

Article

Centralized Unmanned Aerial Vehicle (UAV) Mesh Networks Placement Scheme: A Multi-Objective Evolutionary Algorithm Approach

Sérgio Sabino^{1,2,*}, António Grilo^{1,2}

¹ Instituto Superior Técnico-Universidade de Lisboa; Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal

² INESC-ID; R. Alves Redol 9, CP 1000-100, Lisboa, Portugal, antonio.grilo@inov.pt

* Correspondence: sergio.sabino@tecnico.ulisboa.pt; Tel.: +351-969-356-209

Academic Editor: name

Version October 16, 2018 submitted to Preprints

Abstract: In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in the military operations to prevent pilot losses. Nowadays, the fast technological evolution enables the production of a class of cost-effective UAVs which can service a plethora of public and civilian applications, specially when configured to work cooperatively to accomplish a task. However, designing a communication network among the UAVs is challenging task. In this article, we propose a centralized UAV placement strategy, where UAVs are used as flying access points forming a mesh network, providing connectivity to ground nodes deployed in a target area. The geographical placement of UAVs is optimized based on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed scheme is to cover all ground nodes using a minimum number of UAVs, while maximizing the fulfillment of their data rate requirements. The UAVs can employ different data rates depending on the channel conditions, which are expressed by the Signal-to-Noise-Ratio (SNR). In this work, elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is used to find a set of optimal positions to place UAVs, given the positions of the ground nodes. We evaluate the trade-off between the number of UAVs used to cover the target area and the data rate requirement of the ground nodes. Simulation results show that the proposed algorithm can optimize the UAV placement given the requirement and the positions of the ground nodes in the geographical area.

Keywords: Unmanned Aerial Vehicles, Genetic Algorithm, Mesh Networks, Optimization, MOEA, NSGA-II

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones refer to aircrafts with no human pilot on board. These are either programmed and fully autonomous or remotely and fully controlled from another location, e.g., ground or space station. There are various types of UAVs (e.g., Fixed wing and multi-rotor) and they come in different sizes, ranging from small (less than 5 kg) to large (over 4332 kg) [1]. Large UAVs are commonly used singly, for instance, in military operation such as border surveillance, strike and reconnaissance, whereas small UAVs may be utilized in swarms to accomplish a mission. With advancement in electronics and sensor technology, small UAVs are becoming massively present in many public and civilian application, such as in search and rescue operations [2], aerial surveillance [3], tracking targets [4], agriculture field monitoring [5], network extension or compensation [6], leisure, to mention a few.

The use of swarms of small UAVs has many advantages compared to a single and large UAV [7]. One of the key advantages is the cost to acquire and maintain small UAVs, which is generally much lower than the cost of a large UAV [8]. Swarms of UAVs can automatically reconfigure themselves in a case of node failure or link break, and accomplish the designated task. That is not possible with a single UAV. Additionally, when network coverage extension is needed, it may be easily achieved with swarms of UAVs by positioning additional UAVs in the target area and allow them to operate

36 through other already existing UAVs, unlike single UAV network coverage which is limited by the
37 communication range between the infrastructure and the UAV itself.

38 Although swarms of UAVs present many advantages, an important aspect to be considered when
39 designing an application using multiple UAVs is the communication network, which poses many
40 challenging issues as described in [9]. Depending on the purpose of the application at hand, UAVs may
41 be semi-stationary and hovering over the area of operations or move around at high speed changing
42 their relative positions. In the latter scenario, frequent topology changes are observed, which may
43 lead to network partitioning and poor link quality. On the other hand, the commonly used wireless
44 ad-hoc network communication protocols or algorithms (e.g., proactive and reactive routing) cannot be
45 directly used for UAVs [10]. For instance, since proactive routing protocols need to update the routing
46 tables periodically, in the presence of high degree of mobility and topology changes, it increases the
47 number of control messages to be exchanged, which degrade the network performance. On the other
48 hand, reactive protocols may introduce higher packet delivery delay each time they compute a new
49 route to the destination node.

50 UAV placement schemes can help to mitigate the aforementioned issues by finding suitable
51 positions to place UAVs while maintaining connectivity and improving the network performance.
52 The UAV placement optimization schemes can be classified as centralized or distributed. The former
53 assumes that the UAV positions are selected by a centralized entity and conveyed to the UAVs by
54 means of special purpose long-range low bit rate radio interface. On the other hand, in distributed
55 approaches, UAVs work cooperatively to adjust their position based on local interactions to achieve
56 optimal coverage. This work extends our previous work [11], where we considered the use of a swarm
57 of UAVs as flying access points forming a mesh network among themselves, providing connectivity to
58 ground nodes (GNs). Our main goal is to optimize the placement of the UAVs by choosing deployment
59 positions for the UAVs in order to provide adequate wireless communication coverage to GNs in a
60 target area, while fulfilling their Quality of Service (QoS) requirements.

61 This work is more related with centralized placement optimization. It considers the following
62 requirements and constraints:

- 63 • Minimization of the number of UAVs needed to service the GN, while ensuring that the QoS
64 requirements (here measured as the physical data rate) are properly met.
- 65 • The number of available UAVs is limited and must not be exceeded;
- 66 • The inter-UAV links do not necessarily employ the same technology as GN-UAV links. Inter-UAV
67 links are considered in an abstract way, but constrained to a maximum range.
- 68 • It is assumed that the throughput values of the links between UAVs are high enough not to
69 constrain end-to-end inter-GN traffic. Only GN-UAV links impose limits to the satisfaction of
70 QoS requirements (end-to-end QoS shall be addressed in future work);
- 71 • GN-UAV links are orthogonal. This can be achieved, for example, by assigning different
72 frequencies or orthogonal channel codes.

73 Given the nature of the problem requirements, we consider using Multi-Objective Evolutionary
74 Algorithm (MOEA) techniques to optimize the UAV node placement considering two main objectives,
75 namely, to minimize the number of UAVs and the degree of dissatisfaction regarding the required data
76 rate.

77 The paper is structured as follows. Section 2 presents the related work. In Section 3 the system
78 model is presented. Section 4 presents the problem definition and formulation as a Multi-Objective
79 Optimization Problem (MOP). Section 5 presents our MOAEA implementation. The simulation results
80 are presented in Section 6. Section 7 presents the simulation results discussion and Section 8 concludes
81 the paper.

