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Abstract: In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in the military operations1

to prevent pilot losses. Nowadays, the fast technological evolution enables the production of a class2

of cost-effective UAVs which can service a plethora of public and civilian applications, specially3

when configured to work cooperatively to accomplish a task. However, designing a communication4

network among the UAVs is challenging task. In this article, we propose a centralized UAV placement5

strategy, where UAVs are used as flying access points forming a mesh network, providing connectivity6

to ground nodes deployed in a target area. The geographical placement of UAVs is optimized based7

on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed scheme is to cover8

all ground nodes using a minimum number of UAVs, while maximizing the fulfillment of their data9

rate requirements. The UAVs can employ different data rates depending on the channel conditions,10

which are expressed by the Signal-to-Noise-Ratio (SNR). In this work, elitist Non-Dominated Sorting11

Genetic Algorithm II (NSGA-II) is used to find a set of optimal positions to place UAVs, given the12

positions of the ground nodes. We evaluate the trade-off between the number of UAVs used to cover13

the target area and the data rate requirement of the ground nodes. Simulation results show that the14

proposed algorithm can optimize the UAV placement given the requirement and the positions of the15

ground nodes in the geographical area.16

Keywords: Unmanned Aerial Vehicles, Genetic Algorithm, Mesh Networks, Optimization, MOEA,17

NSGA-II18

1. Introduction19

Unmanned Aerial Vehicles (UAVs), also known as drones refer to aircrafts with no human pilot20

on board. These are either programmed and fully autonomous or remotely and fully controlled21

from another location, e.g., ground or space station. There are various types of UAVs (e.g., Fixed22

wing and multi-rotor) and they come in different sizes, raging from small (less than 5 kg) to large23

(over 4332 kg) [1]. Large UAVs are commonly used singly , for instance, in military operation such24

as border surveillance, strike and reconnaissance, whereas small UAVs may be utilized in swarms25

to accomplish a mission. With advancement in electronics and sensor technology, small UAVs are26

becoming massively present in many public and civilian application, such as in search and rescue27

operations [2], aerial surveillance [3], tracking targets[4], agriculture field monitoring [5], network28

extension or compensation [6], leisure, to mention a few.29

The use of swarms of small UAVs has many advantages compared to a single and large UAV [7].30

One of the key advantages is the cost to acquire and maintain small UAVs, which is generally much31

lower than the cost of a large UAV [8]. Swarms of UAVs can automatically reconfigure themselves32

in a case of node failure or link break, and accomplish the designated task. That is not possible with33

a single UAV. Additionally, when network coverage extension is needed, it may be easily achieved34

with swarms of UAVs by positioning additional UAVs in the target area and allow them to operate35
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through other already existing UAVs, unlike single UAV network coverage which is limited by the36

communication range between the infrastructure and the UAV itself.37

Although swarms of UAVs present many advantages, an important aspect to be considered when38

designing an application using multiple UAVs is the communication network, which poses many39

challenging issues as described in [9]. Depending on the purpose of the application at hand, UAVs may40

be semi-stationary and hovering over the area of operations or move around at high speed changing41

their relative positions. In the latter scenario, frequent topology changes are observed, which may42

lead to network partitioning and poor link quality. On the other hand, the commonly used wireless43

ad-hoc network communication protocols or algorithms (e.g., proactive and reactive routing) cannot be44

directly used for UAVs [10]. For instance, since proactive routing protocols need to update the routing45

tables periodically, in the presence of high degree of mobility and topology changes, it increases the46

number of control messages to be exchanged, which degrade the network performance. On the other47

hand, reactive protocols may introduce higher packet delivery delay each time they compute a new48

route to the destination node.49

UAV placement schemes can help to mitigate the aforementioned issues by finding suitable50

positions to place UAVs while maintaining connectivity and improving the network performance.51

