

Article

The Relationship between Body Composition and a Gluten Free Diet in Children with Celiac Disease

Paweł Więch ^{1*}, Zdzisława Chmiel ¹, Dariusz Bazaliński ¹, Izabela Sałacińska ¹, Anna Bartosiewicz ¹, Artur Mazur ³, Bartosz Korczowski ³, Monika Binkowska-Bury and Mariusz Dąbrowski ^{1,2}

¹ Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland; p.k.wiech@gmail.com (P.W.); zchmiel77@gmail.com (Z.C.); darek.bazalinski@wp.pl (D.B.); izabela.salacinska@wp.pl (I.S.); ania.bartosiewicz@gmail.com (A.B.); mbinkowskabury@gmail.com (M.B.B.); mariusz.dabrowski58@gmail.com (M.D.);

² Diabetic Outpatient Clinic, Medical Center "Beta-Med" Rzeszów, Poland; mariusz.dabrowski58@gmail.com (M.D.)

³ Pediatric Department, Clinical Provincial Hospital No. 2 in Rzeszów, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland; drmazur@poczta.onet.pl, korczowski@op.pl (B.K.)

* Correspondence: p.k.wiech@gmail.com; Tel.: +48667192696

Abstract: The primary and proven therapy, in cases of celiac disease (CD), is a rigorous gluten-free diet. However, there are reports of its negative effects in the form of nutritional deficiencies, obesity and adverse changes in body composition. The aim of the study was to assess the impact of a gluten free diet (GFD) on the body composition of children with CD. In a case-controlled study (n = 41; mean age 10.81 y; SD = 3.96) children with CD, in various stages of treatment, underwent medical assessment. The control group consisted of healthy children and adolescents, strictly matched for gender and age in a 1:1 case-control manner. More than half of the examined children (n = 26) followed a GFD. CD children had significantly higher mean values of the fat free mass (FFM% = 80.68 vs. 76.66, $p = 0.015$), and total body water (TBW% = 65.22 vs. 60.47, $p = 0.012$), and lower mean values of the fat mass (FM% = 19.32 vs. 23.34, $p = 0.015$). Children who were on a GFD presented slightly higher, but not statistically significant, mean values of FM and FFM, than children who did not follow dietary recommendations (FM [kg] = 7.48 vs. 5.24, $p = 0.064$; FM% = 20.81 vs. 16.73, $p = 0.087$; FFM [kg] = 28.19 vs. 22.62, $p = 0.110$). After minimum one year of a GFD, CD children showed significantly higher values of FFM [kg] ($p = 0.001$), MM [kg] ($p < 0.001$), TBW [L] ($p < 0.001$) and BCM [kg] ($p < 0.001$). Furthermore, CD children who were on a GFD presented significantly higher weight ($p = 0.034$) and body mass index (BMI) ($p = 0.021$) increase. The children adhering to a GFD demonstrate a tendency towards higher indices of selected body composition components.

Keywords: celiac disease; body composition; gluten free diet; children

1. Introduction

Celiac disease (CD) is a diet-dependent disease and one of the most common food intolerances in Europe posing a significant health related problem [1]. The disease may manifest itself at any age, yet it is frequently diagnosed in children up to 5 years of age, three in four cases being identified in female subjects. It is estimated that for each case diagnosed, there are 5 undetected cases [2], which is partly linked to the high prevalence of subclinical CD [3]. The expected global prevalence of CD is in the range from 0.2% to 5.6% [4]. In Europe the relevant rate generally varies from 0.5% to 1% (in some countries reaching the level of 3%), and in Poland CD affects approximately 0.8% of the whole

population. In the age group of 2.5-15 years the condition affects 1 in 80 to 1 in 300 children [5,6].

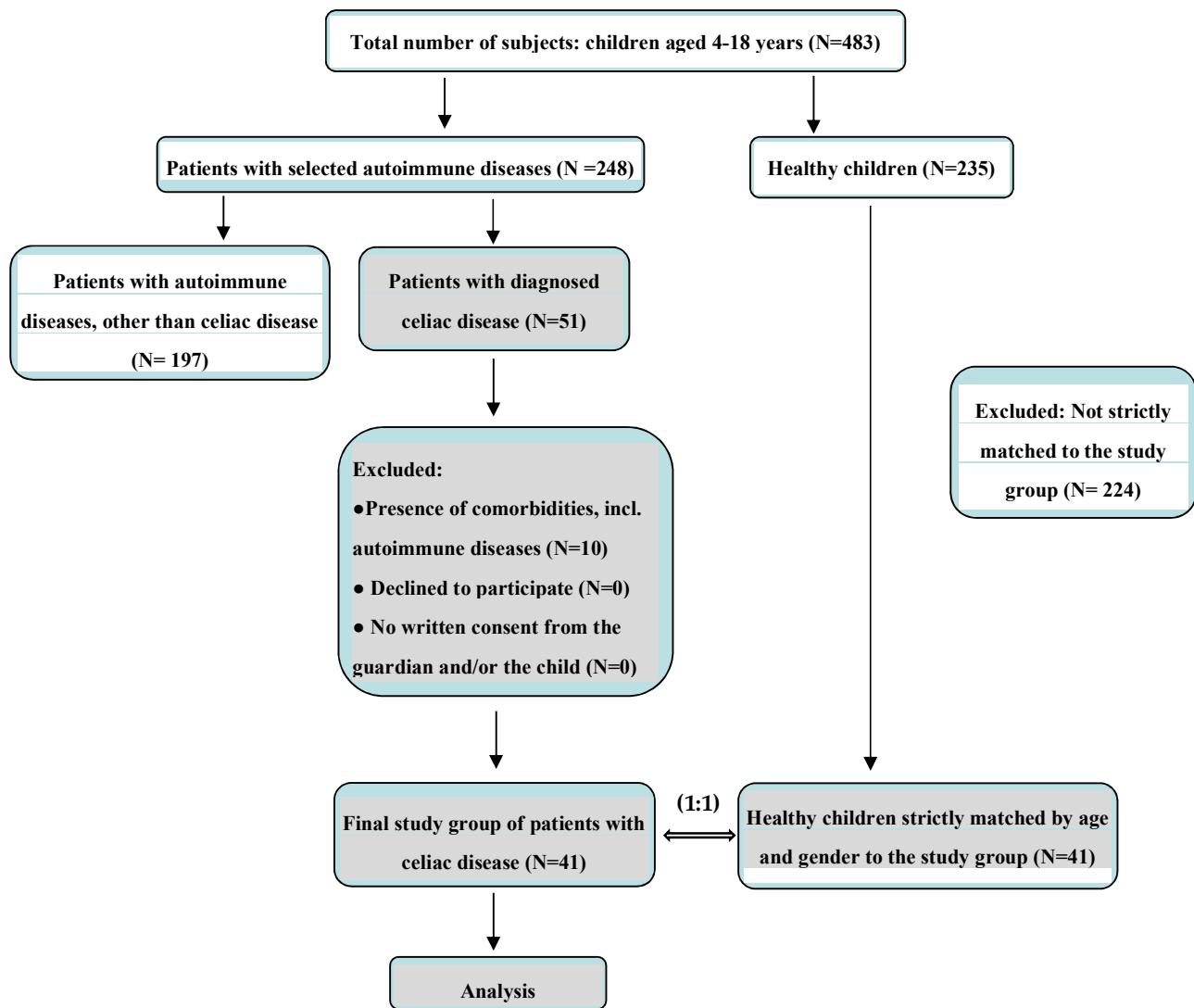
CD is a life-long autoimmune enteropathy due to gluten sensitivity [7]. In CD patients the ingestion of gluten leads to an enteropathy with an impairment of the mucosal surface and abnormal absorption of nutrients [8]. In the case of patients with diagnosed CD, the basic therapy involves the life-long adherence to a gluten free diet (GFD). The diet is designed to eliminate any type of food, drinks or even medication containing wheat, rye or barley [9,10]. Early diagnosis and treatment make it possible to prevent numerous complications, and to effectively eliminate physical and mental development impairments in children with this condition. Compliance with dietary recommendations closely correlates with symptom relief, improved condition of the mucous membrane, and consequently the patient's improved nutritional status. Some studies confirm the effectiveness of a GFD in patients with celiac disease [9,11], yet other researchers argue that the use of this diet alone may contribute to nutritional deficiencies or to excessive body mass [12-14]. Therefore, systematic monitoring of both the nutritional status and body composition appears to be an important part of the therapy in CD [15].

In practice, body composition assessment can be based on measurements of skin fold thickness, and methods of bioelectrical impedance (BIA) and dual-energy X-ray absorptiometry (DXA) [16,17]. Currently there are no studies assessing body composition in children with CD. The scarcity of documentation describing body composition in patients with CD, representing varied age groups (at the time of the diagnosis, and during the nutritional therapy), provides for ambiguous evidence, and leads to a difficulty in the ability to make comparisons [18,19]. The lack of unanimity of opinion in this regard suggests a need for further research and analyses, in particular related to children and adolescents. Given the above, the present study was designed to assess the effects of a GFD in the body composition in children with CD.

2. Materials and Methods

2.1. Ethics

The study was approved by the institutional Bioethics Committee at the University of Rzeszów (Resolution No. 5/02/2012) and by all appropriate administrative bodies. The study was conducted in accordance with ethical standards laid down in an appropriate version of the Declaration of Helsinki and in Polish national regulations. The study was conducted according to the STROBE criteria.


