

A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs

Andrea Li-Ann Wong,^{1,2#} Xiaoqiang Xiang^{3#}, Pei Shi Ong,⁴ Ee Qin Ying Mitchell,⁴ Nicholas Syn,^{1,2} Ian Wee^{1,2}, Alan Prem Kumar,^{1,5} Wei Peng Yong,^{1,5} Gautam Sethi,⁵ Boon Cher Goh,^{1,2,5*} Paul Chi-Lui Ho,^{4*} Lingzhi Wang^{1,5*}

¹ Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599

² Department of Haematology-Oncology, National University Health System, Singapore 119228

³ School of Pharmacy, Fudan University, Shanghai China 201203

⁴ Department of Pharmacy, National University of Singapore, Singapore 117543

⁵ Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597

#equal contribution

***Corresponding author:**

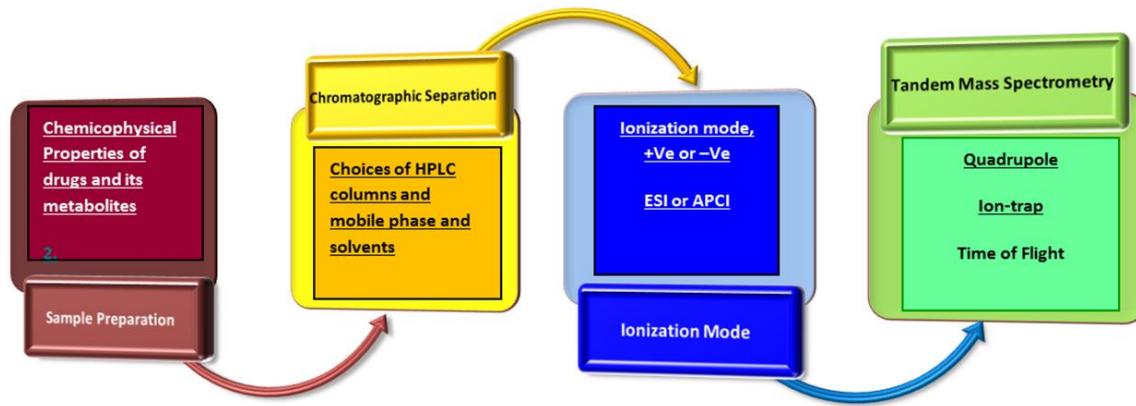
Dr. Lingzhi Wang, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Centre for Translational Medicine Singapore 117599; Tel.: (65) 65168925; (65) 68739664 Email: csiwl@nus.edu.sg

Professor Paul Chi-Lui Ho, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543; Tel: (65) 65162651; Fax: (65) 6777 5545; Email: phahocl@nus.edu.sg

Professor Boon Cher Goh, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Centre for Translational Medicine Singapore 117599; Tel: (65) 6779 5555; Fax: (65) 6777 5545; Email: phcgbc@nus.edu.sg

Abstract:

In the last decade, the tremendous improvement in the sensitivity and also affordability of Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) have revolutionized its application in pharmaceutical analysis, resulting in wide-spread of employing LC-MS/MS for determining pharmaceutical compounds including anticancer drugs in pharmaceutical research and also industries. Currently, LC-MS/MS has been widely used to quantify small molecule oncology drugs in various biological matrices to support preclinical and clinical Pharmacokinetic studies in R & D of oncology drugs. This mini-review article will describe the state-of-the art LC-MS/MS and its application in rapid quantification of small molecule anticancer drugs. In addition, efforts have also been made in this review to address several key aspects in the development of rapid LC-MS/MS methods, including sample preparation, chromatographic separation and matrix effect evaluation.


Keywords: LC-MS/MS, Rapid, Quantification, Oncology Drugs

1. Introduction:

Cancer has a major impact on global health as it is the second leading cause of death. According to World Cancer Report 2014, the number of new cancer cases is expected to rise by about 70% over the next 2 decades.^[1] This is due to the rapidly ageing population, unhealthy lifestyle and environmental pollutants which could consist of carcinogens that can be present in the air, water and soil as well as in food as additives or contaminants. Early diagnosis of cancer allows timely treatment of the disease. Unfortunately, the early detection of cancer is still in its infancy as the progress in developing improved early diagnostics and screening tests has been inadequate. For instance, close to 70% of patients with lung cancer present with locally advanced or metastatic disease at the time of diagnosis. Therefore, surgical resection, the single most consistent and successful option for cure, cannot be performed.^[2] This thereby makes chemotherapy an important treatment option against cancer. Anticancer drugs are characterized by a narrow therapeutic window. Hence, it is important to understand and manage the inter-individual variability of drug exposure through genotyping/phenotyping and therapeutic drug monitoring (TDM) of anticancer drugs in the clinical setting. In pharmaceutical industry, the current challenges in the development of anticancer drugs include the significant time and cost required for the preclinical and clinical testing of the new chemical entities (NCEs), and the low success rates. To overcome these obstacles, the pharmaceutical industry has been increasing its effort to improve the efficiency in the processes of drug discovery and development. This is in line with the objective of reducing the attrition rate of NCEs at later stages of the anticancer drug development pipeline, especially in clinical trials by that stage a large portion of the cost of developing an oncology drug would have been incurred. According to a review article, two major underlying reasons accounting for

drug attrition were identified.^[3] First one is due to poor efficacy which can be overcome by developing more predictive animal models in the preclinical phase. Second crucial factor is owing to poor pharmacokinetics (PK). To overcome the latter hurdle, a high throughput preclinical screening PK approach should be developed and validated. However, the success of PK analysis is highly dependent on the availability of rapid and sensitive bioanalytical assays for quantification of drugs in biological samples. Therefore, rapid and sensitive quantification of anticancer drugs in various biological matrices is urgently needed to discover novel and effective chemotherapeutic agents against various cancers. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) offers superior specificity and sensitivity for compounds without natural chromophores or fluorophores. Hence, this highly sensitive and specific platform has been widely applied in investigating pharmacokinetic properties of novel anticancer drugs in their R & D in preclinical studies as well as in clinical trials. The work-flow of LC-MS/MS proposed for bioanalytical method development is shown in Figure 1. The success for developing rapid and sensitive analytical methods is dependent on appropriate sample preparation, fast chromatographic separation to achieve symmetrical peaks and efficient ionization. .

The purpose of this review is to summarize the rapid LC-MS/MS methods for quantification of oncology drugs or potential anticancer compounds published in PubMed and Web of Science database. In addition, important considerations regarding several crucial aspects in developing rapid LC-MS/MS methods such as sample preparation, chromatographic separation, matrix effect evaluation and internal standard selection will be discussed.

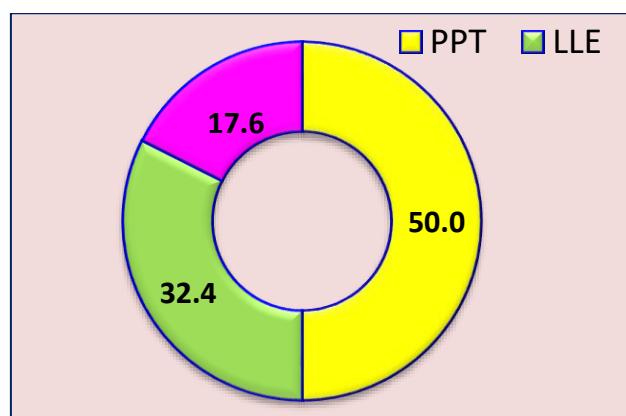
Figure 1. Pipeline for conducting bioanalysis using LC-MS/MS

2. Method of Literature Search

The literature search was conducted using the PubMed and Web of Science database subscribed by the National University of Singapore. The title phrase “rapid” or “fast” AND title or abstract phrase “LC-MS/MS” AND title or Abstract phrase “cancer” were searched. The articles were then screened for its relevance to rapid quantification of anticancer drugs by LC-MS/MS. No date limitations were applied and all articles retrieved are dated up to 30th May 2018. Additional relevant literatures that are cited in the retrieved articles have also been reviewed. The scope of the review is limited to English language articles only.

3. Results and Discussion

Based on the search method described, 72 papers have been found to be relevant to rapid quantification of anticancer drugs using LC-MS/MS methods. All of them have been classified into two categories based on the number of analytes. 49 publications involved in analyzing one drug ($n = 1$) and the rest 23 involved in analysing multiple


drugs/metabolites ($n \geq 2$) were summarized in Table 1^[4-52] and Table 2^[53-75], respectively.

Currently, the unprecedented selectivity and continuously increasing sensitivity of LC-MS/MS have made it a particularly powerful and well established analytical technique to achieve rapid quantitation of anticancer drugs/metabolites in a very small volume of biological samples without tedious chromatographic separation and complicated samples preparation before mass signal detection. Some considerations in developing a LC-MS/MS for rapid quantitation of anticancer drugs will be further elaborated as follows.

3.1. Sample Preparation

Efficient sample preparation to avoid severe signal suppression due to matrix effect is the first key step to achieve high sensitivity and specificity of rapid LC-MS/MS methods. Through sample preparation, we aim to isolate the target drugs/metabolites from the various biological matrices which contain a variety of endogenous components such as proteins, carbohydrates, salts and lipids, etc. In general, there are three sample preparation methods for purifying the biological samples before injection into the MS/MS analyzer for quantitation of the target analyte(s). These sample preparation

procedures can be accomplished through solid-phase extraction (SPE), liquid-liquid extraction (LLE) or protein precipitation (PPT). The results of all the 72 papers reviewed here suggested that PPT accounted for a half of them (50%), followed by LLE (31.9%) and then SPE (18.1%) (Figure 2).

Figure 2. Distribution of sample preparation assays

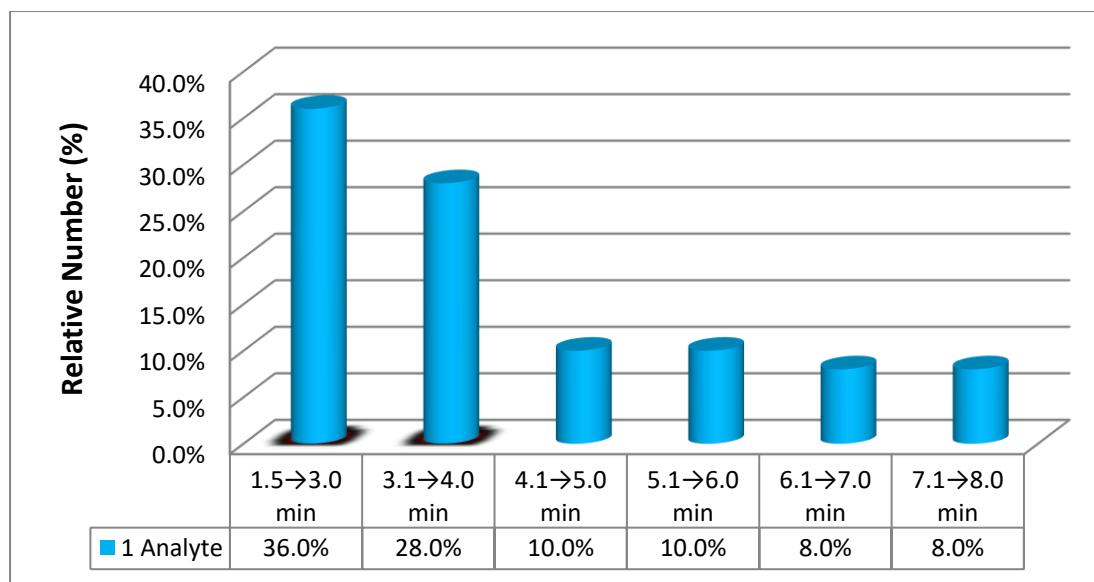
SPE makes use of the affinity of solutes dissolved or suspended in a liquid (known as the mobile phase) to a solid matrix when the sample solution or suspension is passed through a cartridge packed with solid matrix known as the stationary phase. During the process, the undesired endogenous components as well as the exogenous interfering compounds generated during the sample preparation process (e.g. plasticizers released from plastic tubes) have less affinity for the stationary phase. They readily pass through the cartridge leaving the analytes behind in the cartridge. After that, the analytes can be washed out from the cartridge using a different solvent in which the analytes have higher solubility. This process can remove interfering compounds efficiently through optimizing the types of cartridges and solvents used. In addition, it also allows for the enrichment of analytes when very low levels of drugs/metabolites are available to be quantified (e.g. in the situation involving microdosing of anticancer drugs in clinical trials). However, SPE is a labour-intensive

process due to its complex procedure including column conditioning, sample loading, washing, eluting followed by evaporation of the eluent. This might account for only 18.1% of 72 papers in which the SPE was adopted. In addition, SPE cartridges are more expensive than the small volume of solvent used in LLE and PPT. Furthermore, PPT and LLE are more commonly used in quantification of single drug/compound. Only 12.2% of papers cited in Table 1 used SPE for sample preparation, but the usage of LLE is 40.8% which is 2-fold higher than that of SPE. However, SPE was more popularly used in simultaneous quantification of multiple analytes/metabolites than LLE. Based on Table 2, the percentage of SPE was greatly increased to 30.4% with a substantial decline of LLE usage to 13.0%. Nevertheless, application of SPE cartridges is limited when the drug of interest and its metabolites have very different solubility.

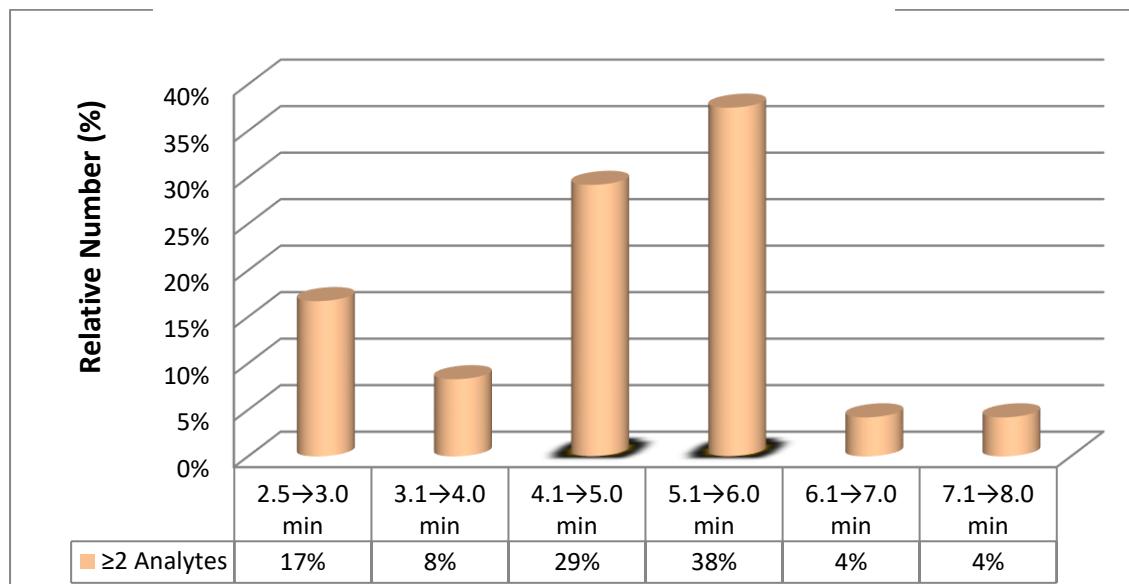
LLE is commonly used in chemistry laboratory and pharmaceutical industry to separate compounds based on their relative solubility in two different immiscible liquids which are usually aqueous or biofluid samples and an organic solvent such as hexane or ethers. It encompasses an extraction of a substance from one liquid into another liquid phase. LLE is especially suited for lipophilic compounds since the analytes transfer readily from the usually aqueous matrix to an organic phase. This procedure is followed by evaporation of the organic phase with OFN (Oxygen Free Nitrogen). Comparatively, LLE is much simpler and relatively inexpensive compared to SPE. However, it is not suitable for hydrophilic drugs/metabolites, unless derivatization is done (which is commonly used for GC-MS). Hence, LLE is usually used for determination of single analyte but not suitable for simultaneous quantification of multiple drugs which have significantly different lipophilicity, resulting in big different recoveries among the analytes.

PPT is the simplest method of sample pre-treatment as it involves only in the addition of a precipitating solvent, subsequent vortex and centrifugation. The more frequently used solvents for PPT include acetonitrile and methanol. The resulting supernatant is then injected into the LC-MS/MS system for analysis. The advantage of PPT is simple, rapid and inexpensive. In addition, it is suitable for both lipophilic and hydrophilic analytes. This is a very unique feature as compared to SPE and LLE that cannot extract hydrophilic compounds. This unique property of PPT is very important for quantitatively analysis of the relatively hydrophilic drugs or for simultaneous determination of lipophilic drugs with both their lipophilic and hydrophilic metabolites (e.g. exemestane and its phase I and phase II metabolites, 17 β -2H-exemestane and 17 β -2H-exemestane-O-glucuronide)^[68]. PPT, however, does not always produce very clean extracts, as many matrix constituents can be extracted simultaneously with the analyte. That can interfere with the MS/MS detection. The interference can be particularly serious when the volume of biological sample is large (> 50 μ L).

In summary, there was a significant difference in application of these three methods. The number of studies using PPT alone was equivalent to the combined number of studies using LLE and SPE. In addition, the percentage of LLE at 31.9% was much greater than that of SPE at 18.1%. Based on Table 2, SPE played an important role for simultaneous quantification of multiple drugs/compounds. Only PPT can be used as the sample preparation procedure for the simultaneous quantitation of parent drugs and their hydrophilic metabolites. Taken together, PPT is the most widely used method for preparation of biological samples. The major reason is that most of the metabolites are much more hydrophilic than their parent drugs, particularly for Phase II metabolites which are not able to be extracted with LLE and SPE. However, PPT can extract both of parent drug and its metabolites at an equally high recovery. Therefore, PPT


becomes the first choice for sample preparation due to the extremely high selectivity of MS/MS analyzer and its increasingly improved sensitivity, making quantification of analytes in a small micro volume of biological samples ($\leq 10 \mu\text{L}$) possible.

3.2. Chromatographic Separation


Chromatography is undoubtedly the most important analytical method for identification and quantitation of drug and its metabolites since 1952 when Archer J.P. Martin and Richard L.M. Synge were jointly awarded the Nobel Prize in Chemistry for their proposed concept of partition chromatography. Based on the concept, various chromatographic techniques and columns have been developed to separate chemicals with only slight differences in partition coefficients between the mobile and stationary phases. Since the 2nd half of the 20th century, liquid chromatography has been widely used in analysis in pharmaceutical industry for bioanalysis of drugs in preclinical studies and clinical trials. A lot of analytical methods have been published on the determination of various drugs with liquid chromatography coupled with UV detector. However, this analytical process used for quantification of analytes in biological samples is quite tedious and time consuming due to the poor selectivity of UV detection, a widely used analytical approach for pharmaceutical analysis in the last century. For analysis using liquid chromatography with UV detection, the sample preparation is usually very challenging for analytical scientists as endogenous compounds and co-administered drugs have to be removed via sample preparation as much as possible to minimize the background interference in the analysis. The chromatographic run time is usually long, ranging from 30 to 60 minutes. This is because the target drugs/metabolites have to be chromatographically separated from

both endogenous and exogenous interfering compounds prior to detection and measurement. In the mid last century, a revolutionary change in pharmaceutical analysis was made when the LC-MS/MS was invented. In contrast to most LC-UV analytical methods, LC-MS/MS is able to discern the analyte(s) from the matrix components with the presence of other endogenous substances and spiked internal standards, even if they are co-eluted due to the superior selectivity of MS/MS. However, the potential problem of harmful ion suppression or enhancement from the co-eluting peaks still has to be overcome in the process of developing and validating the LC-MS/MS methods for rapid determination of anticancer drugs/metabolites. This will be further elaborated in the later part of this review.

The extremely high selectivity and continuously increasing sensitivity of MS/MS lay the foundation for achieving a rapid quantification of analytes in various biological matrices. The run time (RT), the total time necessary for completing a chromatographic separation, reported in the 72 papers has been summarized in Tables 1 and 2. Their distribution was shown in Figures 3 and 4 respectively. Based on Figure 3, the two top percentages of the fastest run times are 36% and 28% for RT 1.5 → 3 minutes and 3.1 → 4 respectively for the determination of 1 analyte. The combined percentage with these 2 RTs is equal to 64%. Hence, it is reasonable to define a run time of \leq 4 minutes as rapid quantification of one drug in biological matrices. On the other hand, a run time of \leq 6 minutes could be defined as rapid quantification of \geq 2 analytes based on Figure 4. This is because as high as 92% of the papers listed in Table 2 reported a RT of \leq 6 minutes for the chromatographic separation of analytes or above. Taken together, the run time to achieve rapid analysis for 1 drug and \geq 2 drugs/metabolites is 4 and 6 minutes, respectively.

