/∂x`.
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C. Physical Hamiltonians

Let us now show that the Born—Jordan quantization of a physical Hamiltonian
of the type

H =

n∑
j=1

1

2mj
(pj −Aj(x))2 + V (x) (57)

coincide with the usual operator

Ĥ =
n∑
j=1

1

2mj

(
−i~ ∂

∂xj
−Aj(x)

)2

+ V (x) (58)

obtained by Weyl quantization (the functions Aj and V are assumed to be C1). Since
the quantizations of p2

j , Aj(x) and V (x) are the same in all quantization schemes (they
are respectively −~2∂2/∂x2

j and multiplication by Aj(x) and V (x)), we only need to
bother about the cross-products pjA(x). We claim that

p̂jAψ = − i~
2

[
∂

∂xj
(Aψ) +A

∂ψ

∂xj

]
, (59)

from which (58) immediately follows. Let us prove (59); it is suffi cient to do this in
the case n = 1. Denoting by pA the Born—Jordan quantization of the function pA we
have

pA(x, x′, p) = p

∫ 1

0
A(τx+ (1− τ)x′)dτ = pA(x, x′)

and hence

p̂Aψ(x) =
1

2π~

∫
e
i
~p(x−x

′)pA(x, x′)ψ(x′)dx′dp

=

∫ ∞
−∞

(
1

2π~

∫ ∞
−∞

e
i
~p(x−x

′)pdp

)
A(x, x′)ψ(x′)dx′.

In view of (34) the expression between the square brackets is −i~δ′(x− x′) so that

p̂Aψ(x) = −i~
∫ ∞
−∞

δ′(x− x′)A(x, x′)ψ(x′)dx′

= −i~
∫ ∞
−∞

δ(x− x′) ∂

∂x′
(A(x, x′)ψ(x′))dx′

= −i~
(
∂A

∂x′
(x, x)ψ(x)) +A(x, x)

∂ψ

∂x′
(x))

)
Now, by definition of A(x, x′) we have A(x, x) = A(x) and

∂A

∂x′
(x, x) =

∫ 1

0
(1− τ)

∂A

∂x
(x)dτ =

1

2

∂A

∂x
(x)

and hence

p̂Aψ = − i~
2

∂A

∂x
ψ − i~A∂ψ

∂x

which is the same thing as (59).
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IV. Discussion

Both Kerner and Sutcliffe, and Cohen relied on path integral arguments which
were doomed to fail because of the multiple possible choices of histories in path
integration. However, it follows from our rigorous constructions that Kerner and
Sutcliffe’s insight was right, even though their construction was not rigorously math-
ematically justified. While there is, as pointed out by Cohen,5 a great latitude in
choosing the short-time propagator, thus leading to different quantizations, our ar-
gument did not make use of any path-integral argument; what we did was to propose
a short-time propagator which is exact up to order O(t2) (as opposed to those ob-
tained by using midpoint rules), and to show that if one use this propagator, then
one must quantize Hamiltonian functions (and in particular monomials) following the
prescription proposed by Born and Jordan in the case of monomials.
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