The UAV placement optimization schemes can be classified as centralized or distributed. The former52

assumes that the UAV positions are selected by a centralized entity and conveyed to the UAVs by53

means of special purpose long-range low bit rate radio interface. On the other hand, in distributed54

approaches, UAVs work cooperatively to adjust their position based on local interactions to achieve55

optimal coverage. This work extends our previous work [11], where we considered the use of a swarm56

of UAVs as flying access points forming a mesh network among themselves, providing connectivity to57

ground nodes (GNs). Our main goal is to optimize the placement of the UAVs by choosing deployment58

positions for the UAVs in order to provide adequate wireless communication coverage to GNs in a59

target area, while fulfilling their Quality of Service (QoS) requirements.60

This work is more related with centralized placement optimization. It considers the following61

requirements and constraints:62

• Minimization of the number of UAVs needed to service the GN, while ensuring that the QoS63

requirements (here measured as the physical data rate) are properly met.64

• The number of available UAVs is limited and must not be exceeded;65

• The inter-UAV links do not necessarily employ the same technology as GN-UAV links. Inter-UAV66

links are considered in an abstract way, but constrained to a maximum range.67

• It is assumed that the throughput values of the links between UAVs are high enough not to68

constrain end-to-end inter-GN traffic. Only GN-UAV links impose limits to the satisfaction of69

QoS requirements (end-to-end QoS shall be addressed in future work);70

• GN-UAV links are orthogonal. This can be achieved, for example, by assigning different71

frequencies or orthogonal channel codes.72

Given the nature of the problem requirements, we consider using Multi-Objective Evolutionary73

Algorithm (MOEA) techniques to optimize the UAV node placement considering two main objectives,74

namely, to minimize the number of UAVs and the degree of dissatisfaction regarding the required data75

rate.76

The paper is structured as follows. Section 2 presents the related work. In Section 3 the system77

model is presented. Section 4 presents the problem definition and formulation as a Multi-Objective78

Optimization Problem (MOP). Section 5 presents our MOAEA implementation. The simulation results79

are presented in Section 6. Section 7 presents the simulation results discussion and Section 8 concludes80

the paper.81

2. Related Work82

Optimal placement of UAVs has already been studied in the literature whether considering single83

or multi-UAV scenarios. In [2], a single-UAV was proposed for search and rescue application such84
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as earthquake, flood or bomb blast. The goal is to deploy an UAV to a position where it can bridge85

communication between two static nodes on the ground. It is assumed that the UAV hovers the area86

in spiral or ladder search mode sending hello/beacon messages in regular interval. Upon receiving87

such a message, the GNs respond by sending their GPS positions back to the UAV. The UAV stores88

this information and continues hovering in the immediate surrounding to find a position based on the89

received signal strength (RSS) and distance between the UAV and nodes on the ground. Simulation90

results showed that the algorithm provides maximum throughput and low bit error rate (BER) once91

the UAV is fixed at an optimal position. The drawback of this system is that it is only validated for two92

GNs. Therefore, as the number of GN grows, the solution should consider energy constraints during93

the search process and bandwidth constraints when providing network access to GNs.94

The authors in [12] have developed a framework named UAVNet. It is capable to autonomously95

deploy a wireless mesh network to interconnect two end systems using small quadrocopter-based96

UAVs with 802.11s nodes on board. Each UAV would act as access point and provides network access97

for regular IEEE 802.11g wireless devices. There are two positioning modes to place the UAVs between98

the end systems.The first one is the location based positioning mode. The latter uses the submitted99

GPS locations of the end systems and directs the UAV to the exact geographical position between these100

two GPS coordinates. The second one is the signal strength positioning mode. It extends the location101

positioning mode and includes also the received signal strength of the two end systems to calculate a102

more accurate position for the UAV. This takes the quality of the wireless link and other environmental103

factors into account.104

Usually, the process of network densification in cellular networks uses fixed small cells (e.g.,105

picocells and fentocells) to increase the network capacity based on the expected formation of hotspots.106

In places where temporary hotspots are formed, fixed small cells would remain under-utilized once107

the hotspots moved to a different location or disappeared. Authors in [13] proposed small cells108

mounted on UAVs to offload user equipments (UEs) from the microcell infrastructure. The optimum109

placement points of the UAVs are determined using K-means clustering algorithm. In their work, the110

performance metric where measured based on the RSS experienced by the UEs. The simulation results111

have shown that as UAVs are able to position themselves in real-time around actual UE position rather112

than expected UE hotspots, they outperform equivalent small cell deployment.113

In [14], the authors present a model for an optimal placement of UAVs to cover a set of targets, i.e.,114