Figure 3. Run time (min) for determination of 1 analyte

Figure 4. Run time (min) for determination of ≥ 2 analytes

The longer run time for determination of ≥ 2 drugs/metabolites can be explained by the frequent use of gradient elution mode in order to achieve good separation of drugs from the other drugs or their own metabolites. Based on Table 2, as high as 78.3% of the methods for the determination of ≥ 2 drugs/metabolites adopted gradient elution mode but only 40.8% of the methods for the determination of 1 drug adopted this elution mode. In general, gradient elution typically takes a longer time in the elution of compounds as the column has to be re-equilibrated back to the starting gradient conditions before reliable retention can be achieved in the subsequent runs. However,

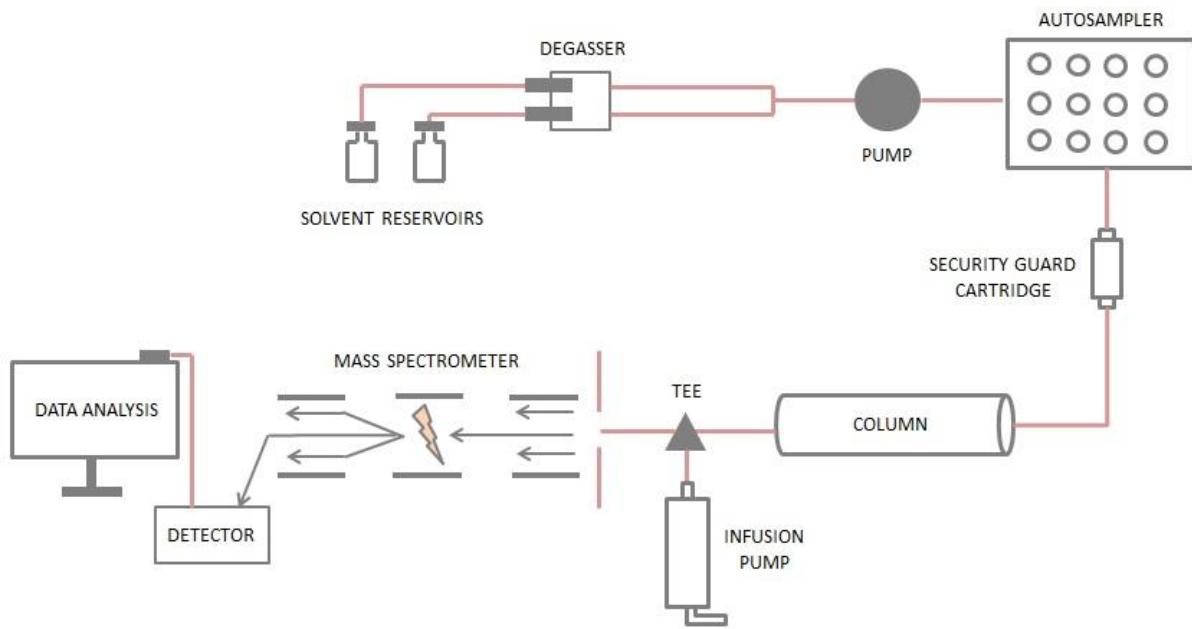
the issue on longer run time of gradient elution mode can be circumvented by the use of ultra-high performance liquid chromatography (UPLC) system. In UPLC, sub-2 μ m particles are used in contrast to the standard particle sizes of 3-5 μ m used in conventional HPLC columns, resulting in a faster chromatographic analysis^[76]. This results in a shorter time for the mobile phase to be re-equilibrated. UPLC coupled with gradient elution works well in determination of multiple analytes. That accounts for 36.6% of all studies as shown in Table 2. In contrast, gradient elution for UPLC is only used in 6.1% of all studies for analyzing one analyte as shown in Table 1. For instance, Bouchet et al. reported a well-validated UPLC-MS/MS method for simultaneous determination of nine tyrosine kinase inhibitors within 4 min of run time only.^[56] Similarly, Merienne et al. achieved high throughput routine determination of 17 tyrosine kinase inhibitors by another UPLC-MS/MS method.^[58] In addition, UPLC separation with gradient mode also improves the peak shapes of the later-eluting compounds and gives chromatographic bands that are more evenly-spaced.^[77]

Contrary to HPLC-UV methods, a baseline chromatographic separation is not needed in LC-MS/MS analysis to elute the target analytes from other interfering compounds during method development, especially for determination of one drug while its metabolites present different mass transitions. However, when a drug and its metabolites are determined simultaneously, the separation between parent drug and its metabolites is usually necessary as the metabolites, particular its phase II conjugated metabolites may have similar fragmentation profiles as the parent drug, leading to inaccurate measurement of the analyte.^[78]

With reference to the papers listed in Table 2, some authors only indicated the stationary phase and mobile phase conditions used without discussion in details on the optimization of the chromatographic separation while the rest reported a multi-

factorial optimization on LC column selection (C8 or C18), mobile phase components and ratios as well as the flow rates of the mobile phase. Generally, all these optimizations were empirical and not much theoretical explanation was given. Nevertheless, a research group in the US proposed a theory-guided efficient strategy to maximize the speed and resolution in rapid gradient LC-MS/MS analysis.^[79] They systematically studied the effect of gradient time, initial and final eluent strength (% organic), and flow rate on the separation resolution and peak capacity in a gradient elution of a mixture of five structurally-related compounds. It was also demonstrated experimentally that increasing flow rate improves both resolution and peak capacity in a rapid gradient method. The results can be well explained mathematically using the linear-solvent-strength (LSS) gradient theory. This further supports our finding that UPLC-coupled gradient elution is an efficient approach for simultaneous quantification of multiple analytes in a short run time (≤ 6 min). In regards to internal standard, as high as 74.3 of the internal standards from 72 papers are structural analogues even though stable isotopically labelled (SIL) analogues of the analytes are preferred in achieving better quantitative results. The main reasons are 1) not commercially available or 2) too expensive.

3.3. Matrix Effects


Although MS/MS has been demonstrated to possess superior selectivity and sensitivity, the signal is often affected significantly by the biological matrix residues. Ion suppression or enhancement, remains an inherent problem in LC-MS/MS method development and could be the result of interference of endogenous substances from

the biological matrices (e.g. human plasma) or exogenous substances during sample preparation (e.g. polymers from PP tubes).^[80] The alteration of ionization efficiency by the presence of co-eluting substances is called “Matrix effects”. These effects are not detectable in the chromatogram but have deleterious impacts on the method’s accuracy and sensitivity. Hence, an assessment of the matrix effects is needed according to the European Medicine Agency (EMA) and USA Food and Drug Administration (FDA) guidelines so as to ensure that precision, selectivity and sensitivity of LC-MS/MS analysis are not compromised.^[81] A series of experiments were conducted to explore the mechanism of matrix effects and the authors concluded that the possible reason was due to the result of competition between non-volatile matrix components and analyte ions for access to the droplet surface for transfer to the gas phase.^[82] Therefore, application of suitable methods for the evaluation of the matrix effects plays an important role in developing and validating a sensitive and robust analytical method for the determination of anticancer drugs/metabolites in biological matrices.