2.2. Subjects

The study involved 41 children and adolescents (20 girls, 48.7%) with celiac disease receiving inpatient treatment at the Clinical Department of Pediatrics with the Pediatric Neurology Unit, at the Clinical Regional Hospital No. 2 in Rzeszów. The study group consisted of patients with newly diagnosed CD and subjects at different stages of treatment.

The inclusion criteria were as follows: diagnosed celiac disease, age 4 to 18 years, no other autoimmune or chronic diseases affecting height, weight or nutritional status, as well as informed consent in writing, signed by parents or legal guardians, and by the adolescents over 16 years of age.

The control group, comprising the same number of subjects, was selected in urban and rural primary, middle and secondary schools, based on the same criteria, except for CD diagnosis. The healthy participants and those with CD were strictly matched for age (the nearest birth date) and gender in a 1:1 case-control manner. Figure 1 presents the recruitment process for the study group and the controls, while Table 1 show the characteristics of the groups.

Detailed information concerning the children with CD, namely the diagnosis, the course and treatment of the disease, and comorbidities, was retrieved from their medical records. Compliance with the recommended GFD was assessed based on laboratory tests (level of IgA class anti-tissue transglutaminase antibodies TTG, level of IgA anti-endomysium antibodies EmA, and level of IgA class anti-deamidated gliadin-analog antibodies, GAF-3X). The status of the disease at the time of the diagnosis was assessed based on the Marsh scale, modified by Oberhuber [20].

Figure 1. Flow chart demonstrating study participants selection.

Table 1. Anthropometric parameters of the study and control groups. Significant differences in bold.

Parameter	Celiac disease (N=41)		Control (N=41)		<i>P</i> value
	Mean	SD	Mean	SD	
Age, years	10.81	3.96	10.63	4.01	0.989
Gender, n					
Male	21	n/a	21	n/a	1.000
Female	20	n/a	20	n/a	
Weight, kg	33.59	13.79	39.70	15.25	0.046*
Height, cm	137.62	21.68	144.20	19.63	0.167
BMI, kg/m ²	16.94	2.65	18.29	3.49	0.089

*indicate significant values ($p < 0.05$); BMI—body mass index; SD—standard deviation; n/a—not applicable.

2.3. Assessments

All the adolescents were assessed for height and weight, and their BMI was calculated. Subsequently BIA was performed with AKERN BIA-101 analyser (Akern SRL, Pontassieve, Florence, Italy) to examine their body composition and nutritional status. The measurements were performed between 7:00 a.m. and noon, on an empty stomach, in the supine position, with abducted upper (30°) and lower (45°) limbs, following at least a 5-minute rest.

A tetrapolar electrode arrangement was applied with contralateral recording mode. The amplitude of the measured current was 800 μ A, sinusoidal, 50 kHz. To ensure the results were reliable and reproducible, two measurements were performed, one after another. Disposable electrodes were placed on the dorsal surface of the right arm (above the wrist) and the right leg (on the ankle). Dedicated software (Bodygram1_31 from AKERN, Pontassieve, Florence, Italy) was used to perform analyses of the results. The BIA took into account: fat mass (FM), fat free mass (FFM), muscle mass (MM) (kg and %), total body water (TBW), intra- and extra-cellular water (ICW and ECW) (litres and %), body cell mass (BCM) (kg and %) and body cell mass index (BCMI). Additionally, phase angle (PA) was calculated, based on resistance and reactance.

2.4 Statistical Analysis

Statistical analysis was performed using the Statistical Software for the Social Sciences SPSS Statistics 20 (IBM Software Group, San Francisco, CA, USA). For this purpose parametric and non-parametric tests of significance were applied. Normality of the distributions of the quantitative variables was verified with the Kolmogorov–Smirnov test. Homogeneity of variances was then examined with the Levene's test and equivalence of variables distributions was verified using the χ^2 test. If the conditions for application of parametric tests were fulfilled, it was possible to use the t-test for independent samples, one-way analysis of variance (ANOVA) or Pearson's correlation. A *p*-value below 0.05 was considered statistically significant.

3. Results

Body composition parameters were significantly different between the CD and control groups. CD children had significantly higher mean values of the fat-free mass and total body water, and lower mean values of the fat mass (Table 2).

Table 2. Results of BIA in the study and control groups.