82 2. Related Work

83 Optimal placement of UAVs has already been studied in the literature whether considering single
84 or multi-UAV scenarios. In [2], a single-UAV was proposed for search and rescue application such

85 as earthquake, flood or bomb blast. The goal is to deploy an UAV to a position where it can bridge
86 communication between two static nodes on the ground. It is assumed that the UAV hovers the area
87 in spiral or ladder search mode sending hello/beacon messages in regular interval. Upon receiving
88 such a message, the GNs respond by sending their GPS positions back to the UAV. The UAV stores
89 this information and continues hovering in the immediate surrounding to find a position based on the
90 received signal strength (RSS) and distance between the UAV and nodes on the ground. Simulation
91 results showed that the algorithm provides maximum throughput and low bit error rate (BER) once
92 the UAV is fixed at an optimal position. The drawback of this system is that it is only validated for two
93 GNs. Therefore, as the number of GN grows, the solution should consider energy constraints during
94 the search process and bandwidth constraints when providing network access to GNs.

95 The authors in [12] have developed a framework named UAVNet. It is capable to autonomously
96 deploy a wireless mesh network to interconnect two end systems using small quadrocopter-based
97 UAVs with 802.11s nodes on board. Each UAV would act as access point and provides network access
98 for regular IEEE 802.11g wireless devices. There are two positioning modes to place the UAVs between
99 the end systems. The first one is the location based positioning mode. The latter uses the submitted
100 GPS locations of the end systems and directs the UAV to the exact geographical position between these
101 two GPS coordinates. The second one is the signal strength positioning mode. It extends the location
102 positioning mode and includes also the received signal strength of the two end systems to calculate a
103 more accurate position for the UAV. This takes the quality of the wireless link and other environmental
104 factors into account.

105 Usually, the process of network densification in cellular networks uses fixed small cells (e.g.,
106 picocells and femtocells) to increase the network capacity based on the expected formation of hotspots.
107 In places where temporary hotspots are formed, fixed small cells would remain under-utilized once
108 the hotspots moved to a different location or disappeared. Authors in [13] proposed small cells
109 mounted on UAVs to offload user equipments (UEs) from the microcell infrastructure. The optimum
110 placement points of the UAVs are determined using K-means clustering algorithm. In their work, the
111 performance metric where measured based on the RSS experienced by the UEs. The simulation results
112 have shown that as UAVs are able to position themselves in real-time around actual UE position rather
113 than expected UE hotspots, they outperform equivalent small cell deployment.

114 In [14], the authors present a model for an optimal placement of UAVs to cover a set of targets, i.e.,
115 GNs. They consider two cost metrics, namely, the number of UAV and energy consumption, seeking to
116 minimize both metrics. The authors assume that each UAV has a minimum and maximum observation
117 altitude. They also assure that the UAV's energy consumption is related to this altitude, since the
118 higher the altitude, the larger the observed area, but also the higher the energy consumption. The
119 optimization problem is mathematically solved by defining an integer linear and a mixed non-linear
120 optimization model.

121 The authors in [15] use the same assumption as in [14] to model an optimized UAV placement and
122 formulate it as a multi-objective linear problem. The main difference is that, in [15], the connectivity
123 among UAVs is considered as an additional constraint. In [15], the following objectives are to be
124 minimized: number of UAVs and the maximum flying altitude. Our work is closer to [15] though
125 with some differences. Firstly, we consider using omnidirectional antennas instead of directional.
126 Secondly, one of our objectives is to minimize the difference between the assigned and required data
127 rate, whereas one of their objectives is to maximize the flying altitude.

128 3. System Model

We consider a wireless network consisting of two kinds of nodes, GNs and UAVs, which are represented by the sets \mathbf{V} and \mathbf{U} , respectively. All nodes are assumed to be located in a rectangular area \mathcal{A} with length X_{max} and width Y_{max} . Nodes are equipped with omnidirectional transceivers and a GPS. Therefore, they know their positions in the aforementioned rectangular area at any time. The position of a GN v is assumed to be on the ground with coordinates $q_{(x,y,0)}^v$, while the position of an UAV node

u is represented in the 3D plane as $q_{(x,y,h)}^u$, where h is the flying altitude of u . We assume that the main factor which affects the service quality offered by an UAV is path loss, as it is assumed that the links between a GN and its serving UAV are line-of-sight (LOS) links. We employ the free-space propagation model given by the Friis equation, as follows:

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d} \right)^2 \quad (1)$$

where P_R is the received power, P_T is the transmission power, G_T and G_R are the transmitter and receiver antenna gains, respectively. $\lambda = \frac{c}{f}$ represents the wavelength of the carrier wave, where c is the speed of light and f is the carrier wave frequency. UAVs are assumed to have the same operating characteristics, featuring the same transmit power, antenna gains and altitude. GNs can only communicate with each other through UAVs. The parameter d in Equation (1) represents the distance between the transmitter and receiver antennas of the nodes. Assuming communication between a GN and an UAV, d is computed as the Euclidean distance between their transceivers as follows:

$$d = \sqrt{(x_u - x_v)^2 + (y_u - y_v)^2 + h_u^2} \quad (2)$$

The distance d should not be greater than the maximum communication range \mathcal{D} . We compute \mathcal{D} based on the receiver sensitivity, denoted as $P_{RS_{dBm}}$. Considering $G_T = G_R = 1$ (0 dBm) in Equation (1), it yields:

$$\mathcal{D} = 10 \frac{P_{T_{dBm}} - P_{RS_{dBm}} - 20 \log(f) + 147.56}{20} \quad (m) \quad (3)$$

129 An overview of the proposed system is shown in Figure 1.

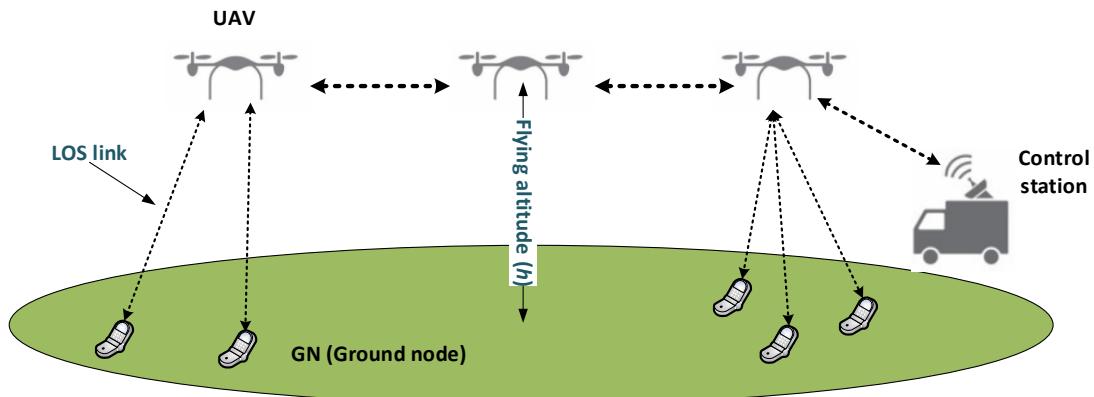


Figure 1. System model overview.

130 **4. Problem Definition**

131 Consider the network model presented in Section 3. The goal is to ensure that all GNs are covered
 132 and that the data rate requirements are met as much as possible when UAVs are used as relay nodes.
 133 We assume that there is a cost associated with each used UAV. Thus, minimizing the number of UAVs,
 134 is desirable. On the other hand, GNs may have different data rate requirements. The satisfaction
 135 of data rate as GN requirements is closely dependent on the channel conditions (e.g., SNR), which
 136 also depends on the communication distance, which results from the number and placement of the
 137 serving UAV in the network. We intend to deploy as few connected UAVs as possible in suitable
 138 locations to enable communication between GNs, while satisfying multiple independent data rate
 139 requirements. In some instances, the QoS demands are competitive, i.e., one cannot satisfy them

140 simultaneously. This gives rise to the need of finding solutions that try to balance them. This problem
 141 can be modelled meta-heuristically as a multi-objective optimization problem to find the trade-off
 142 among non-dominated solutions. In the rest of this section, we define Multi-Objective Optimization
 143 Problem (MOP) and present the formulation of our UAV placement optimization problem as a MOP.

144 *4.1. Multi-Objective Optimization Problem (MOP)*

A MOP can be stated as follows [16]:

$$\begin{aligned} & \text{minimize } \mathbf{F}(\boldsymbol{\varepsilon}) = (f_1(\boldsymbol{\varepsilon}), \dots, f_m(\boldsymbol{\varepsilon})) \\ & \text{subject to } \boldsymbol{\varepsilon} \in \Omega \end{aligned} \quad (4)$$

145 Where Ω is the *decision (variable) space*, \mathbb{R}^m is the *objective space*, and $\mathbf{F} : \Omega \rightarrow \mathbb{R}^m$ consist of m
 146 real-values objective functions. If Ω is a closed and connected region in \mathbb{R}^m and all the objectives are
 147 continuous of $\boldsymbol{\varepsilon}$, we call Equation (4) a continuous MOP.

148 *4.1.1. Domination*

149 Let $k = (k_1, \dots, k_m)$, $l = (l_1, \dots, l_m) \in \mathbb{R}^m$ be two vectors, k is said to *dominate* l if $k_i \leq l_i$ for all
 150 $i = 1, \dots, m$ and $k \neq l$ ¹.

151 *4.1.2. Pareto front*

152 A point $\boldsymbol{\varepsilon}^* \in \Omega$ is called (*Globally*) *Pareto optimal* if there is no $\boldsymbol{\varepsilon} \in \Omega$ such that $\mathbf{F}(\boldsymbol{\varepsilon})$ dominates
 153 $\mathbf{F}(\boldsymbol{\varepsilon}^*)$. The set of all the Pareto optimal points, denoted by PS , is called the *Pareto set*. The set of all
 154 Pareto objective vectors, $PF = \{\mathbf{F}(\boldsymbol{\varepsilon}) \in \mathbb{R}^m | \boldsymbol{\varepsilon} \in PS\}$, is called the *Pareto front*.

155 *4.2. Formulation of UAV Placement Optimization as a MOP*

156 In this section we formulate the problem in \mathbb{R}^2 objective space. We seek to minimize the number
 157 of deployed UAVs and simultaneously minimize the difference between the data rate required by the
 158 GNs to transmit data and the data rates that results from the MOP solution.

159 *4.2.1. Minimize the number of UAVs*

160 We start by identifying a set of potential UAV placement points Q , by finding a sub-area $a' \subset \mathcal{A}$
 161 which corresponds to the area inside the convex hull (convex envelope) [17] formed by the GNs in \mathcal{A}
 162 as shown in Figure 2. We compute the convex hull to reduce the search space of the UAVs placement
 163 points in the target area. We intend to cover all GNs in a' . Therefore, we discretize a' in a grid layout
 164 according to Equation (5).

¹ This definition of domination is for minimization. All the inequalities should be reversed if the goal is to maximize the objectives in Equation (4). “Dominate” means “be better than.”

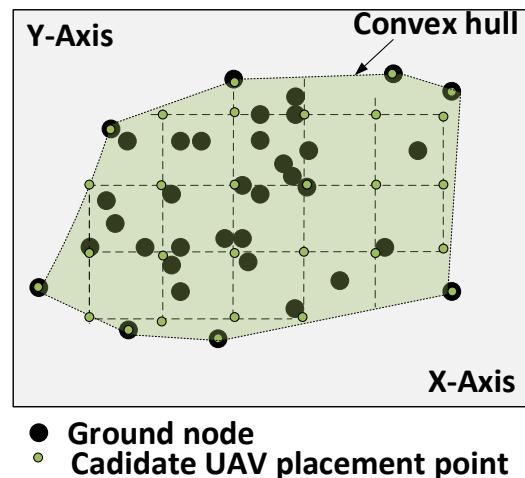


Figure 2. Convex hull formed by the GNs.

$$\alpha \mathcal{D}; \alpha \in [0, 1] \quad (5)$$

165 where α adjusts the distance between two neighboring UAVs. Let $q_j \in Q$ be the j^{th} potential UAV
 166 placement point. We define $\delta_{q_j}^u$ as a binary variable to indicate which points are currently being used
 167 by an UAV as presented bellow.

168

$$169 \quad \delta_{q_j}^u = \begin{cases} 1 & \text{if UAV } u \text{ is located at } q_j \\ 0 & \text{Otherwise} \end{cases}$$

170 We also define ζ_v^u as a binary variable to indicate which GNs are being serviced by each deployed
 171 UAV. It is assumed that a GN will be connected to the closest deployed UAV.

172

$$173 \quad \zeta_v^u = \begin{cases} 1 & \text{if } v \text{ is connected to UAV } u \\ 0 & \text{Otherwise} \end{cases}$$

174 Our objective is to select points in Q such that

$$172 \quad \min \sum_{q_j \in Q} \sum_{u \in U} \delta_{q_j}^u \quad (6)$$

175 subject to:

$$176 \quad \sum_{q_j \in Q} \delta_{q_j}^u \leq 1, \forall u \in \mathbf{U} \quad (7)$$

$$177 \quad \sum_{v \in \mathbf{V}} \zeta_v^u \geq 1, \forall v \in \mathbf{V} \quad (8)$$

175 Constraint (7) indicates that each UAV u cannot be placed in more than one point at the same
 176 time. Constraint (8) ensures that a GN is at communication range of at least one UAV. The cardinality
 177 of the set Q defines the maximum number of UAVs that can be used for each formed convex hull. In
 178 order to ensure connectivity among UAVs, we have considered using the Algorithm 1, which verifies
 179 if each UAV has a path to the selected destination, which may be used as control station. UAVs are

180 assumed to have two main attributes: serving, when the UAV is used to serve GNs and to connect the
 181 network, and bridging when it is solely being used to connect the serving UAVs.

Algorithm 1 Construction of connected UAV network.

- 1: **Input:** u_{dest} , adjacency matrix
- 2: **Result:** Connected UAV network
- 3: **For each** $u \in \mathbf{U}$
- 4: **IF** u is serving and u is not bridging
- 5: $q^{curr} = q^u$; /* $q^{curr} \in Q$ is the current point toward destination*/
- 6: **Until** not reachable(u, u_{dest})
 - 6.1 Find the closest point $q' \in Q$ to $q^{u_{dest}}$ which is within distance \mathcal{D} from q^{curr}
 - 6.2 **If** q' is not in use
 - 6.2.1 $q^{curr} = q'$
 - 6.2.2 Find $u' \in \mathbf{U}$ which is not serving or bridging
 - 6.2.3 Set: u' to bridging
 - 6.2.4 $q^{u'} = q^{curr}$
 - 6.2.5 Update adjacency matrix

182 4.2.2. Minimizing the degree of dissatisfaction of the required data rate

Consider a set of transmission modes \mathcal{B} comprising the possible bit rates b_i . We denote the transmission modes in use by an UAV and requested by a GN as b_i^u and b_i^v , respectively. We define the degree of dissatisfaction as follows:

$$\gamma^v = \begin{cases} \frac{|b_i^u - b_i^v|}{b_i^v} & \text{if } (b_i^u - b_i^v) < 0 \\ 0 & \text{Otherwise} \end{cases} \quad (9)$$

183 We consider that the use of a b_i depends on the SNR. Usually, GNs experiencing a relatively low
 184 SNR will have their receiver interface tuned to a robust (with lower BER when compared with other
 185 modes under the same channel conditions) transmission mode with lower data rate. On the other
 186 hand, if SNR is relatively high, the receiver may be tuned to a transmission mode which offers higher
 187 data rate. In this work, we try to minimize the maximum dissatisfaction value as follows:

$$\min (\max_{v \in \mathbf{V}} \gamma^v) \quad (10)$$

188 **5. UAV placement based on NSGA-II**

189 In this section we present terminologies used by NSGA-II [18] and the main genetic algorithm
 190 elements (individual or chromosome, fitness, selection, population and genetic operators). The term
 191 solutions and individuals are interchangeably used along the remaining part of this paper.

192 NSGA-II is an elitist MOEA which comprises two main procedures. One is the Pareto ranking
 193 procedure, which aims at sorting the population into different non-domination levels (i_{rank}) in
 194 ascending order. The lowest ranking level contains the best solution. In order to identify solutions of
 195 the first non-dominated front in a population of size N , each solution is compared with every other
 196 solution in the population to find if it is dominated. After all members of the first non-dominated
 197 front are found, they are discounted temporally so that the next non-dominated front could be found
 198 by repeating this first procedure. The other procedure is the diversity preservation which is used to
 199 maintain a good spread of solutions in the obtained set of solutions. Members in each non-dominated
 200 front are assigned a value called *crowding distance* ($i_{distance}$). This value gives an estimate of the density

201 of solutions surrounding a particular solution in the population. A solution with a smaller value of this
 202 distance measure is, in some sense, more crowded by other solutions. The *crowded-comparison operator*,
 203 denoted as \prec_n , is used to distinguish the best solution during selection process. It assumes that every
 204 individual i in the population has two attributes, i_{rank} and $i_{distance}$. The partial order \prec_n is defined as:

$$\begin{aligned} i \prec_n j &\text{ if } (i_{rank} < j_{rank}) \\ \text{or } ((i_{rank} = j_{rank}) \text{ and } (i_{distance} > j_{distance})) \end{aligned} \quad (11)$$

205 That is, between two solutions with differing non-domination ranks, we prefer the solution with
 206 the lower (better) rank. Otherwise, if both solutions belong to the same front, then we prefer the
 207 solution that is located in a less crowded region.

208 Algorithm 2 shows the main loop of NSGA-II proposed by the authors in [18], where the call of
 209 the routines *fast-non-dominated-sort* (R_t) and *crowding-distance-assignment* (\mathcal{F}_i) corresponds to the first
 210 and second procedure described above, respectively. R_t is of size $2N$ formed by combining parent
 211 S_t and offspring Z_t populations. \mathcal{F}_i refers to the i^{th} front or level. The detailed explanation of the
 212 aforementioned procedures is also available in [18]. We describe the main loop of NSGA-II as follows:

Algorithm 2 NSGA-II main loop.

- 1: $R_t = S_t \cup Z_t$
- 2: $\mathcal{F} = \text{fast-non-dominated-sort}(R_t)$
- 3: $S_{t+1} = \emptyset$ **and** $i = 1$
- 4: **Until** $|S_{t+1}| + \mathcal{F}_i \leq N$
 - 4.1. $\text{crowding-distance-assignment}(\mathcal{F}_i)$
 - 4.2. $S_{t+1} = S_{t+1} + \mathcal{F}_i$
 - 4.3. $i = i + 1$
- 5: **Sort**(\mathcal{F}_i, \prec_n)
- 6: $S_{t+1} = S_{t+1} \cup \mathcal{F}_i[1 : (N - |S_{t+1}|)]$
- 7: $Z_{t+1} = \text{make-new-pop}(S_{t+1})$
- 8: $t = t + 1$

213 Step 1. Combine parent and offspring population;
 214 Step 2. $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \dots)$, sort R_t according to non-domination procedure;
 215 Step 3. Initialize an empty set for the parent population $P_{t+1} = \emptyset$ and set a counter i to 1;
 216 Step 4. Until the parent population is filled;