GNs. They consider two cost metrics, namely, the number of UAV and energy consumption, seeking to115

minimize both metrics. The authors assume that each UAV has a minimum and maximum observation116

altitude. They also assure that the UAV’s energy consumption is related to this altitude, since the117

higher the altitude, the larger the observed area, but also the higher the energy consumption. The118

optimization problem is mathematically solved by defining an integer linear and a mixed non-linear119

optimization model.120

The authors in [15] use the same assumption as in [14] to model an optimized UAV placement and121

formulate it as a multi-objective linear problem. The main difference is that, in [15], the connectivity122

among UAVs is considered as an additional constraint. In [15], the following objectives are to be123

minimized: number of UAVs and the maximum flying altitude. Our work is closer to [15] though124

with some differences. Firstly, we consider using omnidirectional antennas instead of directional.125

Secondly, one of our objectives is to minimize the difference between the assigned and required data126

rate, whereas one of their objectives is to maximize the flying altitude.127

3. System Model128

We consider a wireless network consisting of two kinds of nodes, GNs and UAVs, which are
represented by the sets V and U, respectively. All nodes are assumed to be located in a rectangular area
A with length Xmax and width Ymax. Nodes are equipped with omnidirectional transceivers and a GPS.
Therefore, they know their positions in the aforementioned rectangular area at any time. The position
of a GN v is assumed to be on the ground with coordinates qv

(x,y,0), while the position of an UAV node
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u is represented in the 3D plane as qu
(x,y,h), where h is the flying altitude of u. We assume that the main

factor which affects the service quality offered by an UAV is path loss, as it is assumed that the links
between a GN and its serving UAV are line-of-sight (LOS) links. We employ the free-space propagation
model given by the Friis equation, as follows:

PR = PTGTGR

(
λ

4πd

)2

(1)

where PR is the received power, PT is the transmission power, GT and GR are the transmitter
and receiver antenna gains, respectively. λ = c

f represents the wavelength of the carrier wave, where
c is the speed of light and f is the carrier wave frequency. UAVs are assumed to have the same
operating characteristics, featuring the same transmit power, antenna gains and altitude. GNs can only
communicate with each other through UAVs. The parameter d in Equation (1) represents the distance
between the transmitter and receiver antennas of the nodes. Assuming communication between a GN
and an UAV, d is computed as the Euclidean distance between their transceivers as follows:

d =
√
(xu − xv)2 + (yu − yv)2 + h2

u (2)

The distance d should not be greater than the maximum communication range D. We compute D
based on the receiver sensitivity, denoted as PRSdBm . Considering GT = GR = 1 (0 dBm) in Equation
(1), it yields:

D = 10

PTdBm − PRSdBm − 20 log( f ) + 147.56
20 (m) (3)

An overview of the proposed system is shown in Figure 1.129

UAV

GN (Ground node)

LOS link

Flyin
g altitu

d
e

 (h
)

Control 
station

Figure 1. System model overview.

4. Problem Definition130

Consider the network model presented in Section 3. The goal is to ensure that all GNs are covered131

and that the data rate requirements are met as much as possible when UAVs are used as relay nodes.132

We assume that there is a cost associated with each used UAV. Thus, minimizing the number of UAVs,133

is desirable. On the other hand, GNs may have different data rate requirements. The satisfaction134

of data rate as GN requirements is closely dependent on the channel conditions (e.g., SNR), which135

also depends on the communication distance, which results from the number and placement of the136

serving UAV in the network. We intend to deploy as few connected UAVs as possible in suitable137

locations to enable communication between GNs, while satisfying multiple independent data rate138

requirements. In some instances, the QoS demands are competitive, i.e., one cannot satisfy them139
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simultaneously. This gives rise to the need of finding solutions that try to balance them. This problem140

can be modelled meta-heuristically as a multi-objective optimization problem to find the trade-off141

among non-dominated solutions. In the rest of this section, we define Multi-Objective Optimization142

Problem (MOP) and present the formulation of our UAV placement optimization problem as a MOP.143

4.1. Multi-Objective Optimization Problem (MOP)144

A MOP can be stated as follows [16]:

minimize F(ε) = ( f1(ε), .... fm(ε))

subject to ε ∈ Ω
(4)