Parameter	Celiac disease (N=41)		Control (N=41)		<i>P value</i>
	Mean	SD	Mean	SD	
FM, kg	6.66	4.19	9.47	5.15	0.007*
FFM, kg	26.15	10.72	30.24	11.57	0.098
MM, kg	17.17	7.45	19.55	8.10	0.168
TBW, L	22.71	10.96	23.73	8.72	0.312
ECW, L	9.33	3.47	10.28	3.73	0.246
ICW, L	12.35	4.86	13.55	5.16	0.170
BCM, kg	13.89	6.11	15.85	6.64	0.164
FM%	19.32	7.36	23.34	7.36	0.015*
FFM%	80.68	7.36	76.66	7.36	0.015*
MM%	50.72	5.98	48.94	5.62	0.168
TBW%	65.22	8.94	60.47	7.66	0.012*
ECW%	43.86	5.18	43.82	3.59	0.981
ICW%	56.14	5.18	56.18	3.59	0.981
BCM%	50.66	3.96	51.62	3.73	0.373
BCMI	6.91	1.28	7.22	1.50	0.322
PA	5.45	0.67	5.63	0.69	0.241

SD – standard deviation; FM – fat mass; FFM – fat free mass; MM – muscle mass; TBW – total body water; ECW – extracellular water; ICW – intracellular water; BCM – body cell mass; BCMI – body cell mass index; PA – phase angle; * Bold characters indicate significant values (p<0.05).

Inversely, children who were not on a gluten-free diet presented slightly lower, but not statistically significant, mean values of FM and FFM, than children who did follow dietary recommendations (Table 3).

Table 3. Anthropometric parameters and BIA results among patients following and not-following gluten free diet.

Parameter	Followers (N=26)		Non-Followers (N=15)		<i>P</i> value
	Mean	SD	Mean	SD	
Age, years	11.00	4.10	10.47	3.82	0.683
Gender, n					
Male	11	n/a	10	n/a	0.239
Female	15	n/a	5	n/a	
Disease duration, months	74.23	58.10	26.07	40.93	0.002*
Marsh scale					
IIIA	4	n/a	3	n/a	
IIIB	9	n/a	7	n/a	0.584
IIIC	13	n/a	5	n/a	
Weight, kg	35.67	14.07	29.99	12.96	0.208
Height, cm	141.02	21.73	131.73	21.00	0.190
BMI	17.22	2.55	16.45	2.84	0.272
FM	7.48	4.24	5.24	3.82	0.064
FFM	28.19	11.01	22.62	9.53	0.110
MM	17.95	7.63	15.83	7.17	0.388
TBW	22.49	8.00	23.08	15.12	0.675
ECW	9.65	3.56	8.76	3.35	0.434
ICW	12.91	4.67	11.37	5.18	0.457
BCM	14.52	6.26	12.79	5.89	0.390
FM%	20.81	6.60	16.73	8.10	0.087
FFM%	79.19	6.60	83.27	8.10	0.087
MM%	49.88	5.60	52.17	6.52	0.241
TBW%	63.89	8.69	67.52	9.19	0.214
ECW%	43.27	4.15	44.88	6.64	0.345
ICW%	56.73	4.15	55.12	6.64	0.345
BCM%	50.80	3.18	50.41	5.17	0.745
BCMI	6.91	1.16	6.90	1.50	0.978
PA	5.47	0.58	5.43	0.83	0.862

SD – standard deviation; FM – fat mass; FFM – fat free mass; MM – muscle mass; TBW – total body water; ECW – extracellular water; ICW – intracellular water; BCM – body cell mass; BCMI – body cell mass index; PA – phase angle; * Bold characters indicate significant values ($p < 0.05$); n/a – not applicable.

In the analysis according to time of a gluten free diet, CD children showed significantly higher values of fat free mass, muscle mass, total body water (extracellular and intracellular water), body cell mass and body cell mass index (Table 4).

Table 4. Anthropometric parameters and BIA results among 22 patients (14 boys) followed for mean 17.2 months.

Parameter	Baseline (N=22)		Follow-up (N=22)		<i>P</i> value
	Mean	SD	Mean	SD	
Age, years	10.05	4.08	11.41	4.08	<0.001
Disease duration, months	63.68	67.61	80.86	68.14	<0.001
Weight, kg	32.40	15.68	36.01	14.08	<0.001*
Height, cm	134.50	24.62	142.14	23.14	<0.001*
BMI, kg/m ²	16.81	2.76	17.07	2.09	0.046*
FM, kg	7.20	4.62	7.42	3.75	0.101
FFM, kg	25.20	12.17	28.59	11.91	0.001*
MM, kg	16.05	8.45	18.33	8.24	<0.001*
TBW, L	20.16	9.25	22.81	9.02	<0.001*
ECW, L	8.63	3.89	9.83	3.95	0.003*
ICW, L	11.63	5.61	12.98	5.28	<0.001*
BCM, kg	12.99	6.93	14.85	6.74	<0.001*
FM%	22.05	6.50	21.17	6.94	0.972
FFM%	77.95	6.50	78.83	6.94	0.972
MM%	48.78	5.76	49.96	5.76	0.167
TBW%	62.66	8.50	63.39	9.00	0.455
ECW%	43.79	5.03	43.56	4.40	0.788
ICW%	56.21	5.03	56.44	4.40	0.788
BCM%	50.40	3.58	51.13	3.19	0.102
BCMI	6.60	1.26	6.88	1.12	0.005*
PA	5.40	0.64	5.54	0.61	0.121

SD – standard deviation; FM – fat mass; FFM – fat free mass; MM – muscle mass; TBW – total body water; ECW – extracellular water; ICW – intracellular water; BCM – body cell mass; BCMI – body cell mass index; PA – phase angle; * Bold characters indicate significant values (p<0.05).

Furthermore, CD children who were not on a gluten free diet presented significantly lower weight and body mass index increase (Table 5).

Table 5. Differences in anthropometric parameters and body composition between 17 patients following and 5 patients non-following gluten-free diet during follow-up.

Parameter	Followers (N=17)		Non-followers (N=5)		<i>P</i> value
	Mean	SD	Mean	SD	
Weight increase, kg	4.16	6.65	1.74	0.40	0.034
Height increase, cm	8.12	5.47	6.00	3.37	0.426
BMI increase, kg/m ²	0.47	2.13	-0.44	0.78	0.021
FM increase, kg	0.47	3.66	-0.64	2.06	0.078
FFM increase, kg	3.69	4.90	2.38	2.39	0.308
MM increase, kg	2.51	3.26	1.48	1.86	0.182
TBW increase, L	2.45	3.21	3.34	3.47	0.597
ECW increase, L	1.37	2.04	0.64	0.60	0.209
ICW increase, L	0.96	1.45	2.70	2.92	0.610
BCM increase, kg	2.05	2.64	1.22	1.57	0.240
BCMI increase	0.31	0.72	0.20	0.53	0.289
PA increase	0.14	0.41	0.12	0.40	0.919

SD – standard deviation; FM – fat mass; FFM – fat free mass; MM – muscle mass; TBW – total body water; ECW – extracellular water; ICW – intracellular water; BCM – body cell mass; BCMI – body cell mass index; PA – phase angle;* Bold characters indicate significant values (p<0.05).

4. Discussion

In the present case control study, we observed that selected body composition parameters (fat mass, fat free mass, muscle mass, total, intracellular and extracellular body water and body cell mass) and nutritional indicators (body mass index and body cell mass index) in CD children are significantly different than in healthy controls. Reports related to changes in body composition, in adults and in children, both at the stage of diagnosis and during treatment, are limited and ambiguous. They depend on a number of variables, such as the age at the time of diagnosis, the disease progression, duration of impairments associated with malabsorption syndrome, methods of body composition assessment, as well as the degree of compliance to dietary guidelines.

The results of the present study showed that CD children had significantly higher mean values of the fat free mass ($p = 0.015$), and total body water ($p = 0.012$), and lower mean values of the fat mass ($p = 0.015$). Our results provide evidence that children with coeliac disease have lower energy reserves reflected in a lower total body fat mass, which can result in reduced immunity, a potential higher risk of malnutrition and faster dynamics of body changes due to existing malnutrition. Also, our results shows, that children who were on a GFD presented slightly higher, but not statistically significant, mean values of FM and FFM, than children who did not follow dietary recommendations. The described differences in body composition components are close to the level of statistical significance despite the relatively low number of children in each group. Furthermore, after at least one year of a gluten free diet, CD children showed significantly higher values of FFM, MM, TBW, BCM and BCMI. Some studies report no significant changes in the specific components of body composition after a GFD is introduced [21], or in fact describe a decrease in fat free factors coinciding with stable fat mass one year after gluten withdrawal [16]. Other studies, including long-term research, provide evidence that after a GFD is introduced, the majority of the components of body composition are stable [22,23], sometimes with a slightly higher increase in FM than in FFM [24].

In the analysis according to time of a GFD, CD children showed significantly higher values of FFM, MM, TBW (extracellular and intracellular water), BCM and BCMI. Our findings support suggestions made by other authors who argue that the earlier the diet is introduced the faster it is possible to reverse abnormalities in body composition [23]. Important and constructive opinions regarding the necessity of the strict adherence to a GFD are voiced by studies which show that children, who fail to follow the recommendations, are found to have a significantly lower bone mineral density, which leads to a risk of osteoporosis in adulthood [25,26].

Another important, yet controversial issue, is the effect of a GFD in anthropometric parameters, in particular the value of weight and BMI. Dyspepsia and malabsorption associated with progressing CD lead to malnutrition in quantitative and qualitative terms [27,28], which results e.g. in both delayed growth and puberty [29], due to this, until recently these patients were identified exclusively with low BMI. Presently we know that progressing CD may be accompanied by normal as well as excessive body mass, or even by obesity [30-32], because a GFD may contain both a high energy and fat load [27]. The effects of a GFD, related to BMI vary greatly. Numerous studies show that the diet results in normalization of BMI in initially underweight children and adults [21,30,33,34], and leads to significantly improved and faster growth and development in children, if the disease is diagnosed and treated early [35]. Conversely, in individuals with excessive body mass, at the time of the diagnosis, the index tends to decrease after the diet is introduced [34]. In our studies we observed that CD children who were not on a GFD presented significantly lower weight ($p = 0.034$) and BMI ($p = 0.021$) increase. The observed differences were statistically significant despite the low number of children in the studied group. This indicates lower energy reserves and increased potential risk of