217 4.1. Calculate crowding-distance in \mathcal{F}_i ;
 218 4.2. Include i^{th} non-dominated front in the parent pop;
 219 4.3. Check the next front for inclusion. Best solutions are in \mathcal{F}_1 . If the size of \mathcal{F}_1 is smaller
 220 than N , we choose all the members of the set \mathcal{F}_1 for the new population S_{t+1} . The remaining
 221 members of the population S_{t+1} are chosen from subsequent non-dominated front in the
 222 ascending order of their ranking, ($\mathcal{F}_2, \mathcal{F}_3, \dots$). Say that the set \mathcal{F}_l is the last non-dominated
 223 set beyond which no other set can be accommodated. In general, the count of solutions in
 224 all sets from \mathcal{F}_1 to \mathcal{F}_l would be larger than the population size. In order to choose exactly N
 225 population members, we sort the solutions of the front \mathcal{F}_l using the crowded-comparison
 226 operator (\prec_n) in descending order and choose the best solution needed to fill all population
 227 slots;

228 Step 5. Sort in descending order using \prec_n ;
 229 Step 6. Choose the first $(N - |S_{t+1}|)$ elements of \mathcal{F}_i ;
 230 Step 7. Use selection, crossover and mutation to create a new population Z_{t+1} ;
 231 Step 8. Increment the generation counter.

232 *5.1. Individual*

233 An individual encodes a candidate solution to the problem. Our proposed individual stores the
 234 UAVs positions $q_j^u \in Q$ inside the discretized convex hull area a' for each deployed or serving UAV.
 235 The length of the individual (see Figure 3) represents the number of deployed UAVs or points used in
 236 Q . If it is detected that some GNs are not covered, then the corresponding individual is considered as
 237 invalid, i.e., cannot be used in any step of NSGA-II algorithm. Algorithm 1 ensures that all individuals
 238 are valid during the creation of initial population.

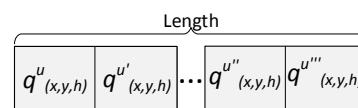


Figure 3. Individual.

239 *5.2. Initial population*

240 The initial population is a set of N randomly generated valid individuals.

241 *5.3. Objective or fitness function*

242 A fitness function decodes the solution represented by a chromosome and let us know how far
 243 we are from the optimal/ideal solution if it is known. In MOEA there will be a fitness function for
 244 each objective space. Equations (6) and (10) compute the fitness for the number of UAVs and degree of
 245 dissatisfaction, respectively. Values scored from both objective functions are used by NSGA-II to set
 246 the i^{th} front.

247 *5.4. Selection*

248 The goal of selection procedure is to pick the best individuals to the next generation. We use
 249 binary tournament selection based on crowded-comparison operator \prec_n as described in Section 5.

250 *5.5. Genetic Operators*

251 Genetic operators are responsible for generating new solutions to populate the next generations.
 252 In the next sections we present how they are performed.

253 *5.5.1. Crossover*

254 Two parents are chosen to exchange their genes with a probability p_c . We rely on 2D representation
 255 of each parent (see Figure 4) to show how crossover is conducted. In this procedure, we find the
 256 midpoint in a' and draw a separation or cutting line to divide the area in two parts in each of the
 257 parents. The cutting line may be drawn diagonally in 45/-45 degrees or horizontally or vertically.
 258 Next, we remove all UAVs that are within $\frac{1}{2}\mathcal{D}$ distance radius along the cutting line within a' . If the
 259 separation line is either diagonally or vertically drawn, the leftmost part of one parent is joined with
 260 the rightmost part of the other to form an offspring. On the other hand, if it is horizontally drawn, the
 261 uppermost and bottommost will be joined instead. There may be some uncovered GNs in the vicinity
 262 of the separation line, since we have removed some UAVs, which makes the resulting offspring an
 263 invalid individual. In this case, we repair the offspring by repeatedly choosing a random uncovered
 264 GN and place an UAV in a closest available point $q_{(x,y,h)}^u$ until all GNs are covered and connectivity
 265 among UAVs is verified by the Algorithm 1. UAVs which are not serving or bridging any GNs are
 266 removed.

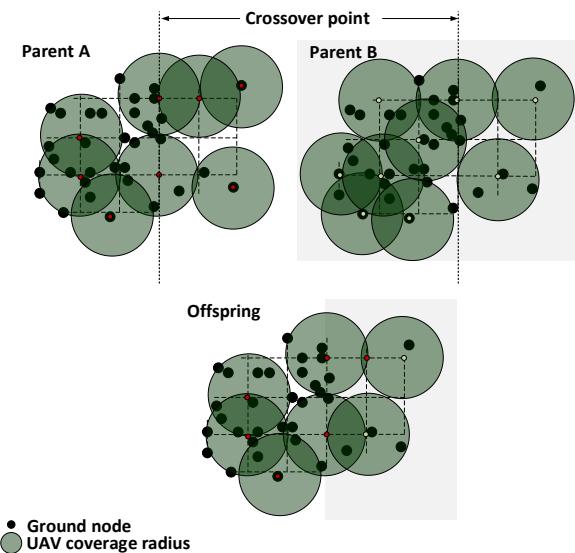
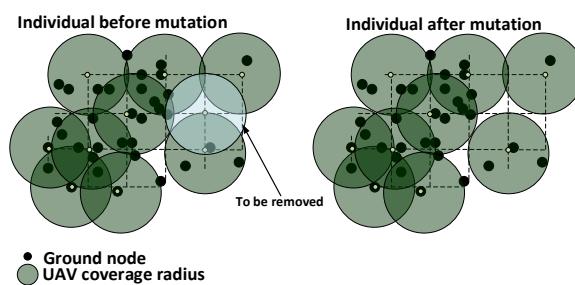


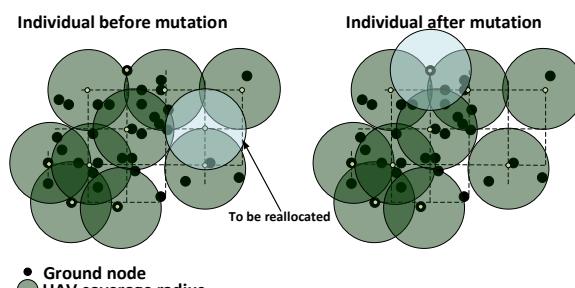
Figure 4. Crossover procedure

267 5.5.2. Mutation

268 For each individual an UAV is randomly chosen based on a probability p_m . Next, either it is
 269 temporally removed from the network or reallocated to a new available placement point with 50%
 270 chance for each procedure to be performed. If the above procedures fail to produce a valid individual,
 271 then the UAV is put back in its initial position. Figures 5a and 5b show the removal and reallocation
 272 procedures, respectively.



