Preprint
Review

This version is not peer-reviewed.

Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-grained Simulations and Elastic Network Models

A peer-reviewed article of this preprint also exists.

Submitted:

15 October 2018

Posted:

15 October 2018

You are already at the latest version

Abstract
Fluctuations of protein three-dimensional structures and large-scale conformational transitions are crucial for the biological function of proteins and their complexes. Experimental studies of such phenomena remain very challenging and therefore molecular modeling can be a good alternative or a valuable supporting tool for the investigation of large molecular systems and long-time events. In this mini-review, we present two alternative approaches to the coarse-grained (CG) modeling of dynamic properties of protein systems. We discuss two CG representations of polypeptide chains used for Monte Carlo dynamics simulations of protein local dynamics and conformational transitions and, on other hand, highly simplified structure-based Elastic Network Models of protein flexibility. In contrast to classical Molecular Dynamics the modeling strategies discussed here allow quite accurate modeling of much larger systems and longer time dynamic phenomena. We briefly describe the main features of these models and outline some of their applications, including modeling of near-native structure fluctuations, sampling of large regions of the protein conformational space, or possible support for the structure prediction of large proteins and their complexes.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated