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Abstract: Portfolio weights solely based on risk avoid estimation error from the sample mean, but 7 
they are still affected from the misspecification in the sample covariance matrix. To solve this 8 
problem, we shrink the covariance matrix towards the Identity, the Variance Identity, the Single-9 
index model, the Common Covariance, the Constant Correlation and the Exponential Weighted 10 
Moving Average target matrices. By an extensive Monte Carlo simulation, we offer a comparative 11 
study of these target estimators, testing their ability in reproducing the true portfolio weights. We 12 
control for the dataset dimensionality and the shrinkage intensity in the Minimum Variance, Inverse 13 
Volatility, Equal-risk-contribution and Maximum Diversification portfolios. We find out that the 14 
Identity and Variance Identity have very good statistical properties, being well-conditioned also in 15 
high-dimensional dataset. In addition, the these two models are the best target towards to shrink: 16 
they minimise the misspecification in risk-based portfolio weights, generating estimates very close 17 
to the population values. Overall, shrinking the sample covariance matrix helps reducing weights 18 
misspecification, especially in the Minimum Variance and the Maximum Diversification portfolios. 19 
The Inverse Volatility and the Equal-Risk-Contribution portfolios are less sensitive to covariance 20 
misspecification, hence they benefit less from shrinkage. 21 

 22 

Keywords: Estimation Error; Shrinkage; Target Matrix; Risk-Based Portfolios. 23 
 24 

1. Introduction 25 
The seminal contributions of Markowitz (Markowitz 1952, 1956) lay the foundations for his well-26 

known portfolio building technique. Albeit elegant in its formulation and easy to be implemented 27 
also in real-world applications, the Markowitz model relies on securities returns sample mean and 28 
sample covariance as inputs to estimate the optimal allocation. However, there is large consensus on 29 
the fact that sample estimators carry on large estimation error; this directly affects portfolio weights 30 
that often exhibit extreme values, fluctuating over time with very poor performance out-of-sample 31 
(DeMiguel, Garlappi, and Uppal 2009). 32 

This problem has been tackled from different perspectives: (Jorion 1986) and (Michaud 2014) 33 
suggest Bayesian alternatives to the sample estimators; (Jagannathan and Ma 2003) add constraints 34 
to the Markowitz model limiting the estimation error; (Black and Litterman 1992) derive an 35 
alternative portfolio construction technique exclusively based on the covariance matrix among asset, 36 
avoiding to estimate the mean value for each security and converging to the Markowitz Minimum 37 
Variance portfolio with no short-sales. This latter technique is supported by results in (Merton 1980) 38 
and (Chopra and Ziemba 1993) who clearly demonstrated how the mean estimation process can lead 39 
to more severe distortions than those in the case of the covariance matrix. 40 

Following this perspective, estimation error can be reduced by considering risk-based portfolios: 41 
findings suggest they have good out-of-sample performance without much turnover (DeMiguel, 42 
Garlappi, and Uppal 2009). There is a recent research strand focused on deriving risk-based portfolios 43 
other than the Minimum Variance one. In this context, (Qian E. 2006) designs a way to select assets 44 
assigning to each of them the same contribution to the overall portfolio risk; (Choueifaty and 45 
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Coignard 2008) propose a portfolio where diversification is the key criterion in asset selection; 46 
(Maillard, Roncalli, and Teïletche 2010) offer a novel portfolio construction technique where weights 47 
carry on an equal risk contribution while maximising diversification. These portfolios are largely 48 
popular among practitioners 1 : they highlight the importance of diversification, risk budgeting; 49 
moreover they put risk management in a central role, offering a low computational burden to 50 
estimate weights. They are perceived as “robust” models since they do not require the explicit 51 
estimation of the mean. Unfortunately, limiting the estimation error in this way poses additional 52 
problems related to the ill-conditioning of the covariance matrix that occurs when the number of 53 
securities becomes sensitively greater than the number of observations. In this case, the sample 54 
eigenvalues become more dispersed than the population ones (Marčenko and Pastur 1967), and the 55 
sample covariance matrix directly affects weights estimation. This mean that for high-dimensional 56 
dataset the sample covariance matrix is not a reliable estimator.  57 

To reduce misspecification effects on portfolio weights, more sophisticated estimators than the 58 
sample covariance have been proposed; the Bayes-Stein shrinkage technique (James and Stein 1961), 59 
henceforth shrinkage, stems for its practical implementation and related portfolio performance. This 60 
technique reduces the misspecification in the sample covariance matrix by shrinking it towards an 61 
alternative estimator. Here, the problem is to select a convenient target estimator as well as the 62 
shrinking intensity on the sample covariance matrix. The latter is usually derived minimising a 63 
predefined loss function, so to obtained the minimum distance between the true and the shrunk 64 
covariance matrices (Ledoit and Wolf 2003). A comprehensive overview on shrinkage intensity 65 
parameters can be found in (DeMiguel, Martin-Utrera, and Nogales 2013), where authors propose an 66 
alternative way of deriving the optimal intensity based on smoothed bootstrap approach. On the 67 
other hand, the target matrix is often selected among the class of structured covariance estimators 68 
(Briner and Connor 2008), especially when the matrix to shrink is the sample one. As noted in 69 
(Candelon, Hurlin, and Tokpavi 2012), the sample covariance matrix is the Maximum Likelihood 70 
Estimator (MLE) under the Normality of asset returns, hence it lets data speaks without imposing 71 
any structure. This naturally suggests it might be pulled towards a more structured alternative. 72 
Dealing with financial data, the shrinkage literature proposes six different models for the target 73 
matrix: the Single-Index market model (Ledoit and Wolf 2003), (Briner and Connor 2008), (Candelon, 74 
Hurlin, and Tokpavi 2012) and (Ardia et al. 2017); the Identity matrix (Ledoit and Wolf 2004a), 75 
(Candelon, Hurlin, and Tokpavi 2012); the Variance Identity matrix (Ledoit and Wolf 2004a); the 76 
Scaled Identity matrix (DeMiguel, Martin-Utrera, and Nogales 2013); the Constant Correlation model 77 
(Ledoit and Wolf 2004b) and (Pantaleo et al. 2011); the Common Covariance (Pantaleo et al. 2011). All 78 
these targets belong to the class of more structured covariance estimators than the sample one, thus 79 
implying the latter is the matrix to shrink. 80 

Despite its great improvements in portfolio weights estimation under the Markowitz portfolio 81 
building framework, the shrinkage technique has been applied only in one work involving risk-based 82 
portfolios, (Ardia et al. 2017). With our work, we contribute to the existing literature filling this gap 83 
and offering a comprehensive overview about shrinkage in risk-based portfolios. In particular, we 84 
study the effect of six target matrix estimators on the weights of four risk-based portfolios. To achieve 85 
this goal, we provide an extensive Monte Carlo simulation aimed at (i) assessing estimators’ statistical 86 
properties and similarity with the true target matrix; (ii) addressing the problem of how the selection 87 
of a specific target estimator impacts on the portfolio weights. We find out that the Identity and 88 
Variance Identity held the best statistical properties, being well-conditioned even in high-89 
dimensional dataset. These two estimators represent also the more efficient target matrices towards 90 
which to shrink the sample one. In fact, portfolio weights derived shrinking towards the Identity and 91 
Variance Identity minimise the distance from their true counterparts, especially in the case of 92 
Minimum Variance and Maximum Diversification portfolios. 93 