(a) Removal of UAV



(b) Reallocation of UAV

Figure 5. UAV removal and reallocation procedures during mutation

273 6. Simulation results

274 In this section, we present simulation results of our implementation of NSGA-II. We have two
 275 objective functions. The first one aims at reducing the cost in term of the number of deployed
 276 UAVs used to service GNs, and the second one is intended to reduce the maximum dissatisfaction
 277 of GNs in term of the required data rate. We have developed the algorithm in C++ programming
 278 language. The setup of the proposed scenarios, the MOEA termination criterion and the dominated
 279 and non-dominated sets are presented in section 6.1, 6.2 and 6.3, respectively.

280 6.1. Scenario setup

281 We considered a network with 120 fixed GNs uniformly distributed in a rectangular area of size
 282 10000 m × 10000 m. We set three different scenarios by varying the value of α . This parameter is used
 283 to discretize the area inside the convex hull formed by the GNs. Differently from our previous work
 284 [11] where UAVs were only allowed to fly at fixed altitude, here an UAV may fly at a given altitude h
 285 uniformly selected from the set $\mathcal{H} = \{40, 80, 120\}$ m. We assume that the transmit power among the
 286 nodes is fixed at 23 dBm. Previously, in section 4, it was stated that potential UAV placement points
 287 will be identified within a convex hull formed by the GNs. The convex hull is found by the Graham
 288 scan algorithm [19] based on the GN deployment positions $q_{(x,y,0)}^v$. Table 1 shows all possible data rates
 289 and their corresponding minimum sensitivities. These values were used to compute the maximum
 290 achievable distance \mathcal{D}_i given by equation 3. Moreover, each data rate in Table 1 is considered to be
 291 using a different transmission mode.

Table 1. Calculation of the maximum achievable distance of each transmission mode based on the minimum sensitivity of the receiver antenna.

Data Rate (Mbits/s)	Min. Sensitivity (dBm)	\mathcal{D}_i (m)
6	-82	1760.93
9	-81	1569.43
12	-79	1246.64
18	-77	990.24
24	-74	701.04
36	-70	442.32
48	-66	279.08
54	-65	248.73

292 Our scenarios considers free space path loss for the signal attenuation. For the set of UAV
 293 candidate position Q , we chose \mathcal{D}_i with the lowest minimum sensitivity and adjust it by using the
 294 parameter α to ensure that two UAVs positioned side by side can communicate with each other. As
 295 already stated, we assume that there is a wireless communication technology between UAVs that is
 296 capable of efficiently relaying all the traffic from the GNs, never causing a bottleneck. The parameters
 297 that are common in different scenario are detailed in Table 2 as follows:

Table 2. Parameters in each scenario.

Parameters	Value
Transmit Power	23 dBm
Antenna model	Omni-directional
Propagation model	Free space
Area \mathcal{A} , $(X_{max} \times Y_{max})$	10000 m × 10000 m
Nr. of GNs	120
c	3×10^8 m/s
f	2.412×10^9 Hz
α	[0.15, 0.30, 0.45]
\mathcal{D}	1760.93 m

298 We have adjusted NSGA-II parameters such as, the probability of crossover and mutation and the
 299 population size so that the algorithm does not prematurely converge or perform excessive number of
 300 computation due to either low values of the probability of crossover or high population size. NSGA-II
 301 parameters are summarized in Table 3.

Table 3. NSGA-II setup parameters.

Parameters	Value
NSGA-II Population Size	80
NSGA-II p_c	0.9
NSGA-II p_m	0.6

302 *6.2. MOEA termination criterion*

303 The MOEA termination adopted in this work is similar to that used in [20], in the sense that
 304 we also maintain an external archive of non-dominated solutions obtained at some predefined steps
 305 at earlier generations, and it is subject to be updated some generations later. However, instead of
 306 computing the ratio of the number of solutions in the archive that are dominated by the new ones of
 307 the current generation and the ratio of the number of solutions that are also present in the new set
 308 of non-dominated solutions, we compute the ratio of new solutions which are not present in both
 309 dominated and non-dominated sets of the archive and we use it to define our stopping criterion. We
 310 use $\epsilon = 0.05$ as cut-off value for the new solutions. However, the choice of the exact cut-off value may
 311 depend on the problem and may require some trial and error. Figure 6 shows the ratio of new solutions
 312 at every tenth generation (i.e., step=10). The ratio was significantly high in the first generation when
 313 the algorithm was evolving and decreased with the generation as new solutions were not frequent.
 314 We also observe that depending on α the NSGA-II takes different number of generation to achieve
 315 the cut-off value. In fact, the value of α affects the cardinality of Q hence increasing or decreasing the
 316 search space, i.e., the higher the cardinality of Q the higher is the number of generations to achieve the
 317 cut-off value. On the other hand, the lower the cardinality of Q the lower is the number of generation
 318 to achieve the cut-off value. These results are shown in Table 4.