Where Ω is the decision (variable) space, <m is the objective space, and F : Ω → <m consist of m145

real-values objective functions. If Ω is a closed and connected region in <m and all the objectives are146

continuous of ε, we call Equation (4) a continuous MOP.147

4.1.1. Domination148

Let k = (k1, ...., km), l = (l1, ...., lm) ∈ <m be two vectors, k is said to dominate l if ki ≤ li for all149

i = 1, ...., m and k 6= l 1.150

4.1.2. Pareto front151

A point ε∗ ∈ Ω is called (Globally) Pareto optimal if there is no ε ∈ Ω such that F(ε) dominates152

F(ε∗). The set of all the Pareto optimal points, denoted by PS, is called the Pareto set. The set of all153

Pareto objective vectors, PF = {F(ε) ∈ <m|ε ∈ PS}, is called the Pareto front.154

4.2. Formulation of UAV Placement Optimization as a MOP155

In this section we formulate the problem in R2 objective space. We seek to minimize the number156

of deployed UAVs and simultaneously minimize the difference between the data rate required by the157

GNs to transmit data and the data rates that results from the MOP solution.158

4.2.1. Minimize the number of UAVs159

We start by identifying a set of potential UAV placement points Q, by finding a sub-area a′ ⊂ A160

which corresponds to the area inside the convex hull (convex envelope) [17] formed by the GNs in A161

as shown in Figure 2. We compute the convex hull to reduce the search space of the UAVs placement162

points in the target area. We intend to cover all GNs in a′. Therefore, we discretize a′ in a grid layout163

according to Equation (5).164

1 This definition of domination is for minimization. All the inequalities should be reversed if the goal is to maximize the
objectives in Equation (4). “Dominate” means “be better than.”
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Ground node
 Cadidate UAV placement point

Y-Axis

X-Axis

Convex hull

Figure 2. Convex hull formed by the GNs.

αD; α ∈ [0, 1] (5)

where α adjusts the distance between two neighboring UAVs. Let qj ∈ Q be the jth potential UAV165

placement point. We define δu
qj

as a binary variable to indicate which points are currently being used166

by an UAV as presented bellow.167

168

δu
qj
=


1 if UAV u is located at qj

0 Otherwise
169

We also define ζu
v as a binary variable to indicate which GNs are being serviced by each deployed170

UAV. It is assumed that a GN will be connected to the closest deployed UAV.171

172

ζu
v =


1 if v is connected to UAV u

0 Otherwise
173

Our objective is to select points in Q such that174

min ∑
qj∈Q

∑
u∈U

δu
qj

(6)

subject to:

∑
qj∈Q

δu
qj
≤ 1, ∀u ∈ U (7)

∑
v∈V

ζu
v ≥ 1, ∀v ∈ V (8)

Constraint (7) indicates that each UAV u cannot be placed in more than one point at the same175

time. Constraint (8) ensures that a GN is at communication range of at least one UAV. The cardinality176

of the set Q defines the maximum number of UAVs that can be used for each formed convex hull. In177

order to ensure connectivity among UAVs, we have considered using the Algorithm 1, which verifies178

if each UAV has a path to the selected destination, which may be used as control station. UAVs are179
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assumed to have two main attributes: serving, when the UAV is used to serve GNs and to connect the180

network, and bridging when it is solely being used to connect the serving UAVs.181

Algorithm 1 Construction of connected UAV network.
1: Input: udest, adjacency matrix
2: Result: Connected UAV network
3: For each u ∈ U
4: IF u is serving and u is not bridging
5: qcurr = qu; /*qcurr ∈ Q is the current point toward destination*/
6: Until not reachable(u,udest)

6.1 Find the closest point q′ ∈ Q to qudest which is whitin distance D from qcurr

6.2 If q′ is not in use

6.2.1 qcurr = q′

6.2.2 Find u′ ∈ U which is not serving or bridging
6.2.3 Set: u′ to bridging
6.2.4 qu′ = qcurr

6.2.5 Update adjacency matrix

4.2.2. Minimizing the degree of dissatisfaction of the required data rate182

Consider a set of transmission modes B comprising the possible bit rates bi. We denote the
transmission modes in use by an UAV and requested by a GN as bu

i and bv
i , respectively. We define the

degree of dissatisfaction as follows:

γv =


|bu

i − bv
i |

bv
i

if (bu
i − bv

i ) < 0

0 Otherwise

(9)

We consider that the use of a bi depends on the SNR. Usually, GNs experiencing a relatively low183