                                                 
1 The majority of papers on risk-based portfolios are published in journal aimed at practitioners, as the 
Journal of Portfolio Management. 
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The rest of the paper is organised as follows. Section 2 introduces the risk-based portfolios 94 
employed in the study. Section 3 illustrates the shrinkage estimator, to move then to the six target 95 
matrix estimators and provides useful insights upon misspecification when shrinkage is applied to 96 
risk-based portfolios. In Section 4, we run an extensive Monte Carlo analysis for describing how 97 
changes in the target matrix impact on risk-based portfolio weights. Section 5 concludes.  98 

2. Risk-Based Portfolios 99 
Risk-based portfolios are particularly appealing since they rely only on the estimation of a 100 

proper measure of risk, i.e. the covariance matrix between asset returns. Assume an investment 101 
universe made by 𝑝 assets: 102 

 𝑋 =  (𝒙 , … , 𝒙 ) (1) 
 103 
is a 𝑛 × 𝑝 containing an history of 𝑛 log-returns for the i-th asset, where 𝑖 = 1, … , 𝑝. The covariance 104 
matrix among asset log-returns is the symmetric square matrix Σ2 of dimension 𝑝 × 𝑝 , and the 105 
unknown optimal weights form the vector 𝝎 of dimension 𝑝 × 1. Our working framework assume 106 
to consider four risk-based portfolios: the Minimum Variance (MV), the Inverse Volatility (IV), the 107 
Equal-Risk-Contribution (ERC) and the Maximum Diversification (MD) upon two constraints; no 108 
short-selling (𝝎 ∈ ℜ ) and full allocation of the available wealth (𝝎′. 𝟏 = 1, where 𝟏  is the vector 109 
of ones of length 𝑝). 110 

The Minimum Variance portfolio (Markowitz 1952) derives the optimal portfolio weights by 111 
solving this minimization problem w.r.t. 𝝎: 112 

 113 
 𝝎𝑀𝑉 ≡  argmin𝝎 𝝎′Σ𝝎 | 𝝎 ∈ ℜ+𝑝 , 𝝎′. 𝟏𝑝 = 1 , (2) 

 114 
where 𝝎′Σ𝝎 is the portfolio variance. 115 
In the Inverse Volatility, also known as the equal-risk-budget (Leote de Carvalho, Lu, and Moulin 116 
2012), is available a closed form solution. Each element of the vector 𝝎 is given by the inverse of the 117 
i-th asset variance (denoted by Σ , ) divided by the inverse of the sum of all asset variances: 118 

 𝝎𝐼𝑉 ≡  Σ1,1−1∑ Σ𝑖,𝑖−1𝑝𝑖=1 , … , Σ𝑝,𝑝−1∑ Σ𝑖,𝑖−1𝑝𝑖=1
′.   

(3) 

In the Equal-Risk-Contribution portfolio, as the name suggests, the optimal weights are calculated by 119 
assigning to each asset the same contribution to the whole portfolio volatility, thus originating a 120 
minimization procedure to be solved w.r.t. 𝝎: 121 

 𝝎𝐸𝑅𝐶 ≡  argmin𝝎 %𝑅𝐶𝑖 − 1𝑝 2𝑝
𝑖=1 |𝝎 ∈ ℜ+𝑝 , 𝝎′. 𝟏𝑝 = 1  ,  

(4) 

here %𝑅𝐶 ≡ 𝝎 ,√𝝎 𝝎  is the percentage risk contribution for the i-th asset, √𝝎′Σ𝝎 is the portfolio 122 
volatility as earlier defined and 𝝎 𝑐𝑜𝑣 ,  provides a measure of the covariance of the i-th exposure 123 
to the total portfolio 𝜋, weighted by the corresponding 𝝎 . 124 

Turning to the Maximum Diversification, as in (Choueifaty and Coignard 2008) we preliminary 125 
define 𝐷𝑅(𝝎) as the portfolio’s diversification ratio:  126 𝐷𝑅(𝝎) ≡ 𝝎 ( )√𝝎 𝝎 , 127 

where diag(Σ) is a 𝑝 × 1 vector which takes all the asset variances Σ ,  and 𝝎′ diag(Σ) is the 128 
weighted average volatility. By construction it is 𝐷𝑅(𝝎) ≥ 1, since the portfolio volatility is sub-129 
additive (Ardia et al. 2017). Hence, the optimal allocation is the one with the highest DR: 130 

                                                 
2 With this we refer to the population covariance matrix, which by definition is not observable and then 
unfeasible. Hence, Σ is estimated taking into account the observations stored in 𝑋: we will deeply treat this in 
the next section. 
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 131 
 𝝎𝑀𝐷 ≡  argmax𝝎 𝐷𝑅(𝝎)| 𝝎 ∈ ℜ+𝑝 , 𝝎′. 𝟏𝑝 = 1   (5) 

3. Shrinkage estimator 132 
The shrinkage technique relies upon three ingredients: the starting covariance matrix to shrink, 133 

the target matrix towards which shrinking and the shrinkage intensity, or roughly speaking the 134 
strength at which the starting matrix must be shrunk.  135 

In financial applications, the starting matrix to shrink is always the sample covariance matrix. 136 
This is a very convenient choice that helps in the selection of a proper shrinkage target: being the 137 
sample covariance a model-free estimator that completely reflects the relationships among data3, it 138 
becomes natural to select a target in the class of more structured covariance estimators (Briner and 139 
Connor 2008). In addition, this strategy allows to directly control the trade-off between estimation 140 
error and model error in the resulting shrinkage estimates. In fact, the sample covariance matrix is 141 
usually affected by a large amount of estimation error. This is reduced when shrinking towards a 142 
structured target which minimizes the sampling error at the cost of adding some misspecification by 143 
imposing a specific model. At this point, the shrinkage intensity is crucial because it must be set in 144 
such a way to minimize both errors. 145 

To define the shrinkage estimator, we start from the definition of sample covariance matrix 𝑆. 146 
Recalling Eq. [1], 𝑆 is given by 147 

 𝑆 =  𝑋′ 𝐼 − 𝟏 𝟏 𝑋, (6) 

 148 
where 𝐼  denotes the 𝑛 × 𝑛  identity matrix and 𝟏  is the ones column vector of length 𝑛. The 149 
shrinkage methodology enhances the sample covariance matrix estimation by shrinking 𝑆 towards 150 
a specific target matrix Τ: 151 

 Σ𝑠 =  𝛿Τ + (1 − 𝛿)𝑆, (7) 
 152 
where Σ  is the shrinkage estimator; 𝛿 the shrinkage parameter and Τ the target matrix. In this 153 
work, we focus on the problem of selecting the target matrix. After a review of the literature on target 154 
matrices, in the following rows we present the target estimators considered in this study and we 155 
assess trough a numerical illustration the impact of misspecification in the target matrix for the 156 
considered risk-based portfolios. 157 