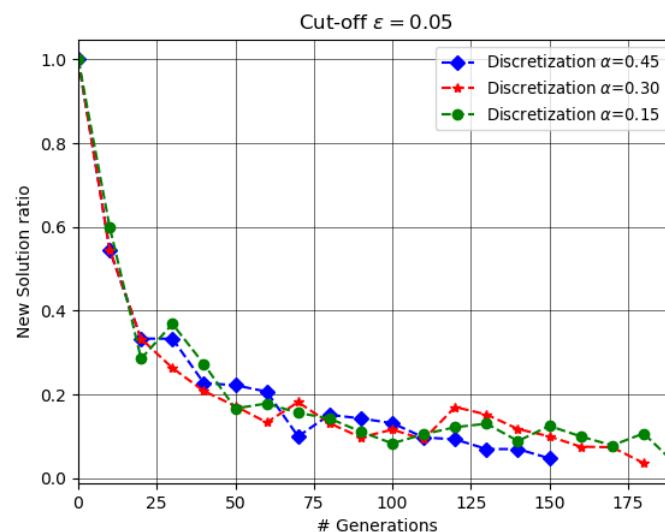


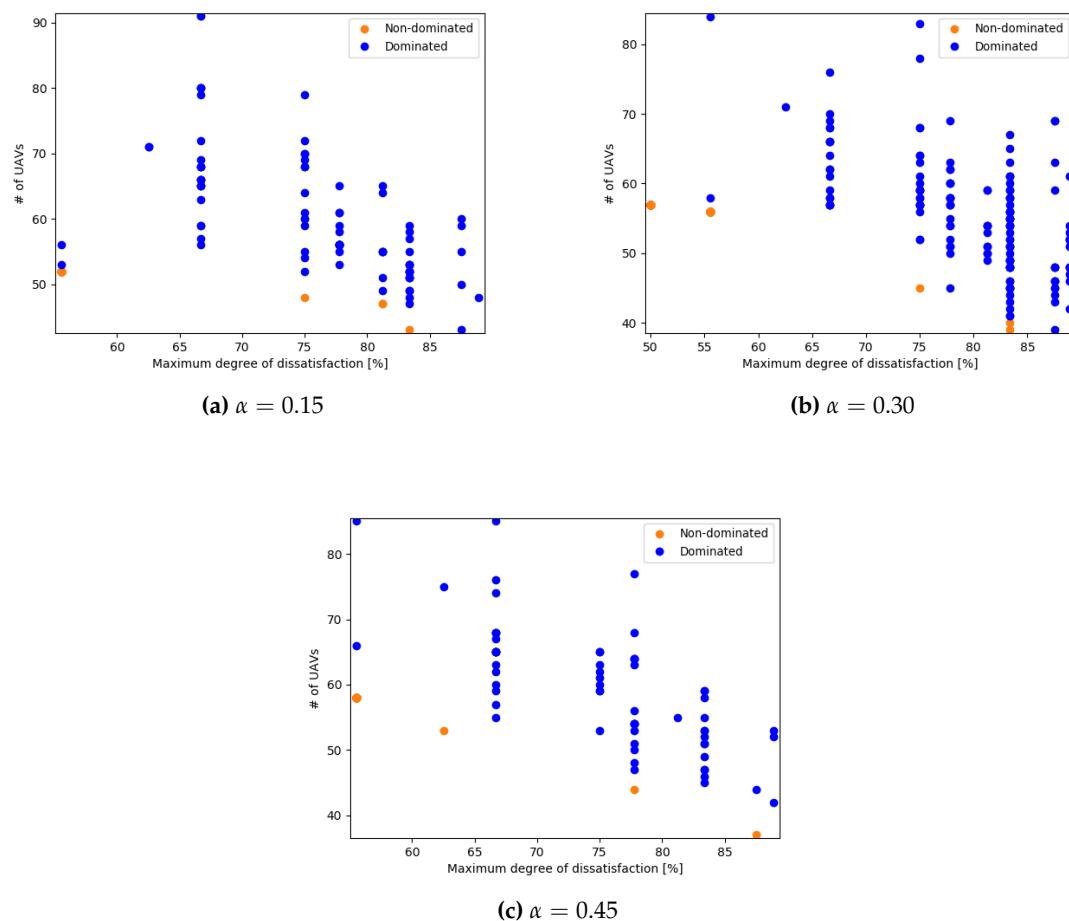
Figure 6. Ratio of new solutions

Table 4. Number of generations achieved for cut-off $\epsilon = 0.05$ for each α .

	$\alpha = 0.15$	$\alpha = 0.30$	$\alpha = 0.45$
# of generations	190	179	151

319 *6.3. Dominated and non-dominated sets*

320 For each value of α , all dominated and non-dominated solutions are presented in Figure 7. From
 321 each Pareto front set, we can clearly see the trade-off between the number of UAVs that are flying in
 322 the area and the degree of dissatisfaction of the GNs in terms of the required data rate, i.e., when few
 323 UAVs are deployed, a high degree of the maximum dissatisfaction is observed. On the other hand,
 324 when the number of UAVs increases, the degree of the maximum dissatisfaction decreases.

**Figure 7.** Trade-off between the number of UAV and the degree of dissatisfaction of the GNs

325 Table 5 presents the maximum and minimum number of UAVs and their respective degrees of
 326 dissatisfaction from the Pareto front set of each value of α presented in Figure 7. These results show
 327 that the proposed algorithm can optimize the UAV placement given the requirement and the positions
 328 of the GNs in the target area.

Table 5. Maximum and minimum nr. of UAVs for each scenario.

	Max. UAVs	Degree. Dissat (%)	Min. UAV	Degree. Dissat (%)
$\alpha = 0.15$	52	55.55	43	83.33
$\alpha = 0.30$	57	50	39	83.33
$\alpha = 0.45$	58	55.55	37	87.50

329 7. Discussion

330 As shown above varying α affects the objective functions, though we have computed the convex
 331 hall to reduce the search space to some extent. However, this parameter may still reduce or increase
 332 the number of candidate points to place UAVs in the target area. The choice of α depends on the
 333 requirement such as the area to be covered, the maximum transmission range, and also the number of
 334 available UAVs to cover the GNs to meet the QoS requirements.

335 The use of NSGA-II as an optimization tool allows us to produce a set of solutions which are
 336 better and spread as observed in our simulations results. It enables us with options to select a solution
 337 according to the requirement of the application or problem at hand. For instance, if it is not acceptable
 338 that any GN communicates beyond 75 % of degree of dissatisfaction and there are no more than 60
 339 available UAVs, then they can easily be configured with solutions that respect these requirements
 340 from our Pareto-optimal (non-dominated) set chosen from Figure 7.

341 The experimental results presented in previous section are specific to the proposed scenarios and
 342 assumptions which were considered in our system model. In a realistic environment, one should take
 343 into account additional constraints such as the effect of interference, GN mobility, number of GNs to
 344 be covered, terrain conditions, etc.

- 345 • *Interference*: Nodes may be positioned within acceptable distance for the required data rate, but
 346 may fail to achieve it due to interference caused by ongoing transmission of their neighboring
 347 nodes.
- 348 • *GN mobility*: Although the mobility is not considered in this work, it is worth to mention that it
 349 would at least demand scheduling of periodic updates and computation of new solutions due to
 350 topology changes. As was previously mentioned, that is a challenging issue, namely because of
 351 the need to minimize temporary connectivity disruption due to UAV position changes.
- 352 • *Number of GNs*: UAVs have a limited capacity to efficiently service a certain number of GNs, if
 353 this capacity is exceed, additional UAVs may be needed.
- 354 • *Terrain conditions/ structure*: UAV may not fly at desired altitude due to the existence of obstacles
 355 (e.g., trees, mountains, buildings, etc.), which may require the addition of more UAVs to maintain
 356 the connectivity among the nodes.