SNR will have their receiver interface tuned to a robust (with lower BER when compared with other184

modes under the same channel conditions) transmission mode with lower data rate. On the other185

hand, if SNR is relatively high, the receiver may be tuned to a transmission mode which offers higher186

data rate. In this work, we try to minimize the maximum dissatisfaction value as follows:187

min (maxv∈V γv) (10)

5. UAV placement based on NSGA-II188

In this section we present terminologies used by NSGA-II [18] and the main genetic algorithm189

elements (individual or chromosome, fitness, selection, population and genetic operators). The term190

solutions and individuals are interchangeably used along the remaining part of this paper.191

NSGA-II is an elitist MOEA which comprises two main procedures. One is the Pareto ranking192

procedure, which aims at sorting the population into different non-domination levels (irank) in193

ascending order. The lowest ranking level contains the best solution. In order to identify solutions of194

the first non-dominated front in a population of size N, each solution is compared with every other195

solution in the population to find if it is dominated. After all members of the first non-dominated196

front are found, they are discounted temporally so that the next non-dominated front could be found197

by repeating this first procedure. The other procedure is the diversity preservation which is used to198

maintain a good spread of solutions in the obtained set of solutions. Members in each non-dominated199

front are assigned a value called crowding distance (idistance). This value gives an estimate of the density200
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of solutions surrounding a particular solution in the population. A solution with a smaller value of this201

distance measure is, in some sense, more crowded by other solutions. The crowded-comparison operator,202

denoted as ≺n, is used to distinguish the best solution during selection process. It assumes that every203

individual i in the population has two attributes, irank and idistance. The partial order ≺n is defined as:204

i ≺n j if (irank < jrank)

or ((irank = jrank) and (idistance > jdistance))
(11)

That is, between two solutions with differing non-domination ranks, we prefer the solution with205

the lower (better) rank. Otherwise, if both solutions belong to the same front, then we prefer the206

solution that is located in a less crowded region.207

Algorithm 2 shows the main loop of NSGA-II proposed by the authors in [18], where the call of208

the routines fast-non-dominated-sort (Rt) and crowding-distance-assignment (Fi) corresponds to the first209

and second procedure described above, respectively. Rt is of size 2N formed by combining parent210

St and offspring Zt populations. Fi refers to the ith front or level. The detailed explanation of the211

aforementioned procedures is also available in [18]. We describe the main loop of NSGA-II as follows:212

Algorithm 2 NSGA-II main loop.
1: Rt = St ∪ Zt
2: F=fast-non-dominated-sort(Rt)
3: St+1 = ∅ and i = 1
4: Until |St+1|+Fi ≤ N

4.1. crowding-distance-assignment(Fi)
4.2. St+1 = St+1 +Fi
4.3. i = i + 1

5: Sort(Fi,≺n)
6: St+1 = St+1 ∪ Fi[1 : (N − |St+1|)]
7: Zt+1=make-new-pop(St+1)
8: t = t + 1

Step 1. Combine parent and offspring population;213

Step 2. F = (F1,F2, ...), sort Rt according to non-domination procedure;214

Step 3. Initialize an empty set for the parent population Pt+1 = ∅ and set a counter i to 1;215

Step 4. Until the parent population is filled;216

4.1. Calculate crowding-distance in Fi;217

4.2. Include ith non-dominated front in the parent pop;218

4.3. Check the next front for inclusion. Best solutions are in F1. If the size of F1 is smaller219

than N, we choose all the members of the set F1 for the new population St+1. The remaining220

members of the population St+1 are chosen from subsequent non-dominated front in the221

ascending order of their ranking, (F2,F3, ...). Say that the set Fl is the last non-dominated222

set beyond which no other set can be accommodated. In general, the count of solutions in223

all sets from F1 to Fl would be larger than the population size. In order to choose exactly N224

population members, we sort the solutions of the front Fl using the crowded-comparison225

operator (≺n) in descending order and choose the best solution needed to fill all population226

slots;227

Step 5. Sort in descending order using ≺n;228

Step 6. Choose the first (N − |St+1|) elements of Fi;229

Step 7. Use selection, crossover and mutation to create a new population Zt+1;230

Step 8. Increment the generation counter.231
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5.1. Individual232

An individual encodes a candidate solution to the problem. Our proposed individual stores the233

UAVs positions qu
j ∈ Q inside the discretized convex hull area a′ for each deployed or serving UAV.234

The length of the individual (see Figure 3) represents the number of deployed UAVs or points used in235

Q. If it is detected that some GNs are not covered, then the corresponding individual is considered as236

invalid, i.e., cannot be used in any step of NSGA-II algorithm. Algorithm 1 ensures that all individuals237

are valid during the creation of initial population.238

qu(x,y,h) qu'(x,y,h)

Length

qu(x,y,h) qu'(x,y,h) qu''(x,y,h) q
u'''

(x,y,h)...