 158 
2.1. Target Matrix Literature Review 159 
 160 

The target matrix should fit a desirable number of requirements: it should be structured much 161 
enough to lower the estimation error of the sample covariance matrix while not bringing too much 162 
error from model selection. Second, it should reflect the important features of the true covariance 163 
matrix (Ledoit and Wolf 2004b). The crucial question is: how much structure should we impose to fill 164 
in the requirements? Table 1 shows the target matrices employed so far in the literature, summarising 165 
information about the formula for the shrinkage intensity, the wealth allocation rule and the 166 
addressed research question. Not surprisingly, all the papers shrink the sample covariance matrix. 167 
What surprises is that only six target matrices have been examined: the one relying on the Single-168 
Index market model, the Identity matrix and the Variance Identity, the Constant Correlation model 169 
and the Common Covariance. Earlier four have been proposed by Ledoit and Wolf in separate works 170 
(Ledoit and Wolf 2003, 2004a, 2004b) and have been proposed again in subsequent works, while the 171 
Common Covariance appears only in (Pantaleo et al. 2011) and the Scaled Identity only in (DeMiguel, 172 
Martin-Utrera, and Nogales 2013). 173 

                                                 
3 The sample covariance matrix is the Maximum Likelihood Estimator (MLE) under Normality, therefore it 
lets data speaks without imposing any structure. 
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Table 1. Literature Review of Target Matrices. SCVm stands for sample covariance matrix. “N.A.” 174 
stands for not available. 175 

Reference Matrix to shrink Target Matrix Shrinkage 

Intensity 

Portfolio selection 

rule 

Research Question 

(Ledoit and 

Wolf 2003) 

SCVm Market Model and 

Variance Identity 

Risk-function  

minimisation 

Classical Markowitz 

problem 

Portfolio Performance 

comparison 

(Ledoit and 

Wolf 2004a) 

SCVm Identity Risk-function  

minimisation 

N.A. Theoretical paper to 

gauge the shrinkage 

asymptotic properties 

(Ledoit and 

Wolf 2004b) 

SCVm Constant 

Correlation Model 

Optimal 

shrinkage 

constant 

Classical Markowitz 

problem 

Portfolio Performance 

comparison 

(Briner and 

Connor 2008) 

SCVm Market Model Same as (Ledoit 

and Wolf, 2004b) 

N.A. Analysis of the trade-off 

estimation error and 

model specification error 

(Pantaleo et al. 

2011) 

SCVm Market Model, 

Common 

Covariance and 

Constant 

Correlation Model 

Unbiased 

estimator of 

(Schäfer and 

Strimmer, 2005) 

Classical Markowitz 

problem 

Portfolio Performance 

comparison 

(Candelon, 

Hurlin, and 

Tokpavi 2012) 

SCVm Market Model and 

Identity 

Same as (Ledoit 

and Wolf, ) 

Black-Litterman 

GMVP 

Portfolio Performance 

comparison 

(DeMiguel, 

Martin-Utrera, 

and Nogales 

2013) 

SCVm Scaled Identity Expected 

quadratic loss 

Classical Markowitz 

problem 

Comprehensive 

investigation of 

shrinkage estimators 

(Ardia et al. 

2017) 

SCVm Market Model Same as (Ledoit 

and Wolf, 2003) 

Risk-based portfolios Theoretical paper to 

assess effect on risk-

based weights 

 176 
In Table 1 we have listed papers taking into account their contribution to the literature, as the 177 
adoption of a novel target matrix estimator, the re-examination of a previously proposed target and 178 
the comparison among different estimators. Ledoit and Wolf popularise the shrinkage methodology 179 
in portfolio selection: in (Ledoit and Wolf 2003), they are also the first in comparing the effects of 180 
shrinking towards different targets in portfolio performance. Shrinking towards the Variance 181 
Identity and shrinking towards the Market Model are two out of eight estimators for the covariance 182 
matrix compared w.r.t. the reduction of estimation error in portfolio weights. They find significant 183 
improvements in portfolio performance when shrinking towards the Market Model. (Briner and 184 
Connor 2008) well describe the importance of selecting a target matrix among the class of structured 185 
covariance estimators, hence proposing to shrink the asset covariance matrix of demeaned returns 186 
towards the Market model as in (Ledoit and Wolf 2003). (Candelon, Hurlin, and Tokpavi 2012) 187 
compare the effect of double shrinking the sample covariance either towards the Market Model and 188 
the Identity, finding that both estimators carry on similar out-of-sample performances. (DeMiguel, 189 
Martin-Utrera, and Nogales 2013) is the first work to compare the effects of different shrinkage 190 
estimators on portfolio performance, highlighting the importance of the shrinkage intensity and 191 
proposing a scaled version of the Identity Matrix as target. Another important comparison among 192 
target matrices is due to (Pantaleo et al. 2011), who compare the Market and Constant Correlation 193 
models as in (Ledoit and Wolf 2003, 2004b) with the Common Covariance of (Schäfer and Strimmer, 194 
2005), used as target matrix for the first time in finance. Authors assess the effects on portfolio 195 
performances while controlling for the dimensionality of the dataset, finding that the Common 196 
Covariance should not be used when the number of observations is less than the number of assets. 197 
Lastly, (Ardia et al. 2017) is the only work to implement shrinkage in risk-based portoflios. They 198 
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shrink the sample covariance matrix as in (Ledoit and Wolf 2003), finding that the Minimum Variance 199 
and the Maximum Diversification portfolios are the most affected from covariance misspecification, 200 
hence they benefit the most from the shrinkage technique. 201 
 202 

2.2. Estimators for the target matrix 203 
 204 
We consider six estimators for the target matrix: the Identity and the Variance Identity matrix, 205 

the Single-index, the Common Covariance, the Constant Correlation and the Exponential Weighted 206 
Moving Average models. They are all structured estimator, in the sense that the number of 207 
parameters to be estimated is far less the 𝑝(𝑝 + 1)  required in the sample covariance case. 208 
Compared with the literature, we take into account all the previous target estimators, adding to the 209 
analysis the EWMA: this estimator well addresses the problem of heteroskedasticity in asset returns. 210 

The identity is a matrix with ones on the diagonal and zero elsewhere. Choosing the Identity as 211 
target is justified by the fact that is shows good statistical properties: it is always well-conditioned 212 
and hence invertible (Ledoit and Wolf, 2003). Besides the identity, we also consider a multiple of the 213 
identity, named the Identity Variance. This is given by: 214 

 215 
 Τ𝑖𝑑 ≡ 𝐼𝑝𝑑𝑖𝑎𝑔(𝑆)𝐼𝑝, (8) 
   

here 𝑑𝑖𝑎𝑔(𝑆) is the main diagonal of the sample covariance matrix (hence the assets variances) and 216 I  the identity matrix of dimension p. 217 
The Single Index Model (Sharpe, 1963) assumes that the returns 𝒓  can be described by a one-218 

factor model, resembling the impact of the whole market: 219 
 220 𝒓 = 𝜶 + 𝜷𝑟 + 𝜀 ,  221 𝑤𝑖𝑡ℎ 𝑡 = 1, … , 𝑛 222 
 223 

Where 𝑟  is the overall market returns; 𝜷 is the vector of factor estimates for each asset; 𝜶 is the 224 
market mispricing and 𝜀  the model error. The Single-Index market model represents a practical 225 
way of reducing the dimension of the problem, measuring how much each asset is affected by the 226 
market factor. The model implies the covariance structure among asset returns is given by: 227 

 228 
 𝑇𝑠𝑖 ≡ 𝑠𝑚𝑘𝑡2 𝜷𝜷′ + Ω (9) 