malnutrition in exacerbation of the disease. Given these controversies related to changes in anthropometric indices and body composition observed in individuals following a GFD, this problem unquestionably requires further study. Of extreme importance would be a long-term assessment of the effects produced by a GFD in body composition, to take into account patients from childhood, when they receive the diagnosis, until they reach adulthood. It would then be easier to eliminate small fluctuations in the components of body composition, which depend on age and the level of gluten cross-contamination in foods, and consequently to obtain reliable results.

Nevertheless, based on current research it should be emphasized that adherence to a GFD is of critical importance in the treatment of CD and the further prevention of related complications. However, in order to achieve satisfying results it is necessary to ensure the consistent monitoring of dietary restrictions, in combination with a systematic assessment of the patient's nutritional status and body composition. A poorly balanced GFD may lead to deficiencies and, consequently, nutritional imbalance, which is particularly important in the case of children as it adversely affects conditions for growth, development and physical activity. By monitoring the diet and by applying the simple methods to assess anthropometric parameters and indices, as well as body composition, it is possible to quickly identify and adequately correct any effects of nutritional errors, such as selective deficiencies of nutrients, as well as obesity, and to prevent health related consequences.

Despite our best efforts and inclusion to our study, one of the most important limitation is relatively low number of study participants. It did not allow us to find other significant differences between study and control groups. Also, due to the fact that assessment of important markers of nutritional status (albumin and/or pre-albumin level) was not done in all the children, we were not able to analyze association of these variables with body composition components. Searching for such relationships would be an intriguing implication for further research. Also we presented significantly higher values of FFM, MM, TBW (ECW and ICW), BCM and BCMI, according to time of a GFD. These changes can be caused by physiological body mass increase with all its components. The predictive and prognostic value of our results needs to be determined in further, long-term prospective studies to assess its role in the CD children.

5. Conclusions

The children adhering to a gluten-free diet present a tendency towards higher indices of selected body composition components. To assess the predictive and prognostic value of these findings, further prospective studies in this population are required.

Acknowledgments: The study was conducted as the project of the Natural and Medical Center for Innovative Research in the University of Rzeszów, and it was co-financed by the Regional Operational Program for the Podkarpackie Province for the years 2007- 2013, contract number UDA-RPPK.01.03.00-18-004/12-00.