Figure 3. Individual.

5.2. Initial population239

The initial population is a set of N randomly generated valid individuals.240

5.3. Objective or fitness function241

A fitness function decodes the solution represented by a chromosome and let us know how far242

we are from the optimal/ideal solution if it is known. In MOEA there will be a fitness function for243

each objective space. Equations (6) and (10) compute the fitness for the number of UAVs and degree of244

dissatisfaction, respectively. Values scored from both objective functions are used by NSGA-II to set245

the ith front.246

5.4. Selection247

The goal of selection procedure is to pick the best individuals to the next generation. We use248

binary tournament selection based on crowded-comparison operator ≺n as described in Section 5.249

5.5. Genetic Operators250

Genetic operators are responsible for generating new solutions to populate the next generations.251

In the next sections we present how they are performed.252

5.5.1. Crossover253

Two parents are chosen to exchange their genes with a probability pc. We rely on 2D representation254

of each parent (see Figure 4) to show how crossover is conducted. In this procedure, we find the255

midpoint in a′ and draw a separation or cutting line to divide the area in two parts in each of the256

parents. The cutting line may be drawn diagonally in 45/-45 degrees or horizontally or vertically.257

Next, we remove all UAVs that are within 1
2D distance radius along the cutting line within a′. If the258

separation line is either diagonally or vertically drawn, the leftmost part of one parent is joined with259

the rightmost part of the other to form an offspring. On the other hand, if it is horizontally drawn, the260

uppermost and bottommost will be joined instead. There may be some uncovered GNs in the vicinity261

of the separation line, since we have removed some UAVs, which makes the resulting offspring an262

invalid individual. In this case, we repair the offspring by repeatedly choosing a random uncovered263

GN and place an UAV in a closest available point qu
(x,y,h) until all GNs are covered and connectivity264

among UAVs is verified by the Algorithm 1. UAVs which are not serving or bridging any GNs are265

removed.266
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Ground node

Parent A

 UAV coverage radius

Parent B

Offspring

Crossover point

Figure 4. Crossover procedure

5.5.2. Mutation267

For each individual an UAV is randomly chosen based on a probability pm. Next, either it is268

temporally removed from the network or reallocated to a new available placement point with 50%269

chance for each procedure to be performed. If the above procedures fail to produce a valid individual,270

then the UAV is put back in its initial position. Figures 5a and 5b show the removal and reallocation271

procedures, respectively.272

Ground node
 UAV coverage radius

Individual before mutation Individual after mutation

To be removed

(a) Removal of UAV

Ground node
 UAV coverage radius

Individual before mutation Individual after mutation

To be reallocated

(b) Reallocation of UAV

Figure 5. UAV removal and reallocation procedures during mutation
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6. Simulation results273

In this section, we present simulation results of our implementation of NSGA-II. We have two274

objective functions. The first one aims at reducing the cost in term of the number of deployed275

UAVs used to service GNs, and the second one is intended to reduce the maximum dissatisfaction276

of GNs in term of the required data rate. We have developed the algorithm in C++ programming277

language. The setup of the proposed scenarios, the MOEA termination criterion and the dominated278

and non-dominated sets are presented in section 6.1, 6.2 and 6.3, respectively.279

6.1. Scenario setup280

We considered a network with 120 fixed GNs uniformly distributed in a rectangular area of size281

10000 m × 10000 m. We set three different scenarios by varying the value of α. This parameter is used282

to discretize the area inside the convex hull formed by the GNs. Differently from our previous work283

[11] where UAVs were only allowed to fly at fixed altitude, here an UAV may fly at a given altitude h284

uniformly selected from the set H= {40, 80, 120} m. We assume that the transmit power among the285

nodes is fixed at 23 dBm. Previously, in section 4, it was stated that potential UAV placement points286

will be identified within a convex hull formed by the GNs. The convex hull is found by the Graham287

scan algorithm [19] based on the GN deployment positions qv
(x,y,0). Table 1 shows all possible data rates288

and their corresponding minimum sensitivities. These values were used to compute the maximum289

achievable distance Di given by equation 3. Moreover, each data rate in Table 1 is considered to be290

using a different transmission mode.291

Table 1. Calculation of the maximum achievable distance of each transmission mode based on the
minimum sensitivity of the receiver antenna.