Generally, there are two common methods to assess matrix effects. One is the post-extraction addition method while the other is the post-column infusion method. In 2003, Matuszewski et al published a research paper discussing the strategies for the assessment of matrix effect in quantitative bioanalytical methods based on LC-MS/MS.^[80] The matrix effect during validation of analytical methods in biological fluids may be best examined by comparing the MS/MS response (peak areas or peak heights) of an analyte at any given concentration spiked post-extraction into a biological fluid extract (B), to the MS/MS response (A) of the same analyte present in the “neat” mobile phase. The equation of matrix effect (%) can be expressed as follows:

$$ME (\%) = B/A \times 100 \dots\dots (1)$$

A value of 100% indicates that the responses in the “neat” mobile phase and the plasma extracts were the same and no absolute matrix effect was observed. A value of >100% indicates an ionization enhancement and a value of <100% indicates an ionization suppression. The post-extraction addition technique is a quantitative but static approach that only provides information about matrix effects at the point of elution of the analyte. A more dynamic technique for determining matrix effects is the post-column infusion method.^[82] The post-column infusion system is schematically represented in Figure 5. An infusion pump was used to deliver a constant flow of analyte at a concentration in the range of quantitation into the chromatographic eluent at a point after the column and before the mass spectrometer ionization source.^[83] A sample of extract (without added analyte) was injected under the desired chromatographic conditions and the response from the infused analyte recorded. The post-infusion technique enables the influence of the matrix on analyte response to be investigated over the entire chromatographic run. Nevertheless, post-infusion approach is a qualitative or semi-quantitative method. It can be used to evaluate the influence of different sample extraction methods, chromatographic conditions such as mobile phase components and analytical columns on matrix effects.

Figure 5. The schematic of the post-column infusion system for evaluation of matrix effects

Due to the critical influence of matrix effects on mass analyzers, matrix effects have to be evaluated systematically during the development of well-validated and rapid LC-MS/MS methods. Among the 72 papers of rapid analytical LC-MS/MS methods for determination of anticancer drug and their metabolites in Table 1 and Table 2, 11 papers did not mention matrix effects. Two of them were published in 2003 when the impact of matrix effect on the LC-MS/MS methods had not been fully recognized by the analytical scientists. Nevertheless, majority of the studies incorporated in our review (61 out of 72, 84.7%) have reported the matrix effects of the analytes in various biological samples during the method development and validation. In addition, the matrix effects in all of these 61 papers were evaluated using the post-extraction addition approach. The reasonable explanation is that post-extraction addition technique is a quantitative approach for evaluation of matrix effects on the analytes. Based on the quantitative analysis of matrix effects, effective solutions to overcome the potential matrix effects or at least minimize the influence of the matrix effects on

sensitivity and accuracy of the LC-MS/MS methods are needed during method development.

The matrix effect is a common phenomenon in the quantitation of drugs and metabolites in biological matrices using LC-MS/MS. Since the matrix effect could be potentially caused by the influence of co-eluting non-volatile matrix components on the ionization efficiency of the analytes, it can be minimized, avoided or compensated mainly through optimization of sample preparation, chromatographic separation and suitable internal standard, respectively. In theory, SPE is an ideal sample preparation assay in which matrix effect can be eliminated efficiently because the analytes can be efficiently isolated from the matrix via suitable SPE columns and elution solutions. However, it is a very tedious and time consuming process. Comparatively, LLE is a simpler and faster procedure for the preparation of biological samples but the purified samples may still contain some lipophilic endogenous compounds which could potentially affect the quantification of analytes. In such a case, chromatographic separation can be optimized to minimize the resulting matrix effects due to inherent limitation of LLE. As a widely used bio-sample preparation assay, PPT is the most convenient approach but the purified samples may also be much dirtier than the samples extracted by the SPE or LLE techniques. However, an important fact to note is that increasingly improved sensitivity of LC-MS/MS provides us a good chance to use a minute volume of biological samples, e.g. 5 μ L of plasma or serum for analysis. In this scenario, the residue of impurities derived from PPT is negligible in most cases. This is the reason why PPT was adopted as sample preparation for rapid determination of anticancer drugs/metabolites using LC-MS/MS platform in majority of the 72 papers reviewed.

4. Conclusions and Perspectives

Rapid liquid chromatography-tandem mass spectrometry plays an important role in both the preclinical development and clinical trials. Based on the papers published in English, the assay run times of rapid LC-MS/MS methods for a single analyte and multiple analytes were identified as 4 and 6 minutes respectively. With the development of UPLC systems and the availability of more isotopically-labelled internal standards, assay run times for rapid analysis of anticancer drugs/metabolites could be further reduced in order to accelerate drug development.

In the preparation of biological samples, PPT is widely applied as it is the simplest sample preparation approach and can be used to quantify both hydrophilic and lipophilic compounds simultaneously, thereby making it the most popular method compared to SPE and LLE. Structural analogues are mostly used as internal standards, given the consideration in costs and availability. In the future, great effort should be done to establish the principles in selection of appropriate internal standards which are chosen mainly based on trial and error approach.

Currently, LC-MS/MS has been widely used to investigate pharmacokinetics of oncology drugs to support early phase clinical trials and determine potential drug-drug interactions. The advantage in use of LC-MS/MS is its super sensitivity and specificity which makes it as a powerful tool for clinical therapeutic monitoring of oncology drugs.

Funding: This research is supported by the National Research Foundation Singapore and the Singapore Ministry of Education under Its Research Centres of Excellence Initiative, Clinician Scientist Award of NMRC for Translational Pipeline: Developing novel therapeutics for cancer treatment, including the role of histone deacetylase inhibitor.

References:

1. Zhang H, Lin Y, Li K, Liang J, Xiao X, Cai J, et al. *Hum Gene Ther.* 2016; 27(9):700-11. Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections.
2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. *Mayo Clin Proc.* 2008; 83(5):584-94.
3. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? *Nat Rev Drug Discov.* 2004; 3(8):711-5.
4. Das S, Dubey R, Roychowdhury S, Ghosh M, Sinha BN, Kumar Pradhan K, Bal T, Muthukrishnan V, Seijas JA, Pujarid A. A rapid and sensitive determination of hypoxic radiosensitizer agent nimorazole in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. *Biomed Chromatogr.* 2015; 29(10):1575-80.
5. Sharma S, Dubey NK, Dasgupta AK, Sahu M, Benjamin B, Mullangi R, Srinivas NR. Highly sensitive method for the determination of JI-101, a multi-kinase inhibitor in human plasma and urine by LC-MS/MS-ESI: method validation and application to a clinical pharmacokinetic study. *Biomed Chromatogr.* 2012; 26(2):232-8.
6. Estella-Hermoso de Mendoza A, Imbuluzqueta I, Campanero MA, Gonzalez D, Vilas-Zornoza A, Agirre X, Lana H, Abizanda G, Prosper F, Blanco-Prieto MJ. Development and validation of ultra high performance liquid chromatography-mass spectrometry method for LBH589 in mouse plasma and tissues. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2011; 879(30):3490-6.
7. Qian J, Wang Y, Chang J, Zhang J, Wang J, Hu X. Rapid and sensitive determination of vinorelbine in human plasma by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. *Chromatogr B Analyt Technol Biomed Life Sci.* 2011; 879(9-10):662-8.
8. Ramakrishna NV1, Koteshwara M, Vishwottam KN, Puran S, Manoj S, Santosh M. Simple, sensitive and rapid LC-MS/MS method for the quantitation of cerivastatin in human plasma--application to pharmacokinetic studies. *J Pharm Biomed Anal.* 2004; 36(3):505-15.
9. Xiong S, Deng Z, Sun P, Mu Y, Xue M. Development and Validation of a Rapid and Sensitive LC-MS/MS Method for the Pharmacokinetic Study of Osimertinib in Rats. *J AOAC Int.* 2017; 100(6):1771-1775.
10. Jangid AG, Pudage AM, Joshi SS, Pabrekar PN, Tale RH, Vaidya VV. A simple, selective and rapid validated method for estimation of anastrazole in human plasma by liquid chromatography-tandem mass spectrometry and its application to bioequivalence study. *Biomed Chromatogr.* 2010; 24(7):727-31.
11. Chen JY, Wang XD, Zhong GP, Qin XL, Li JL, Huang ZY, Zhu X, Li MF, Huang M. Development and validation of a highly rapid and sensitive LC-MS/MS method for determination of SZ-685C, an investigational marine anticancer agent, in rat plasma--application to a pharmacokinetic study in rats. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2011; 879(22):2127-34.
12. Jiang H, Cannon MJ, Banach M, Pinchuk AN, Ton GN, Scheuerell C, Longino MA, Weichert JP, Tollefson R, Clarke WR, Ji QC, Jiang X. Quantification of CLR1401, a novel alkylphosphocholine anticancer agent, in rat plasma by hydrophilic interaction liquid chromatography-tandem mass spectrometric detection. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2010; 878(19):1513-8.

13. Reinhardt S, Zhao M, Mnatsakanyan A, Xu L, Ricklis RM, Chen A, Karp JE, Rudek MA. A rapid and sensitive method for determination of veliparib (ABT-888), in human plasma, bone marrow cells and supernatant by using LC/MS/MS. *J Pharm Biomed Anal.* 2010; 52(1):122-8.
14. Wang LZ, Goh BC, Grigg ME, Lee SC, Khoo YM, Lee HS. A rapid and sensitive liquid chromatography/tandem mass spectrometry method for determination of docetaxel in human plasma. *Rapid Commun Mass Spectrom.* 2003; 17(14):1548-52.
15. Xu W, Deng Z, Guo H, Ling P. A rapid and sensitive determination of aucubin in rat plasma by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. *Biomed Chromatogr.* 2012; 26(9):1066-70.
16. Wang LZ, Ong RY, Chin TM, Thuya WL, Wan SC, Wong AL, Chan SY, Ho PC, Goh BC. Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography-tandem mass spectrometry. *J Pharm Biomed Anal.* 2012; 61:86-92.
17. Minkin P, Zhao M, Chen Z, Ouwerkerk J, Gelderblom H, Baker SD. Quantification of sunitinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2008; 874(1-2):84-8.
18. Corona G, Casetta B, Sandron S, Vaccher E, Toffoli G. Rapid and sensitive analysis of vincristine in human plasma using on-line extraction combined with liquid chromatography/tandem mass spectrometry. *Rapid Commun Mass Spectrom.* 2008; 22(4):519-25.
19. Sumsullah Khan, Ateeq Ahmad and Imran Ahmad. A sensitive and rapid liquid chromatography tandem mass spectrometry method for quantitative determination of 7-ethyl-10-hydroxycamptothecin (SN-38) in human plasma containing liposome-based SN-38 (LE-SN38). *Biomed. Chromatogr.* 2003; 17: 493-9.
20. Corona G, Casetta B, Sandron S, Vaccher E, Toffoli G. Rapid and sensitive analysis of vincristine in human plasma using on-line extraction combined with liquid chromatography/tandem mass spectrometry. *Rapid Commun Mass Spectrom.* 2008; 22(4):519-25.
21. Zhao M, Rudek MA, Mnatsakanyan A, Hartke C, Pili R, Baker SD. A liquid chromatography/tandem mass spectrometry assay to quantitate MS-275 in human plasma. *J Pharm Biomed Anal.* 2007; 43(2):784-7.
22. Ramalingam P, Ko YT. Validated LC-MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies. *J Pharm Biomed Anal.* 2016; 119:71-5.
23. Bai F, Johnson J, Wang F, Yang L, Broniscer A, Stewart CF. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). *J Chromatogr B Analyt Technol Biomed Life Sci.* 2011; 879(25):2561-6.
24. Qiu F, Gu Y, Wang T, Gao Y, Li X, Gao X, Cheng S. Quantification and pharmacokinetics of crizotinib in rats by liquid chromatography-tandem mass spectrometry. *Biomed Chromatogr.* 2016; 30(6):962-8.
25. Su Q, Li J, Ji X, Li J, Zhou T, Lu W, Li L. An LC-MS/MS method for the quantitation of cabozantinib in rat plasma: application to a pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2015; 985:119-23.
26. Qiu F, Zhao X, Lu X, Wang M. and Gong M. HPLC-ESI-MS/MS validation and pharmacokinetics of kalopanaxsaponin A in rats. *RSC Adv.*; 2015, (5):7260-6.

27. Tu X, Lu Y, Zhong D, Zhang Y, Chen X. A sensitive LC-MS/MS method for quantifying clofarabine triphosphate concentrations in human peripheral blood mononuclear cells. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2014; 964:202-7.

28. Li P, Albrecht BJ, Yan X, Gao M, Weng HR, Bartlett MG. A rapid analytical method for the quantification of paclitaxel in rat plasma and brain tissue by high-performance liquid chromatography and tandem mass spectrometry. *Rapid Commun Mass Spectrom.* 2013; 27(19):2127-34.

29. Ramagiri S, Ma F, Kosanam H, Wang X, Patil R, Miller DD, Geisert E, Yates CR. Fast and sensitive liquid chromatography/electrospray mass spectrometry method to study ocular penetration of EDL-155, a novel antitumor agent for retinoblastoma in rats. *J Mass Spectrom.* 2009; 44(5):786-93.

30. Qian J, Wang Y, Cao J, Li J. Determination of henatinib in human plasma and urine by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. *J Pharm Biomed Anal.* 2013; 80:173-9.

31. Heudi O, Vogel D, Lau YY, Picard F, Kretz O. Liquid chromatography tandem mass spectrometry method for the quantitative analysis of ceritinib in human plasma and its application to pharmacokinetic studies. *Anal Bioanal Chem.* 2014; 406(28):7389-96.

32. Gao Y, Sun Q, Liu D, Ma B, Zhao H, Fang Z, Wang H, Lou H. A sensitive LC-MS/MS method to quantify methylergonovine in human plasma and its application to a pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2016; 1011:62-8.