 229 
where 𝑠  is the sample variance of asset returns; 𝜷 is the vector of beta estimates and Ω contains 230 
the residual variance estimates. 231 
The Common Covariance model is aimed at minimizing the heterogeneity of assets variances and 232 
covariances by averaging both of them (Pantaleo et al., 2011). Let var ,  and covar ,  being 233 
respectively the variances and covariances of the sample covariance matrix, their averages are given 234 
by: 235 𝑣𝑎𝑟 = 1𝑝 var , ;  236 

𝑐𝑜𝑣𝑎𝑟 = 1p(p − 1)/2 covar ,( )/ , 237 

 238 
where p is the number of securities. The resulting target matrix 𝑇  has its diagonal elements all 239 
equal to the average of the sample covariance, while non-diagonal elements are all equal to the 240 
average of sample covariances. 241 
 242 
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In the Constant Correlation model the main diagonal is filled with sample variances, and 243 
elsewhere a constant covariance parameter which is equal for all assets. The matrix can be written 244 
according to the following decomposition: 245 

 246 
 𝑇𝑐𝑐 ≡ Ρ diag(𝑆) Ρ, (10) 

 247 
where Ρ  is the lower triangular matrix filled with the constant correlation parameter ρ =248 

( )/ ∑ ρ  for i < j and ones in the main diagonal. diag(S) represents the main diagonal of the 249 
sample covariance matrix. 250 

The Exponential Weighted Moving Average (EWMA) model (J. P. Morgan and Reuters Ltd 1996) 251 
which was introduced by the JP Morgan’s research team to provide an easy but consistent way to 252 
assess portfolio covariance. RiskMetrics EWMA considers the variances and covariance driven by an 253 
IGARCH process: 254 

 255 
 𝑇𝐸𝑊𝑀𝐴,𝑡 ≡ (1 − 𝜆)𝑋′𝑋 + 𝜆𝑇𝐸𝑊𝑀𝐴,𝑡−1 (11) 

 256 
with 𝑇 , =  𝐼 . 𝑇 ,  is the target matrix at time 𝑡 − 1 and 𝜆 is the smoothing parameter: 257 
the higher 𝜆, the higher the persistence in the variance. 258 

 259 
2.3. The impact of misspecification in the target matrix 260 

 261 
We are now going to show to which extent risk-based portfolios can be affected by 262 

misspecification in the target matrix. To do so, we provide a numerical illustration, merely inspired 263 
by the one in (Ardia et al., 2017). Assume an investment universe made by 3 securities: a sovereign 264 
bond (Asset-1), a corporate bond (Asset-2) and equity (Asset-3), we are able to impose an arbitrary 265 
structure to the related 3 × 3 true covariance matrix4. We preliminary recall that Σ can be written 266 
according to the following decomposition: 267 

 268 Σ ≡ (diag(Σ)) / Ρ (diag(Σ)) / , 269 
 270 

where (diag(Σ)) /  is a diagonal matrix with volatilities on the diagonal and zeros elsewhere and Ρ  271 
is the related correlation matrix, with ones on the diagonal and correlations symmetrically displaced 272 
elsewhere. We impose 273 

 274 (Σ ,/ , Σ ,/ , Σ ,/ , ) = (0.1,0.1,0.2), 275 
and 276 (Ρ ; , , Ρ ; , , Ρ ; , ) =  (−0.1, −0.2,0.7), 277 

 278 
hence, the true covariance matrix is: 279 

 280 Σ ≡  0.010 −0.001 −0.004−0.001 0.010 0.014−0.004 0.014 0.040 . 281 

 282 
Now assume that the true covariance matrix Σ is equal to its shrunk counterpart when 𝛿 =  : 283 Σ ≡ Σ = 𝑆 + Τ, 284 

                                                 
4 (Ardia et al. 2017) imposes Asset-1 and Asset-2 to have 10% annual volatility; Asset-3 to have 20% annual 
volatility; correlations between Asset-1/Asset-2 and Asset-1/Asset-3 are set negative and correlation between 
corporate bonds and equities (Asset-2/Asset-3) is set positive. They give as motivation for the selection of these 
values the fact that they precisely resemble the real-world scenario of the past recent years. 
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That is both the sample covariance matrix 𝑆 and the target matrix Τ must be equal to Σ and the 285 
true target matrix is: 286 

 287 S ≡ Τ ≡  0.005 −0.0005 −0.002−0.0005 0.005 0.007−0.002 0.007 0.020 , 288 

 289 
with few algebraic computations, we can obtain the volatilities and correlations simply by applying 290 
the covariance decomposition, ending up with  291 

 292 (Τ ,/ , Τ ,/ , Τ ,/ ) = (0.0707,0.0707,0.1414); 293 
(Ρ ; , , Ρ ; , , Ρ ; , ) = (−0.1, −0.2,0.7) 294 

 295 
In this case, we can conclude that the target matrix T is undervaluing all the covariance and 296 
correlation values.  297 

At this point, some remarks are needed. First, as summarised in Table 2, we work out the true 298 
risk-based portfolio weights, which are equal to the ones in (Ardia et al. 2017) as expected. Weights 299 
are differently spread out: the MV equally allocates wealth to the first two assets, excluding equities. 300 
This because it mainly relies upon the asset variance, limiting the diversification of the resulting 301 
portfolio. The remaining portfolios allocate wealth without excluding any asset; however, the MD 302 
overvalues Asset-1 assigning to it more than 56% of total wealth. The IV and ERC seem to maximise 303 
diversification under a risk-parity concept, similarly allocating wealth among the investment 304 
universe. 305 

Table 2. True weights of the four risk-based portfolios and maximum and minimum of the 306 
Frobenius norm for the misspecification in the variance and covariance, respectively. 307 

 MV IV ERC MD 
Asset-1 0.500 0.400 0.428 0.566 
Asset-2 0.500 0.400 0.335 0.226 
Asset-3 0.000 0.200 0.181 0.207 
Max FN 0.171 0.137 0.125 0.156 
Min FN 0.127 8.0e-17 0.039 0.136 

 308 
Second, assuming Σ as the true covariance matrix allows us to simulate misspecification both 309 

in the variance and in the covariance components of the target matrix Τ  simply increasing or 310 
decreasing the imposed true values. Since we are interested in investigating misspecification impact 311 
on the true risk-based portfolio weights, we measure its effects after each shift with the Frobenius 312 
norm between the true weights and the misspecified ones: 313 

 314 ‖𝝎‖ =  𝜔 , 315 

where 𝝎 = 𝝎 − 𝝎. 316 
Third, turning the discussion on the working aspects of this toy example, we will separately shift 317 

the volatility and the correlation of Asset-3, as in (Ardia et al. 2017). The difference with them is that 318 
we modify the values in the true target matrix Τ . Moreover, in order to understand also how 319 
shrinkage intensity affects the portfolio weights, we perform this analysis for 11 values of 𝛿 , 320 
spanning from 0 to 1 (with step 0.1). This allows us to understand both extreme cases, i.e. when the 321 
true covariance matrix is only estimated with the sample estimator (𝛿 = 0) and only with the target 322 
matrix (𝛿 = 1). Remember that the true shrinkage intensity is set at 𝛿 = . 323 