Data Rate (Mbits/s) Min. Sensitivity (dBm) Di (m)

6 -82 1760.93
9 -81 1569.43

12 -79 1246.64
18 -77 990.24
24 -74 701.04
36 -70 442.32
48 -66 279.08
54 -65 248.73

Our scenarios considers free space path loss for the signal attenuation. For the set of UAV292

candidate position Q, we chose Di with the lowest minimum sensitivity and adjust it by using the293

parameter α to ensure that two UAVs positioned side by side can communicate with each other. As294

already stated, we assume that there is a wireless communication technology between UAVs that is295

capable of efficiently relaying all the traffic from the GNs, never causing a bottleneck. The parameters296

that are common in different scenario are detailed in Table 2 as follows:297

Table 2. Parameters in each scenario.

Parameters Value

Transmit Power 23 dBm
Antenna model Omni-directional

Propagation model Free space
Area A, (Xmax× Ymax) 10000 m × 10000 m

Nr. of GNs 120
c 3× 108 m/s
f 2.412× 109 Hz
α [0.15, 0.30, 0.45]
D 1760.93 m
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We have adjusted NSGA-II parameters such as, the probability of crossover and mutation and the298

population size so that the algorithm does not prematurely converge or perform excessive number of299

computation due to either low values of the probability of crossover or high population size. NSGA-II300

parameters are summarized in Table 3.301

Table 3. NSGA-II setup parameters.

Parameters Value

NSGA-II Population Size 80
NSGA-II pc 0.9
NSGA-II pm 0.6

6.2. MOEA termination criterion302

The MOEA termination adopted in this work is similar to that used in [20], in the sense that303

we also maintain an external archive of non-dominated solutions obtained at some predefined steps304

at earlier generations, and it is subject to be updated some generations later. However, instead of305

computing the ratio of the number of solutions in the archive that are dominated by the new ones of306

the current generation and the ratio of the number of solutions that are also present in the new set307

of non-dominated solutions, we compute the ratio of new solutions which are not present in both308

dominated and non-dominated sets of the archive and we use it to define our stopping criterion. We309

use ε = 0.05 as cut-off value for the new solutions. However, the choice of the exact cut-off value may310

depend on the problem and may require some trial and error. Figure 6 shows the ratio of new solutions311

at every tenth generation (i.e., step=10). The ratio was significantly high in the first generation when312

the algorithm was evolving and decreased with the generation as new solutions were not frequent.313

We also observe that depending on α the NSGA-II takes different number of generation to achieve314

the cut-off value. In fact, the value of α affects the cardinality of Q hence increasing or decreasing the315

search space, i.e., the higher the cardinality of Q the higher is the number of generations to achieve the316

cut-off value. On the other hand, the lower the cardinality of Q the lower is the number of generation317

to achieve the cut-off value. These results are shown in Table 4.318

Figure 6. Ratio of new solutions
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Table 4. Number od generations achieved for cut-off ε = 0.05 for each α.

α = 0.15 α = 0.30 α = 0.45

# of generations 190 179 151

6.3. Dominated and non-dominated sets319

For each value of α, all dominated and non-dominated solutions are presented in Figure 7. From320

each Pareto front set, we can clearly see the trade-off between the number of UAVs that are flying in321

the area and the degree of dissatisfaction of the GNs in terms of the required data rate, i.e., when few322

UAVs are deployed, a high degree of the maximum dissatisfaction is observed. On the other hand,323

when the number of UAVs increases, the degree of the maximum dissatisfaction decreases.324

(a) α = 0.15 (b) α = 0.30

(c) α = 0.45

Figure 7. Trade-off between the number of UAV and the degree of dissatisfaction of the GNs

Table 5 presents the maximum and minimum number of UAVs and their respective degrees of325

dissatisfaction from the Pareto front set of each value of α presented in Figure 7. These results show326

that the proposed algorithm can optimize the UAV placement given the requirement and the positions327

of the GNs in the target area.328
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Table 5. Maximum and minimum nr. of UAVs for each scenario.