33. Platova, A. I.; Miroshnichenko, I. I.; Ptitsina, S. N.; et al. Rapid and Sensitive LC-MS/MS Assay for Quantitation of Letrozole Using Solid-Phase Extraction from Human Blood Plasma and Its Application to Pharmacokinetic Studies. *Pharmaceutical Chemistry Journal.* 2014; 48(4):292-7.

34. Gao Y, Xu J, Xu J, Huang Y, Shen Y, Liu Z. A rapid and sensitive LC-MS/MS assay for the quantitation of deacetyl mycoepoxydiene in rat plasma with application to preclinical pharmacokinetics studies. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2012; 880(1):1-5.

35. Jain L, Gardner ER, Venitz J, Dahut W, Figg WD. Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. *J Pharm Biomed Anal.* 2008; 46(2):362-7.

36. Zhang Q, Sun J, Lu T, Zhang J, Wu C, Li L, He Z, Zhao Y, Liu X. A rapid and sensitive LC-MS/MS method for evaluation of the absolute oral bioavailability of a novel c-Met tyrosine kinase inhibitor QBH-196 in rats. *Biomed Chromatogr.* 2015; 29(11):1650-6.

37. Lee JI, Nguyen VT, Chen ML, Adamson PC. A rapid, sensitive and selective liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry method for determination of fenretinide (4-HPR) in plasma. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2008; 862(1-2):64-71.

38. Pernice T, Bishop AG, Guillen MJ, Cuevas C, Aviles P. Development of a liquid chromatography/tandem mass spectrometry assay for the quantification of PM01183 (lurbinectedin), a novel antineoplastic agent, in mouse, rat, dog, Cynomolgus monkey and mini-pig plasma. *J Pharm Biomed Anal.* 2016; 123:37-41.

39. Cai X, Zhong B, Su B, Xu S, Guo B. Development and validation of a rapid LC-MS/MS method for the determination of JCC76, a novel antitumor agent for breast

cancer, in rat plasma and its application to a pharmacokinetics study. *Biomed Chromatogr.* 2012; 26(9):1118-24.

40. Seo JH, Park JS, Jo MH, Park MS, Ryu JH, Cho YW, Shim WS, Noh GJ, Lee KT. Rapid and sensitive LC-MS/MS method for determination of megestrol acetate in human plasma: application to a human pharmacokinetic study. *Biomed Chromatogr.* 2013; 27(4):409-15.

41. Liu Q, Wang J, Yang L, Jia Y, Kong L. A rapid and sensitive LC-MS/MS assay for the determination of berbamine in rat plasma with application to preclinical pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2013; 929:70-5.

42. Yan K, Wang X, Jia Y, Chu Y, Guan X, Ma X, Li W, Pan G, Zhou S, Sun H, Liu C. Quantitative determination of periplocyarin in rat plasma and tissue by LC-MS/MS: application to pharmacokinetic and tissue distribution study. *Biomed Chromatogr.* 2016; 30(8):1195-201.

43. Li H, Li W, Yu M, Jiang L. LC-MS/MS determination of 1-O-acetylbritannilactone in rat plasma and its application to a preclinical pharmacokinetic study. *Biomed Chromatogr.* 2016; 30(3):419-25.

44. Bandu R, Ahn HS, Lee JW, Kim YW, Choi SH, Kim HJ, Kim KP. Distribution study of cisplatin in rat kidney and liver cancer tissues by using liquid chromatography electrospray ionization tandem mass spectrometry. *J Mass Spectrom.* 2015; 50(6):844-53.

45. Ryu HM, Jeong YS, Yim CS, Lee JH, Chung SJ. Quantification of EC-18, a synthetic monoacetyldiglyceride (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol), in rat and mouse plasma by liquid-chromatography/tandem mass spectrometry. *J Pharm Biomed Anal.* 2017; 137:155-162.

46. de Krou S, Rosing H, Nuijen B, Schellens JH, Beijnen JH. Fast and Adequate Liquid Chromatography-Tandem Mass Spectrometric Determination of Z-endoxifen Serum Levels for Therapeutic Drug Monitoring. *Ther Drug Monit.* 2017; 39(2):132-137.

47. Anders NM, Wanjiku TM, He P, Azad NS, Rudek MA. A robust and rapid liquid chromatography tandem mass spectrometric method for the quantitative analysis of 5-azacytidine. *Biomed Chromatogr.* 2016; 30(3):494-6.

48. de Brujin P, Moghaddam-Helmantel IM, de Jonge MJ, Meyer T, Lam MH, Verweij J, Wiemer EA, Loos WJ. Validated bioanalytical method for the quantification of RGB-286638, a novel multi-targeted protein kinase inhibitor, in human plasma and urine by liquid chromatography/tandem triple-quadrupole mass spectrometry. *J Pharm Biomed Anal.* 2009;50(5):977-82.

49. Gorman GS, Coward LU, Freeman L, Noker PE, Beattie CW, Jia L. A novel and rapid LC/MS/MS assay for bioanalysis of Azurin p28 in serum and its pharmacokinetics in mice. *J Pharm Biomed Anal.* 2010; 53(4):991-6.

50. Coward L, Gorman G, Noker P, Kerstner-Wood C, Pellecchia M, Reed JC, Jia L. Quantitative determination of apogossypol, a pro-apoptotic analog of gossypol, in mouse plasma using LC/MS/MS. *J Pharm Biomed Anal.* 2006; 42(5):581-6.

51. Rodin I, Braun A, Stavrianidi A, Shpigu O. A validated LC-MS/MS method for rapid determination of methotrexate in human saliva and its application to an excretion evaluation study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2013; 937:1-6.

52. Voggu RR, Alagandula R, Zhou X, Su B, Zhong B, Guo B. A rapid LC-MS/MS method for quantification of CSUOH0901, a novel antitumor agent, in rat plasma. *Biomed Chromatogr.* 2015; 29(5):797-802.

53. Giri KK, Suresh PS, Saim SM, Zainuddin M, Bhamidipati RK, Dewang P, Hallur MS, Rajagopal S, Rajagopal S, Mullangi R. Validation of an LC-MS/MS method for simultaneous detection of four HDAC inhibitors - belinostat, panobinostat, rocilinostat and vorinostat in mouse plasma and its application to a mouse pharmacokinetic study. *Biomed Chromatogr*. 2017; 31(7):1-12.

54. Cui C, Hu P, Jiang J, Kong F, Luo H, Zhao Q. An UPLC-MS/MS method to determine CT-707 and its two metabolites in plasma of ALK-positive advanced non-small cell lung cancer patients. *J Pharm Biomed Anal*. 2018;153:1-8.

55. Wang LZ, Lim MY, Chin TM, Thuya WL, Nye PL, Wong A, Chan SY, Goh BC, Ho PC. Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography-tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2011; 879(22):2155-61.

56. Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N, Titier K, Molimard M. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. *Clin Chim Acta*. 2011; 412(11-12):1060-7.

57. Guo P, Wang X, Liu L, Belinsky MG, Kruh GD, Gallo JM. Determination of methotrexate and its major metabolite 7-hydroxymethotrexate in mouse plasma and brain tissue by liquid chromatography-tandem mass spectrometry. *J Pharm Biomed Anal*. 2007; 43(5):1789-95.

58. Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS. *J Pharm Biomed Anal*. 2018; 150:112-120.

59. Xie Y, Shao N, Jin Y, Zhang L, Jiang H, Xiong N, Su F, Xu H. Determination of non-liposomal and liposomal doxorubicin in plasma by LC-MS/MS coupled with an effective solid phase extraction: In comparison with ultrafiltration technique and application to a pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2018; 1072:149-160.

60. Rousset M, Titier K, Bouchet S, Dutriaux C, Pham-Ledard A, Prey S, Canal-Raffin M6, Molimard M. An UPLC-MS/MS method for the quantification of BRAF inhibitors (vemurafenib, dabrafenib) and MEK inhibitors (cobimetinib, trametinib, binimetinib) in human plasma. Application to treated melanoma patients. *Clin Chim Acta*. 2017;470:8-13.

61. Shu C, Zeng T, Gao S, Xia T, Huang L, Zhang F, Chen W. LC-MS/MS method for simultaneous determination of thalidomide, lenalidomide, cyclophosphamide, bortezomib, dexamethasone and adriamycin in serum of multiple myeloma patients. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2016; 1028:111-119.

62. Jiamboonsri P, Pithayanukul P, Bavovada R, Gao S, Hu M. A validated liquid chromatography-tandem mass spectrometry method for the determination of methyl gallate and pentagalloyl glucopyranose: application to pharmacokinetic studies. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2015; 986-987:12-7.

63. Lin L, Gao Z, Chen X, Zhong D. Development and validation of a sensitive LC-MS/MS assay for the simultaneous quantification of allitininib and its two metabolites in human plasma. *J Pharm Biomed Anal*. 2013; 86:49-55.

64. Hayashi H, Kita Y, Iihara H, Yanase K, Ohno Y, Hirose C, Yamada M, Todoroki K, Kitaichi K, Minatoguchi S, Itoh Y, Sugiyama T. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer. *Biomed Chromatogr*. 2016; 30(7):1150-4.

65. Ekhart C, Gebretensae A, Rosing H, Rodenhuis S, Beijnen JH, Huitema AD. Simultaneous quantification of cyclophosphamide and its active metabolite 4-hydroxycyclophosphamide in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). *J Chromatogr B Analyt Technol Biomed Life Sci.* 2007; 54(1-2):345-9.

66. Büttner B, Oertel R, Schetelig J, Middeke JM, Bornhäuser M, Seeling A, Knoth H. Simultaneous determination of clofarabine and cytarabine in human plasma by LC-MS/MS. *J Pharm Biomed Anal.* 2016; 125:286-91.

67. Zheng N, Zhao C, He XR, Jiang ST, Han SY, Xu GB, Li PP. Simultaneous determination of gefitinib and its major metabolites in mouse plasma by HPLC-MS/MS and its application to a pharmacokinetics study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2016; 1011:215-22.

68. Wang LZ, Goh SH, Wong AL, Thuya WL, Lau JY, Wan SC, Lee SC, Ho PC, Goh BC. Validation of a rapid and sensitive LC-MS/MS method for determination of exemestane and its metabolites, 17 β -hydroxyexemestane and 17 β -hydroxyexemestane-17-O- β -D-glucuronide: application to human pharmacokinetics study. *PLoS One.* 2015; 10(3):e0118553.

69. Corona G, Elia C, Casetta B, Toffoli G. Fast liquid chromatography-tandem mass spectrometry method for routine assessment of irinotecan metabolic phenotype. *Ther Drug Monit.* 2010; 32(5):638-46.

70. Yu Y, Zhan Y, Chen X, Zhang Y, Zhong D. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of sinotecan and its active metabolite in human blood. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2014; 951-952:62-8.

71. Precht JC, Ganchev B, Heinkele G, Brauch H, Schwab M, Mürdter TE. Simultaneous quantitative analysis of letrozole, its carbinol metabolite, and carbinol glucuronide in human plasma by LC-MS/MS. *Anal Bioanal Chem.* 2012; 403(1):301-8.

72. Gu Y, Wilson WR. Rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry analysis of the novel anticancer agent PR-104 and its major metabolites in human plasma: Application to a pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2009; 877(27):3181-6.

73. Wang X, Chen Z, Che J, Meng Q, Shan C, Hou Y, Liu X, Chai Y, Cheng Y. Development of a rapid and sensitive LC-MS/MS assay for the determination of combretastatin A4 phosphate, combretastatin A4 and combretastatin A4 glucuronide in beagle dog plasma and its application to a pharmacokinetic study. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2009; 877(30):3813-21.

74. Gao S, Zhou J, Zhang F, Miao H, Yun Y, Feng J, Tao X, Chen W. Rapid and sensitive liquid chromatography coupled with electrospray ionization tandem mass spectrometry method for the analysis of paclitaxel, docetaxel, vinblastine, and vinorelbine in human plasma. *Ther Drug Monit.* 2014; 36(3):394-400.

75. Johnston JS, Phelps MA, Blum KA, Blum W, Grever MR, Farley KL, Dalton JT. Development and validation of a rapid and sensitive high-performance liquid chromatography-mass spectroscopy assay for determination of 17-(allylamo)-17-demethoxygeldanamycin and 17-(amino)-17-demethoxygeldanamycin in human plasma. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2008; 871(1):15-21.

76. Gumustas M, Kurbanoglu S, Uslu B, Ozkan SA. UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters. *Chromatographia.* 2013; 76: 1365-1427.

77. Cole LA, Dorsey JG. Reduction of reequilibration time following gradient elution reversed-phase liquid chromatography. *Anal Chem.* 1990; 62(1):16-21.
78. Wu Y, Farrell JT, Lynn K, Euler D, Kwei G, Hwang TL, Qin XZ. The importance of chromatographic separation in LC/MS/MS quantitation of drugs in biological fluids: detection, characterization, and synthesis of a previously unknown low-level nitrone metabolite of a substance P antagonist. *Anal Chem.* 2003; 75(3):426-34.
79. Wang J, Jia J, Aubry A, Arnold M, Jemal M. Theory-guided efficient strategy to maximize speed and resolution in rapid gradient LC-MS/MS bioanalysis. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2011; 879(21):1917-26.
80. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. *Anal Chem.* 2003; 75(13):3019-30.
81. Tiwari G, Tiwari R. Bioanalytical method validation: An updated review. *Pharm Methods.* 2010;1(1):25-38.
82. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. *J Am Soc Mass Spectrom.* 2000;11(11):942-50.
83. Taylor PJ. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. *Clin Biochem.* 2005; 38(4):328-34.

Figure and Table legends

Figure 1. Pipeline for conducting bioanalysis using LC-MS/MS

Figure 2. Distribution of sample preparation assays

Figure 3. Run time (min) for determination of 1 analyte

Figure 4. Run time (min) for determination of ≥ 2 analytes

Figure 5. The schematic of the post-column infusion system for evaluation of matrix effects

Table 1. LC-MS/MS methods for determination of one drug

Table2. LC-MS/MS methods for determination of two or more drugs/metabolites