 324 
 325 
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Figure 1. Frobenius norm between true and estimated weights; first row reports misspecification in 326 
variance, while second row in covariance. The surfaces’ three dimensions are: the shrinkage intensity 327 
in y axis (from 0 to 1); the misspecification in the variance (from 0 to 0.5) or in the covariance (from 0 328 
to 1) in x axis and the Frobenius norm in z axis. Each column refers to a specific risk-based portfolio. 329 
From the left to the right: MV, IV, ERC, MD, respectively. 330 

Moving to the core of this numerical illustration, we proceed as follows. First, for what is 331 
concerning the volatility, we let Τ ,/  to vary between 0 and 0.5, ceteris paribus. Results are 332 
summarised in Figure 1, row 1. As expected, there is no misspecification in all the risk-based portfolio 333 
at the initial state Τ ,/ = 0.1414, i.e. the true value. All the portfolio weights are misspecified in the 334 
range [0; 0.1414), with MV showing the greatest departure from the true portfolio weights when the 335 
Asset-3 volatility is undervalued below 0.12. The absence of misspecification effects in the MV 336 
weights is due to the initial high-risk attributed to Asset-3: in fact, it is already excluded from the 337 
optimal allocation at the initial non-perturbated state. The IV, ERC and MD portfolio weights show 338 
nearly the same distance from their not misspecified counterpart. The same applies in the range 339 (0.1414; 0.5], with MD (ERC) showing more (less) misspecification as 0.5 is reached, compared to 340 
the others. MV is again not misspecified, since Asset-3 is always excluded from the allocation. This 341 
allows the MV portfolio not to be affected by shifts in the shrinkage intensity when there is over-342 
misspecification. On the other hand, the remaining portfolios react in the same way to shrinkage 343 
intensity misspecification, showing an increase in the Frobenius norm especially for low values of 344 
Asset-3 variance. All the portfolios share the same effect when the weights are estimated with the 345 
sample covariance only: in this case the distance from true portfolios is at maximum. 346 

Second, we assess the misspecification impact when it arises in the correlation. We let the 347 
correlation between Asset-3 and 2 (Ρ ; , ) to vary from 0 to 1, ceteris paribus. In this case, we have 348 
signs of perturbation in the MV and the MD portfolios, while the ERC shows far less distortion, as 349 
presented in Figure 1, row 2. Surprisingly, the IV is not to impacted at all by misspecification in the 350 
correlation structure of the target matrix T. Moreover, IV is also the only one not be impacted by the 351 
shrinkage intensity misspecification. Both effects are due to the specific characteristics of Asset-3 and 352 
the way in which IV selects to allocate weights under a risk-parity scheme. Lastly, MV and ERC show 353 
the greatest distortion and hence higher distance from the true weights for small values of shrinkage 354 
intensity, while for the MD the Frobenius norm attains its maximum when the target matrix is the 355 
estimator (𝛿 = 1). 356 

In conclusion, we started this numerical illustration to assess the effects of target matrix 357 
misspecification in risk-based portfolios: as in (Ardia et al. 2017), the four risk-based portfolios reacts 358 
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similarly to perturbation in volatility and correlation (even if for us they originate in the target 359 
matrix), with the MV being the most affected when the variance is misspecified and the IV being the 360 
less affected from covariance shifts. In particular, MV performs very poorly when Asset-3 volatility 361 
tends to zero. This portfolio is less sensitive to overvalued variance misspecification in very risky 362 
assets, but very sensitive in the opposite sense, and it is one of the most affected to perturbations in 363 
the correlation. The remaining three portfolios react similarly to variance misspecification, while MD 364 
shows a similar sensitivity as the MV to perturbation in the correlation. The IV does not show any 365 
sign of distortion when covariance is shifted. Moreover, we improve previous findings showing how 366 
weights are affected by shifts in the shrinkage intensity: when sample covariance is the estimator (𝛿 =367 0), the distance from the true weights stands at maximum level. 368 

4. Case Study – Monte Carlo Analysis 369 
This section offers a comprehensive comparison of the six target matrix estimators by mean of 370 

an extensive Monte Carlo (MC) study. The aim of this analysis is twofold: (i) assessing estimators’ 371 
statistical properties and similarity with the true target matrix; (ii) addressing the problem of how 372 
selecting a specific target estimator impacts on the portfolio weights. This investigation is aimed at 373 
giving a very broad overview about (i) and (ii) since we monitor both the 𝑝/𝑛 ratio and the whole 374 
spectrum of shrinkage intensity. We run simulations for 15 combinations of 𝑝 and 𝑛, and for 11 375 
different shrinkage intensities spanning in the interval [0 ; 1], for an overall number of 165 scenarios. 376 

The MC study is designed as follows. Returns are simulated assuming a factor model is the data 377 
generating process, as in (MacKinlay and Pastor 2000). In details, we impose a one-factor structure 378 
for the returns generating process: 379 

 380  𝑟 = 𝜉. 𝑓 + 𝜀 ; 381 𝑤𝑖𝑡ℎ 𝑡 = 1, … , 𝑛 382 
 383 
where 𝑓  is the 𝑘 × 1 vector of returns on the factor, 𝜉 is the 𝑝 × 1 vector of factor loadings 384 

and 𝜀  the vector of residuals of 𝑝 length. Under this framework returns are simulated implying 385 
multivariate normality and absence of serial correlation. The asset factor loadings are drawn from a 386 
uniform distribution and equally spread, while returns on the single factor are generated from a 387 
Normal distribution. The bounds for the uniform distribution and the mean and the variance for the 388 
Normal one are calibrated on real market data, specifically on the empirical dataset “49-Industry 389 
portfolios” with monthly frequency, available at Kennet French website5. Residuals are drawn from 390 
a uniform distribution in the range [0.10; 0.30] so that the related covariance matrix is diagonal with 391 
an average annual volatility of 20%.  392 

For each of the 165 scenarios, we apply the same strategy. First, we simulate the 𝑛 × 𝑝 matrix 393 
of asset log-returns, then we estimate the six target matrices and their corresponding shrunk matrices 394 Σ . At last, we estimate the weights of the four risk-based portfolios. Some remarks are needed. First, 395 
we consider the number of assets as 𝑝 = 10,50,100  and number of observations as 𝑛 =396 60,120,180,3000,6000  months, which correspond to 5, 10, 15, 250 and 500 years. Moreover, the 397 
shrinkage intensity is let to vary between their lower and upper bounds as 𝛿 =398 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 . For each of the 165 scenarios we run 100 Monte Carlo trials6, 399 
giving robustness to the results.  400 

We stress again the importance of Monte Carlo simulations, which allow us to impose the true 401 
covariance Σ and hence the true portfolio weights 𝝎. This is crucial because we can compare the 402 
true quantities with their estimated counterparts.  403 

                                                 
5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
6 Simulations were done in MATLAB setting the random seed generator at its default value, thus ensuring the 
full reproducibility of the analisys. 
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With respect to the point (i), we use two criteria to assess and compare the statistical properties 404 
of target matrices: the reciprocal 1-norm condition number (RCN) and the Frobenius Norm. Being 405 
the 1-norm condition number (CN) defined as: 406 

 407 𝐶𝑁(𝐴) =  𝜅(𝐴) = ‖𝐴 ‖, 408 
 409 

for a given A. It measures the matrix sensitivity to changes in the data: when is large, it indicates that 410 
a small shift causes important changes, offering a measure of the ill-conditioning of A. Since CN takes 411 
value in the interval [0 ; +∞), it is more convenient to use its scaled version, the RCN: 412 

 413 
 𝑅𝐶𝑁 = 1/ 𝜅(𝐴). (12) 

 414 
It is defined in the range [0 ; 1]: the matrix is well-conditioned if the reciprocal condition number 415 

is close to 1 and ill-conditioned vice-versa. Under the Monte Carlo framework, we will study its MC 416 
estimator: 417 

 418 
 𝐸[𝐶𝑁] =  1𝑀 𝐶𝑁 ,  

(13) 

 419 
where 𝑀 is the number of MC simulations. On the other hand, the Frobenius norm is employed to 420 
gauge the similarity between the estimated target matrix and the true one. We define it for the 𝑝 × 𝑝 421 
symmetric matrix 𝑍 as: 422 

 423 𝐹𝑁(𝑍) = ‖𝑍‖ =  𝑧 . 424 

 425 
In our case, 𝑍 = Σ − Σ. Its Monte Carlo estimator is given by the following 426 

 427 
 𝐸[𝐹𝑁] = 1𝑀 𝐹𝑁 .  