Max. UAVs Degree. Dissat (%) Min. UAV Degree. Dissat (%)

α = 0.15 52 55.55 43 83.33
α = 0.30 57 50 39 83.33
α = 0.45 58 55.55 37 87.50

7. Discussion329

As shown above varying α affects the objective functions, though we have computed the convex330

hall to reduce the search space to some extent. However, this parameter may still reduce or increase331

the number of candidate points to place UAVs in the target area. The choice of α depends on the332

requirement such as the area to be covered, the maximum transmission range, and also the number of333

available UAVs to cover the GNs to meet the QoS requirements.334

The use of NSGA-II as an optimization tool allows us to produce a set of solutions which are335

better and spread as observed in our simulations results. It enables us with options to select a solution336

according to the requirement of the application or problem at hand. For instance, if it is not acceptable337

that any GN communicates beyond 75 % of degree of dissatisfaction and there are no more than 60338

available UAVs , then they can easily be configured with solutions that respect these requirements339

from our Pareto-optimal (non-dominated) set chosen from Figure 7.340

The experimental results presented in previous section are specific to the proposed scenarios and341

assumptions which were considered in our system model. In a realistic environment, one should take342

into account additional constraints such as the effect of interference, GN mobility, number of GNs to343

be covered, terrain conditions, etc.344

• Interference: Nodes may be positioned within acceptable distance for the required data rate, but345

may fail to achieve it due to interference caused by ongoing transmission of their neighboring346

nodes.347

• GN mobility: Although the mobility is not considered in this work, it is worth to mention that it348

would at least demand scheduling of periodic updates and computation of new solutions due to349

topology changes. As was previously mentioned, that is a challenging issue, namely because of350

the need to minimize temporary connectivity disruption due to UAV position changes.351

• Number of GNs: UAVs have a limited capacity to efficiently service a certain number of GNs, if352

this capacity is exceed, additional UAVs may be needed.353

• Terrain conditions/ structure: UAV may not fly at desired altitude due to the existence of obstacles354

(e.g., trees, mountains, buildings, etc.), which may require the addition of more UAVs to maintain355

the connectivity among the nodes.356

Algorithm 1 was used to ensure the connectivity of the network and produce valid solutions. We357

use breadth first search (BFS) algorithm to check if there is a path to the destination. If a path is not358

found, it adds a new UAV to connect it as explained in Section 4.2.1. This procedure is not optimized,359

which may conflict with the objective of minimizing the number of UAVs. However, it may eventually360

reduce the degree of dissatisfaction of the GNs.361

8. Conclusions362

This paper presents an optimized placement scheme for UAV access points providing network363

connectivity to GNs with differentiated data rate requirements. The goal of the proposed algorithm is364

to deploy as few as possible connected UAVs to cover and simultaneously satisfy the aforementioned365

requirements of the GNs. In order to attain this goal, we have mathematically formulated the problem366

and used a MOEA named NSGA-II to run the simulations. In order to NSGA-II to work we proposed367

a chromosome structure, crossover scheme and mutation procedure. Simulations were performed368

considering Wi-Fi (802.11g) technology, where GNs would request to turn to a given transmission369
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mode within a set of available ones. Simulation results show that the algorithm optimizes the UAV370

placement given the requirements and positions of the GNs, considering the trade-off between the371

number of UAVs and quality of the coverage.372

In future work we will consider additional constrains such as limited inter-UAV link capacity. We373

will also consider joint topology and routing optimization.374
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Abbreviations378

The following abbreviations are used in this manuscript:379

380

BER Bit error rate
BFS Breadth first search
GN Ground node
GPS Global positioning system
IEEE Institute of electrical and electronics engineer
MOEA Multi-objective evolutionary algorithm
MOP Multi-objective optimization problem
NSGA-II Non-dominated sorting genetic algorithm II
QoS Quality of service
PS Pareto set
RSS Received signal strength
SNR Signal-to-noise-ratio
UAV Unmanned aerial vehicles
UE User equipment
Wi-Fi Wireless fidelity
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