357 Algorithm 1 was used to ensure the connectivity of the network and produce valid solutions. We
 358 use breadth first search (BFS) algorithm to check if there is a path to the destination. If a path is not
 359 found, it adds a new UAV to connect it as explained in Section 4.2.1. This procedure is not optimized,
 360 which may conflict with the objective of minimizing the number of UAVs. However, it may eventually
 361 reduce the degree of dissatisfaction of the GNs.

362 8. Conclusions

363 This paper presents an optimized placement scheme for UAV access points providing network
 364 connectivity to GNs with differentiated data rate requirements. The goal of the proposed algorithm is
 365 to deploy as few as possible connected UAVs to cover and simultaneously satisfy the aforementioned
 366 requirements of the GNs. In order to attain this goal, we have mathematically formulated the problem
 367 and used a MOEA named NSGA-II to run the simulations. In order to NSGA-II to work we proposed
 368 a chromosome structure, crossover scheme and mutation procedure. Simulations were performed
 369 considering Wi-Fi (802.11g) technology, where GNs would request to turn to a given transmission

370 mode within a set of available ones. Simulation results show that the algorithm optimizes the UAV
371 placement given the requirements and positions of the GNs, considering the trade-off between the
372 number of UAVs and quality of the coverage.

373 In future work we will consider additional constraints such as limited inter-UAV link capacity. We
374 will also consider joint topology and routing optimization.

375 **Acknowledgments:** This work was partially supported by Fundação Calouste Gulbenkian and by Portuguese
376 national funds through Fundação para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2013.

377 **Conflicts of Interest:** The authors declare no conflict of interest.

378 Abbreviations

379 The following abbreviations are used in this manuscript:

380	BER	Bit error rate
	BFS	Breadth first search
	GN	Ground node
	GPS	Global positioning system
	IEEE	Institute of electrical and electronics engineer
	MOEA	Multi-objective evolutionary algorithm
	MOP	Multi-objective optimization problem
381	NSGA-II	Non-dominated sorting genetic algorithm II
	QoS	Quality of service
	PS	Pareto set
	RSS	Received signal strength
	SNR	Signal-to-noise-ratio
	UAV	Unmanned aerial vehicles
	UE	User equipment
	Wi-Fi	Wireless fidelity

382 References

- 383 1. K. Dalamagkidis, K. P. Valavanis, and L. A. Piegls, "Current status and future perspectives for unmanned
384 aircraft system operations in the us," *Journal of Intelligent and Robotic Systems*, vol. 52, no. 2, pp. 313–329, 2008.
- 385 2. H. Ullah, S. McClean, P. Nixon, G. Parr, and C. Luo. An optimal uav deployment algorithm for bridging
386 communication. In *ITS Telecommunications (ITST), 2017 15th International Conference on*, pages 1–7. IEEE,
387 2017.
- 388 3. R. W. Beard, T. W. McLain, D. B. Nelson, D. Kingston, and D. Johanson. Decentralized cooperative aerial
389 surveillance using fixed-wing miniature uavs. *Proceedings of the IEEE*, 94(7):1306–1324, 2006.
- 390 4. L. Reynaud and I. Guérin-Lassous. Design of a force-based controlled mobility on aerial vehicles for pest
391 management. *Ad Hoc Networks*, 53:41–52, 2016.
- 392 5. H. Xiang and L. Tian. Development of a low-cost agricultural remote sensing system based on an autonomous
393 unmanned aerial vehicle (uav). *Biosystems engineering*, 108(2):174–190, 2011.
- 394 6. S. Rohde, M. Putzke, and C. Wietfeld. Ad hoc self-healing of ofdma networks using uav-based relays. *Ad
395 Hoc Networks*, 11(7):1893–1906, 2013.
- 396 7. I. Bekmezci, O. K. Sahingoz, and S. Temel, "Flying ad-hoc networks (fanets): A survey," *Ad Hoc Networks*,
397 vol. 11, no. 3, pp. 1254–1270, 2013.
- 398 8. K. Anderson and K. J. Gaston, "Lightweight unmanned aerial vehicles will revolutionize spatial ecology,"
399 *Frontiers in Ecology and the Environment*, vol. 11, no. 3, pp. 138–146, 2013.
- 400 9. L. Gupta, R. Jain, and G. Vaszkun, "Survey of important issues in uav communication networks," *IEEE
401 Communications Surveys & Tutorials*, vol. 18, no. 2, pp. 1123–1152, 2016.
- 402 10. J. Jiang and G. Han, "Routing protocols for unmanned aerial vehicles," *IEEE Communications Magazine*,
403 vol. 56, no. 1, pp. 58–63, 2018.

404 11. S. Sabino and A. Grilo, "Topology control of unmanned aerial vehicle (uav) mesh networks: A multi-objective
405 evolutionary algorithm approach," in *Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks,
406 Systems, and Applications*. ACM, 2018, pp. 45–50.

407 12. S. Morgenthaler, T. Braun, Z. Zhao, T. Staub, and M. Anwander, "Uavnet: A mobile wireless mesh network
408 using unmanned aerial vehicles," in *Globecom Workshops (GC Wkshps), 2012 IEEE*. IEEE, 2012, pp. 1603–1608.

409 13. B. Galkin, J. Kibilda, and L. A. DaSilva, "Deployment of uav-mounted access points according to spatial user
410 locations in two-tier cellular networks," in *Wireless Days (WD), 2016*. IEEE, 2016, pp. 1–6.

411 14. D. Zorbas, L. D. P. Pugliese, T. Razafindralambo, and F. Guerriero. Optimal drone placement and cost-efficient
412 target coverage. *Journal of Network and Computer Applications*, 75:16–31, 2016.

413 15. C. Caillouet and T. Razafindralambo. Efficient deployment of connected unmanned aerial vehicles for
414 optimal target coverage. In *Global Information Infrastructure and Networking Symposium (GIIS), 2017*, pages
415 1–8. IEEE, 2017.

416 16. H. Li and Q. Zhang. Multiobjective optimization problems with complicated pareto sets, moea/d and
417 nsga-ii. *IEEE Transactions on evolutionary computation*, 13(2):284–302, 2009.

418 17. R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. *Information processing
419 letters*, 2(1):18–21, 1973.

420 18. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii.
421 *IEEE transactions on evolutionary computation*, 6(2):182–197, 2002.

422 19. R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. *Information
423 processing letters*, 1(4):132–133, 1972.

424 20. T. Goel and N. Stander, "A study of the convergence characteristics of multiobjective evolutionary
425 algorithms," in *13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference*, 2010, p. 9233.

426 **Sample Availability:** Samples of the compounds are available from the authors.