(14) 

 428 
Regarding (ii), we assess the discrepancy between true and estimated weights again with the 429 

Frobenius norm. In addition, we report the values at which the Frobenius norm attains its best results, 430 
i.e. when the shrinkage intensity is optimal. 431 

 432 
4.1. Main Results 433 
 434 

Figure 2 summarises the statistical properties of the various target matrices. 435 
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 436 
Figure 2. The condition number (y-axis) as the 𝑝/𝑛  ratio moves from 𝑝60  to 𝑝6000 . Each column 437 
corresponds to a specific target matrix: from left to right, the Identity, the Variance Identity, the Single-438 
Index, the Common Covariance, the Constant Correlation and the EWMA, respectively. Each row 439 
corresponds to a different 𝑝: in ascendant order from 10 (first row) to 100 (third row). 440 
 441 
 442 

 443 
The Figure 2 shows from left to right the condition numbers for the Identity, the Variance Identity, 444 
the Market model, the Common Variance, the Constant Correlation and the EWMA, respectively. 445 
Each column corresponds to a specific target, while each rows refer to a different number of assets 446 𝑝: the first column to 10, the secondo to 50 and the third to 100. For each sub-figure, on the x-axis we 447 
show the 𝑝/𝑛 ratio in ascendant order and on the y-axis the condition number: the matrix is well-448 
conditioned when its value is closer to 1, vice-versa is ill-conditioned the more it tends zero. 449 

Figure 3. Surfaces representing the Frobenius norm (z-axis) between the true and the estimated target 450 
matrices, considering the shrinkage intensity (y-axis) and the 𝑝/𝑛  ratio (x-axis). Each column 451 
corresponds to a specific target matrix: from left to right, the Identity, the Variance Identity, the Single-452 
Index, the Common Covariance, the Constant Correlation and the EWMA, respectively. Each row 453 
corresponds to a different 𝑝: in ascendant order from 𝑝 = 10 (first row) to 𝑝 = 100 (third row). 454 
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Then, we turn to the study of similarity among true and estimated target matrices. Figure 3 455 
represents the Monte Carlo Frobenius norm between the true and the estimated target matrices. The 456 
surfaces give a clear overview about the relation among the Frobenius norm itself, the 𝑝/𝑛 ratio and 457 
the shrinkage intensity. Overall, the Frobenius norm is minimised by the Single-Index and the CC: in 458 
these cases the target matrices are not particularly affected by the shrinkage intensity, while their 459 
reaction to increases in the 𝑝/𝑛  ratio are controversial. In fact, quite surprisingly the distance  460 
between true and estimated weights diminishes as both 𝑝 and 𝑛 increases. For 𝑝 = 50 and 𝑝 = 100 461 
there is a hump for small 𝑝/𝑛 values; however, the Frobenius norm increases when ≥ 1. Despite 462 
of the low condition number, the EWMA shows a similar behaviour to the Single-Index and the 463 
Constant Correlation target matrices, especially w.r.t. 𝑝/𝑛 values. On the other hand, it is more 464 
affected by shifts in the shrinkage parameters; the distance from the true weights increases moving 465 
towards the target matrix. Lastly, the Common Covariance and the Variance Identity are very far 466 
away from the true target matrix: they are very sensitive to high 𝑝/𝑛 and 𝛿 values. 467 

To conclude, the identity is the most well-conditioned matrix, and it is stable across all the 468 
examined 𝑝/𝑛 combinations. Nevertheless, the Single-Index and the CC target matrices show the 469 
greater similarity with the true target matrix minimizing Frobenius norm, while the identity seems 470 
less similar to the true target. 471 

 472 

4.1.1. Results on Portfolio Weights 473 
Table 3 and Table 4 present main results of the Monte Carlo study: for each combination of 𝑝 474 

and 𝑛, we report the Monte Carlo estimator of the Frobenius norm between true and estimated 475 
weights. In particular, Table 3 reports averaged Frobenius norm along the shrinkage intensity 476 
(excluding the case 𝛿 = 0, which corresponds to the sample covariance matrix), while Table 4 lists 477 
the minimum values for the optimal shrinkage intensity. 478 

 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
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Table 3. Frobenius norm for the portfolio weights. Values are averaged along the shrinkage intensity 504 
(excluding the case 𝛿 = 0). For each 𝑛 , the first line reports the Frobenius norm for the sample 505 
covariance matrix. Abbreviations in use are: S for sample covariance; Id for identity matrix; Vid for 506 
Variance Identity; SI for Single-Index; CV for Common Covariance; CC for Constant Correlation and 507 
EWMA for Exponentially Weighted Moving Average. 508 

 P=10 P=50 P=100 

 MV IV ERC MD MV IV ERC MD MV IV ERC MD 

Panel A: n=60 

S 0.834 0.1585 0.1736 0.5842 0.7721 0.0573 0.0637 0.4933 0.7555 0.0409 0.0447 0.4565 

Id 0.6863 0.1425 0.1528 0.5045 0.6215 0.0559 0.0631 0.3873 0.4967 0.0404 0.0451 0.3652 

VId 0.6935 0.1583 0.1732 0.5176 0.5999 0.0567 0.0634 0.4092 0.5901 0.0404 0.0445 0.3686 

SI 0.838 0.1585 0.1736 0.5678 0.7685 0.0573 0.0637 0.4709 0.75 0.0409 0.0447 0.4288 

CV 1.2438 0.1583 0.1731 1.011 1.1484 0.0567 0.0628 0.9381 1.1386 0.0404 0.0438 0.9185 

CC 0.8353 0.1585 0.1733 0.5361 0.7808 0.0573 0.0635 0.4328 0.7663 0.0409 0.0445 0.3922 

EWMA 0.8473 0.1593 0.1745 0.595 0.7811 0.0575 0.064 0.5142 0.7325 0.0411 0.045 0.4431 

Panel B: n=120 

S 0.9064 0.0877 0.0989 0.4649 0.7814 0.059 0.0656 0.5065 0.6519 0.0424 0.0472 0.4332 

Id 0.8157 0.087 0.0983 0.4256 0.6259 0.0613 0.0688 0.4354 0.6307 0.0389 0.0431 0.328 

VId 0.8235 0.0871 0.0985 0.4284 0.6259 0.0613 0.0688 0.4354 0.489 0.0421 0.0471 0.3712 