Author Contributions: P.W. and B.K. conceived and designed the study; P.W., Z.C., D.B., M.D., A.M. analyzed the data; P.W., D.B., M.D., A.B., I.S. and M.B.B wrote the paper; all authors approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. *J Pediatr Gastroenterol Nutr.* **2012**, *54*, 136-160. doi: 10.1097/MPG.0b013e31821a23d0.
2. Ivarsson, A.; Mylénus, A.; Norström, F.; van der Pals, M.; Rosén, A.; Höglberg, L.; Danielsson, L.; Halvarsson, B.; Hammarroth, S.; Hernell, O.; et al. Prevalence of childhood celiac disease and changes in infant feeding. *Pediatrics.* **2013**, *131*, e687-694. doi: 10.1542/peds.2012-1015.
3. Almazán, M.V.; Ortega, E.; Moreno Torres, R.; Tovar, M.; Romero, J.; López-Casado, M.Á.; Jáimez, L.; Jiménez-Jáimez, J.; Ballesteros, A.; Caballero-Villarraso, J.; et al. Diagnostic screening for subclinical celiac disease using a rapid test in children aged 2-4. *Pediatr Res.* **2015**, *78*, 280-285. doi: 10.1038/pr.2015.98.
4. Bascuñán, K.A.; Roncoroni, L.; Branchi, F.; Doneda, L.; Scricciolo, A.; Ferretti, F.; Araya, M.; Elli, L. The 5 Ws of a gluten challenge for gluten-related disorders. *Nutr Rev.* **2018**, *76*, 79-87. doi: 10.1093/nutrit/nux068.
5. Mustalahti, K.; Catassi, C.; Reunanan, A.; Fabiani, E.; Heier, M.; McMillan, S.; Murray, L.; Metzger, M.H.; Gasparin, M.; Bravi, E.; et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. *Ann Med.* **2010**, *42*, 587-595. doi: 10.3109/07853890.2010.505931.
6. Obtułowicz, K.; Waga, J.; Dyga, W. Gluten--mechanisms of intolerance, symptoms and treatment possibilities of IgE-related allergy for gluten in the light of actual clinical and immunological studies. *Przegl Lek.* **2015**, *72*, 747-753.
7. Fasano, A.; Catassi, C. Clinical practice. Celiac disease. *N Engl J Med.* **2012**, *367*, 2419-2426. doi: 10.1056/NEJMcp1113994.
8. Parzanese, I.; Qehajaj, D.; Patrinicola, F.; Aralica, M.; Chiriva-Internati, M.; Stifter, S.; Elli, L.; Grizzi, F. Celiac disease: From pathophysiology to treatment. *World J Gastrointest Pathophysiol.* **2017**, *8*, 27-38. doi: 10.4291/wjgp.v8.i2.27.
9. Pulido, O.; Zarkadas, M.; Dubois, S.; Macisaac, K.; Cantin, I.; La Vieille, S.; Godefroy, S.; Rashid, M. Clinical features and symptom recovery on a gluten-free diet in Canadian adults with celiac disease. *Can J Gastroenterol.* **2013**, *27*, 449-453.
10. Alzaben, A.S.; Turner, J.; Shirton, L.; Samuel, T.M.; Persad, R.; Mager, D. Assessing Nutritional Quality and Adherence to the Gluten-free Diet in Children and Adolescents with Celiac Disease. *Can J Diet Pract Res.* **2015**, *76*, 56-63. doi: 10.3148/cjdpr-2014-040.
11. Laurikka, P.; Salmi, T.; Collin, P.; Huhtala, H.; Mäki, M.; Kaukinen, K.; Kurppa, K. Gastrointestinal Symptoms in Celiac Disease Patients on a Long-Term Gluten-Free Diet. *Nutrients.* **2016**, *8*, E429. doi: 10.3390/nu8070429.
12. Shepherd, S.J.; Gibson, P.R. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with coeliac disease. *J Hum Nutr Diet.* **2013**, *26*, 349-358. doi: 10.1111/jhn.12018.
13. Brambilla, P.; Picca, M.; Dilillo, D.; Meneghin, F.; Cravidi, C.; Tischer, M.C.; Vivaldo, T.; Bedogni, G.; Zuccotti, G.V. Changes of body mass index in celiac children on a gluten-free diet. *Nutr Metab Cardiovasc Dis.* **2013**, *23*, 177-182. doi: 10.1016/j.numecd.2011.10.002.
14. Anania, C.; Pacifico, L.; Olivero, F.; Perla, F.M.; Chiesa, C. Cardiometabolic risk factors in children with celiac disease on a gluten-free diet. *World J Clin Pediatr.* **2017**, *6*, 143-148. doi: 10.5409/wjcp.v6.i3.143.
15. Tsiontsiou, M.; Wong, J.E.; Upton, J.; McIntyre, K.; Dimakou, D.; Buchanan, E.; Cardigan, T.; Flynn, D.; Bishop, J.; Russell, R.K.; et al. Detailed assessment of nutritional status and eating patterns in children with gastrointestinal diseases attending an outpatients clinic and contemporary healthy controls. *Eur J Clin Nutr.* **2014**, *68*, 700-706. doi: 10.1038/ejcn.2013.286.