SI 0.9097 0.0877 0.0989 0.4563 0.7777 0.059 0.0656 0.4925 0.6458 0.0424 0.0472 0.419 

CV 1.3269 0.0871 0.0982 0.9667 1.1806 0.0587 0.0651 1.0138 1.0974 0.0421 0.0467 0.8951 

CC 0.905 0.0877 0.0988 0.4357 0.7822 0.059 0.0655 0.4636 0.6566 0.0424 0.0471 0.3856 

EWMA 0.9281 0.0883 0.0996 0.4859 0.7994 0.0592 0.0658 0.5246 0.6788 0.0427 0.0475 0.4601 

Panel C: n=180 

S 0.7989 0.1311 0.1423 0.5007 0.7932 0.0564 0.0627 0.4631 0.6905 0.0404 0.044 0.4065 

Id 0.7206 0.1308 0.142 0.4736 0.6705 0.0562 0.0625 0.405 0.5477 0.0375 0.0399 0.3748 

VId 0.7273 0.1308 0.1421 0.4757 0.6838 0.0562 0.0626 0.4127 0.5754 0.0402 0.044 0.3556 

SI 0.8001 0.1311 0.1423 0.4954 0.7904 0.0564 0.0627 0.4545 0.6873 0.0404 0.044 0.3982 

CV 1.2715 0.1308 0.1419 0.9961 1.2073 0.0562 0.0624 0.9988 1.1422 0.0402 0.0437 0.8705 

CC 0.7957 0.1311 0.1423 0.4803 0.792 0.0564 0.0626 0.4259 0.692 0.0404 0.044 0.3672 

EWMA 0.8415 0.1322 0.1435 0.526 0.8284 0.0567 0.0631 0.5005 0.7206 0.0408 0.0445 0.4429 

Panel D: n=3000 

S 0.7504 0.1476 0.1596 0.3957 0.734 0.049 0.0539 0.3988 0.513 0.0384 0.0428 0.3259 

Id 0.7441 0.1477 0.1597 0.3946 0.7009 0.049 0.0539 0.3872 0.4615 0.0384 0.0428 0.3096 

VId 0.7437 0.1477 0.1596 0.3945 0.7043 0.049 0.0539 0.3886 0.4673 0.0384 0.0428 0.312 

SI 0.7516 0.1476 0.1596 0.3955 0.7339 0.049 0.0539 0.3984 0.5123 0.0384 0.0428 0.3252 

CV 1.2864 0.1477 0.1597 0.963 1.2281 0.049 0.0538 0.9954 1.1041 0.0384 0.0428 0.6822 

CC 0.7488 0.1476 0.1596 0.3949 0.7316 0.049 0.0539 0.3904 0.5096 0.0384 0.0428 0.3143 

EWMA 0.8563 0.1489 0.1611 0.4452 0.8161 0.0497 0.0547 0.4652 0.6244 0.0389 0.0435 0.4076 

Panel E: n=6000 

S 0.9672 0.1302 0.1409 0.4821 0.5737 0.0539 0.0589 0.3481 0.5772 0.0402 0.0437 0.3436 

Id 0.9496 0.1301 0.1408 0.4813 0.6095 0.0575 0.0639 0.4076 0.5449 0.0402 0.0437 0.3342 

VId 0.951 0.1301 0.1409 0.4815 0.5419 0.054 0.0589 0.3401 0.5483 0.0402 0.0437 0.3354 

SI 0.9688 0.1302 0.1409 0.482 0.574 0.0539 0.0589 0.3479 0.5772 0.0402 0.0437 0.3434 

CV 1.4142 0.1301 0.1408 1.0034 1.1436 0.054 0.0589 0.9706 1.1422 0.0402 0.0437 0.7031 

CC 0.9656 0.1302 0.1409 0.4814 0.5709 0.0539 0.0589 0.3415 0.575 0.0402 0.0437 0.3368 

EWMA 1.0432 0.1312 0.1422 0.5232 0.6946 0.0547 0.0599 0.4319 0.681 0.0407 0.0444 0.4229 

 509 
In both tables, we compare the six target matrices by examining one risk-based portfolio at time 510 

and the effect of increasing 𝑝 for fixed 𝑛. Special attention is devoted to the cases when 𝑝 > 𝑛: the 511 
high-dimensional sample. We have this scenario only when 𝑝 = 100 and 𝑛 = 60. Here, the sample 512 
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covariance matrix becomes ill-conditioned (Marčenko and Pastur 1967), thus it is interesting to 513 
evaluate gains obtained with shrinkage. The averaged Frobenius norm values in Table 3 give us a 514 
general overview about how target matrices perform across the whole shrinkage intensity spectrum 515 
in one goal. We aim to understand if, in average terms, shrinking the covariance matrix benefits risk-516 
portfolio weights. On the other hand, the minimum Frobenius norm values help us understanding 517 
to what extent the various target matrices can help reproducing the true portfolio weights: the more 518 
intensity we need, the better is the target. In both tables, sample values are listed in the first row of 519 
each Panel. 520 

Starting from Table 3, Panel A, the MV allocation seems better described by the Identity and the 521 
Variance Identity regardless the number of assets 𝑝. In particular, we look at the difference between 522 
the weights calculated entirely on the sample covariance matrix and the those of the targets: the 523 
Identity and the Variance Identity are the only estimator to perform better. In fact, shrinking towards 524 
the sample is not as bad as shrinking towards the Common Covariance. Increasing 𝑛 and moving 525 
to Panel B, similar results are obtained. This trend is confirmed in Panel C, while in the cases of 𝑛 =526 3000 and 𝑛 = 6000 all the estimators perform similarly. Hence, for the MV portfolio the Identity 527 
matrix works at best in reproducing portfolio weights very similar to the true ones. The same 528 
conclusions applies for the MD portfolio: when 𝑝 and 𝑛 are small, the Identity and the Variance 529 
Identity overperform other alternatives. On the other hand, we get very different results for the IV 530 
and ERC. Both portfolios seem not gaining benefits from the shrinkage procedure, as the Frobenius 531 
norm is very similar to that of the sample covariance matrix for all the target matrices under 532 
consideration. This is true for all pairs of 𝑝 and 𝑛. In the high-dimensional case (𝑝 = 100; 𝑛 = 60) 533 
the Identity matrix works best in reducing the distance between true and estimated portfolio weights, 534 
both for the MV and MD portfolios. In average, shrinkage does not help too much when alternative 535 
target matrices are used; only in the case of Common Covariance shrinking is worse than using the 536 
sample covariance matrix. All these effects vanish when we look at the IV and ERC portfolios: here, 537 
shrinkage does not help too much, whatever the target is. 538 