16. De Lorenzo, A.; Di Campli, C.; Andreoli, A.; Sasso, G.F.; Bonamico, M.; Gasbarrini, A. Assessment of body composition by bioelectrical impedance in adolescent patients with celiac disease. *Am J Gastroenterol.* **1999**, *94*, 2951-2955.
17. Xing, Y.; Morgan, S.L. Celiac disease and metabolic bone disease. *J Clin Densitom.* **2013**, *16*, 439-444. doi: 10.1016/j.jocd.2013.08.012.
18. Bardella, M.T.; Molteni, N.; Prampolini, L.; Giunta, A.M.; Baldassarri, A.R.; Morganti, D.; Bianchi, P.A. Need for follow up in coeliac disease. *Arch Dis Child.* **1994**, *70*, 211-213.
19. Troncone, R.; Mayer, M.; Spagnuolo, F.; Maiuri, L.; Greco, L. Endomysial antibodies as unreliable markers for slight dietary transgressions in adolescents with celiac disease. *J Pediatr Gastroenterol Nutr.* **1995**, *21*, 69-72.
20. Oberhuber, G.; Granditsch, G.; Vogelsang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. *Eur J Gastroenterol Hepatol.* **1999**, *11*, 1185-1194.
21. Barone, M.; Della, Valle, N.; Rosania, R.; Facciorusso, A.; Trotta, A.; Cantatore, F.P.; Falco, S.; Pignatiello, S.; Viggiani, M.T.; Amoruso, A.; et al. A comparison of the nutritional status between adult celiac patients on a long-term, strictly gluten-free diet and healthy subjects. *Eur J Clin Nutr.* **2016**, *70*, 23-27. doi: 10.1038/ejcn.2015.114.
22. Carbone, M.C.; Pitzalis, G.; Ferri, M.; Nenna, R.; Thanasi, E.; Andreoli, A.; De Lorenzo, A.; Bonamico, M. Body composition in coeliac disease adolescents on a gluten-free diet: a longitudinal study. *Acta Diabetol.* **2003**, *40*, S171-173.
23. Barera, G.; Mora, S.; Brambilla, P.; Ricotti, A.; Menni, L.; Beccio, S.; Bianchi, C. Body composition in children with celiac disease and the effects of a gluten-free diet: a prospective case-control study. *Am J Clin Nutr.* **2000**, *72*, 71-75.
24. Capristo, E.; Addolorato, G.; Migrone, G.; De Gaetano, A.; Greco, A.V.; Tataranni, P.A.; Gasbarrini, G. Changes in body composition, substrate oxidation, and resting metabolic rate in adult celiac disease patients after a 1-y gluten-free diet treatment. *Am J Clin Nutr.* **2000**, *72*, 76-81.
25. Blazina, S.; Bratanic, N.; Campa, A.S.; Blagus, R.; Orel, R. Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. *Bone.* **2010**, *47*, 598-603. doi: 10.1016/j.bone.2010.06.008.
26. Abenavoli, L.; Delibasic, M.; Peta, V.; Turkulov, V.; De Lorenzo, A.; Medić-Stojanoska, M. Nutritional profile of adult patients with celiac disease. *Eur Rev Med Pharmacol Sci.* **2015**, *19*, 4285-4292.
27. Forchielli, M.L.; Fernicola, P.; Diani, L.; Scrivo, B.; Salfi, N.C.; Pessina, A.C.; Lima, M.; Conti, V.; Pession, A. Gluten-Free Diet and Lipid Profile in Children With Celiac Disease: Comparison With General Population Standards. *J Pediatr Gastroenterol Nutr.* **2015**, *61*, 224-229. doi: 10.1097/MPG.0000000000000785.
28. Sue, A.; Dehlsen, K.; Ooi, C.Y. Paediatric Patients with Coeliac Disease on a Gluten-Free Diet: Nutritional Adequacy and Macro- and Micronutrient Imbalances. *Curr Gastroenterol Rep.* **2018**, *22*, 2. doi: 10.1007/s11894-018-0606-0.
29. Bessahraoui, M.; Bouziane, Nedjadi, K.; Boudraa, G.; Touhami, M. Growth and Puberty in the Coeliac Disease of the Child. *Pediatr Res.* **2011**, *70*, 365. doi: <https://doi.org/10.1038/pr.2011.590>.
30. Rodrigues, M.; Yonamine, G.H.; Fernandes, Satiro, C.A. Rate and determinants of non-adherence to a gluten-free diet and nutritional status assessment in children and adolescents with celiac disease in a tertiary Brazilian referral center: a cross-sectional and retrospective study. *BMC Gastroenterol.* **2018**, *18*, 15. doi: 10.1186/s12876-018-0740-z.
31. Dickey, W.; Kearney, N. Overweight in celiac disease: prevalence, clinical characteristics, and effect of a gluten-free diet. *Am J Gastroenterol.* **2006**, *101*, 2356-2359. doi: 10.1111/j.1572-0241.2006.00750.x

32. Nenna, R.; Mosca, A.; Mennini, M.; Papa, R.E.; Petrarca, L.; Mercurio, R.; Montuori, M; Piedimonte, A.; Bavastrelli, M.; De Lucia, I.C.; et al. Coeliac disease screening among a large cohort of overweight/obese children. *J Pediatr Gastroenterol Nutr.* **2015**, *60*, 405-407. doi: 10.1097/MPG.0000000000000656.
33. Reilly, N.R.; Aguilar, K.; Hassid, B.G.; Cheng, J.; Defelice, A.R.; Kazlow, P.; Bhagat, G.; Green, P.H. Celiac disease in normal-weight and overweight children: clinical features and growth outcomes following a gluten-free diet. *J Pediatr Gastroenterol Nutr.* **2011**, *53*, 528-531. doi: 10.1097/MPG.0b013e3182276d5e.
34. Siddh, L.; Sengar, G.S.; Nagraj, N.; Shyam, R.; Garg, P. Body mass index in celiac disease and effect of a gluten-free diet on body mass index. *Int J Adv Med.* **2016**, *3*, 813-815. doi: <http://dx.doi.org/10.18203/2349-3933.ijam20162611>.
35. Radlović, N.; Mladenović, M.; Leković, Z.; Zivanović, D.; Brdar, R.; Radlović, V.; Ristić, D.; Pavlović, M.; Stojsić, Z.; Vuletić, B.; et al. Effect of gluten-free diet on the growth and nutritional status of children with coeliac disease. *Srp Arh Celok Lek.* **2009**, *137*, 632-637. doi: 10.2298/SARH0912632R.