Overall, the results are in line with the conclusions of the numerical illustrations in Section 3. 539 
Indeed, the MV portfolio shows the highest distance between true and estimated weights, similarly 540 
to the MD. Both portfolios are affected by the dimensionality of the sample: shrinkage always help 541 
in reducing weights misspecification; it improves in high-dimensional cases. On contrary, estimated 542 
weights for the IV and the ERC portfolios are close to the true ones by construction, hence, shrinkage 543 
does not help too much. 544 
Switching to Table 4, results illustrate again the Identity and the Variance Identity attaining the best 545 
reduction of the Frobenius norm for the MV and MD portfolios. If results are similar to those of Table 546 
3 for the MV, results for the MD show an improvement in using the shrinkage estimators. The 547 
Identity, Variance Identity, Common Covariance and Constant Correlation target matrices 548 
overperform all the alternatives, including the sample estimator, minimising the Frobenius norm in 549 
a similar fashion. This is true also for the high-dimensional case. On the contrary, the IV and the ERC 550 
do not benefit from shrinking the sample covariance matrix, even in high-dimensional samples, 551 
confirming Table 3 insights. Lastly, we look at the shrinkage intensity at which target matrices attain 552 
the highest Frobenius norm reduction. The intensity is comprised in the interval [0; 1]: the more it is 553 
close to 1, the more the target matrix helps in reducing the estimation error of the sample covariance 554 
matrix. interestingly, the Identity and the Variance Identity show shrinkage intensities always close 555 
to 1, meaning that shrinking towards them is highly beneficial, as they are fairly better than the 556 
sample covariance matrix. This is verified either for the high-dimensional case and for those risk 557 
portfolios (IV and ERC) who do not show great improvements from shrinkage. 558 

Table 4. Frobenius norm for the portfolio weights. Values corresponds to the optimal shrinkage 559 
intensity, listed after the Frobenius norm for each portfolio. We report values for the sample 560 
covariance matrix (𝛿 = 0) separately in the first row of each panel. For each 𝑛, the first line reports 561 
the Frobenius norm for the sample covariance matrix. Abbreviations stand for: S for sample 562 
covariance; Id for identity matrix; VId for Variance Identity; SI for Single-Index; CV for Common 563 
Covariance; CC for Constant Correlation and EWMA for Exponentially Weighted Moving Average. 564 
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 P=10 P=50 P=100 

 MV IV ERC MD MV IV ERC MD MV IV ERC MD 

Panel A: n=60 

S 0.834 0 0.1585 0 0.1736 0 0.5842 0 0.7721 0 0.0573 0 0.0637 0 0.4933 0 0.7555 0 0.0409 0 0.0447 0 0.4565 0 

Id 0.6778 0.7 0.1424 0.4 0.1525 0.8 0.501 0.8 0.5997 1 0.0558 1 0.0624 1 0.3704 1 0.471 1 0.0403 0.8 0.0446 1 0.3462 1 

VId 0.6689 0.9 0.1581 0.5 0.173 0.9 0.5084 0.9 0.5539 1 0.0565 0.9 0.0627 1 0.3795 1 0.5428 1 0.0402 1 0.0437 1 0.3331 1 

SI 0.8345 0.1 0.1585 0.1 0.1735 1 0.558 1 0.7666 1 0.0573 0.1 0.0637 0.1 0.4633 0.9 0.7479 1 0.0409 0.1 0.0447 0.1 0.4195 0.9 

CV 1.2392 0.1 0.1581 0.5 0.1729 0.2 0.509 1 1.117 0.1 0.0565 0.9 0.0627 0.5 0.3795 1 1.1068 0.1 0.0402 1 0.0437 1 0.3331 1 

CC 0.8335 0.3 0.1585 0.1 0.1731 1 0.5081 1 0.7733 0.1 0.0573 0.1 0.0634 1 0.3795 1 0.757 0.1 0.0409 0.1 0.0444 1 0.3332 1 

EWMA 0.8331 0.1 0.1586 0.1 0.1737 0.1 0.5852 0.1 0.7706 0.1 0.0573 0.1 0.0637 0.1 0.4953 0.1 0.7213 1 0.0409 0.1 0.0447 0.1 0.4395 0.6 

Panel B: n=120 

S 0.9064 0 0.0877 0 0.0989 0 0.4649 0 0.7814 0 0.059 0 0.0656 0 0.5065 0 0.6519 0 0.0424 0 0.0472 0 0.4332 0 

Id 0.8121 0.6 0.087 0.6 0.0981 0.8 0.4241 0.7 0.6119 1 0.0613 0.9 0.0685 1 0.4255 1 0.613 1 0.0388 0.9 0.0428 1 0.3111 1 

VId 0.8121 0.8 0.087 0.8 0.0982 0.9 0.4242 0.9 0.6119 1 0.0613 0.9 0.0685 1 0.4255 1 0.4425 1 0.042 1 0.0467 1 0.3445 1 

SI 0.907 0.1 0.0877 0.1 0.0989 1 0.4526 1 0.776 1 0.059 0.1 0.0656 1 0.4872 1 0.6431 1 0.0424 0.1 0.0472 0.1 0.414 0.9 

CV 1.3269 0.1 0.087 0.8 0.0981 0.3 0.4245 1 1.1756 0.1 0.0586 0.9 0.0651 0.5 0.4302 1 1.0916 0.1 0.042 1 0.0467 1 0.3445 1 

CC 0.9043 0.8 0.0877 0.1 0.0987 1 0.4241 0.9 0.781 0.2 0.059 0.2 0.0654 1 0.4302 1 0.6527 0.1 0.0424 0.1 0.0471 1 0.3446 1 

EWMA 0.9052 0.1 0.0876 0.2 0.0988 0.2 0.4651 0.1 0.7797 0.2 0.0589 0.2 0.0655 0.2 0.5056 0.1 0.6554 0.1 0.0424 0.1 0.0472 0.1 0.4331 0.1 

Panel C: n=180 

S 0.7989 0 0.1311 0 0.1423 0 0.5007 0 0.7932 0 0.0564 0 0.0627 0 0.4631 0 0.6905 0 0.0404 0 0.044 0 0.4065 0 

Id 0.7177 0.5 0.1307 0.7 0.1419 0.9 0.4724 0.8 0.6613 0.8 0.0562 0.6 0.0624 1 0.3977 0.9 0.534 1 0.0375 0.6 0.0398 1 0.3645 1 

VId 0.718 0.7 0.1307 0.9 0.1419 1 0.4724 0.9 0.6614 0.9 0.0562 0.8 0.0624 1 0.3979 1 0.5428 1 0.0402 1 0.0437 1 0.3331 1 

SI 0.799 0.2 0.1311 0.1 0.1423 1 0.4929 1 0.7897 0.7 0.0564 0.1 0.0627 1 0.4515 0.9 0.6863 0.8 0.0404 0.1 0.044 1 0.3955 0.8 

CV 1.2715 0.1 0.1307 0.9 0.1418 0.4 0.4724 1 1.2073 0.1 0.0562 0.8 0.0624 0.4 0.3979 1 1.1422 0.1 0.0402 1 0.0437 0.9 0.3331 1 

CC 0.7942 1 0.1311 0.1 0.1422 1 0.4725 1 0.7912 0.4 0.0564 0.1 0.0626 1 0.3977 1 0.6904 0.1 0.0404 0.1 0.0439 1 0.3331 1 

EWMA 0.8035 0.1 0.1312 0.1 0.1424 0.1 0.5008 0.1 0.7951 0.1 0.0564 0.1 0.0626 0.1 0.4653 0.1 0.6938 0.1 0.0404 0.1 0.044 0.1 0.4074 0.1 

Panel D: n=3000 

S 0.7504 0 0.1476 0 0.1596 0 0.3957 0 0.734 0 0.049 0 0.0539 0 0.3988 0 0.513 0 0.0384 0 0.0428 0 0.3259 0 

Id 0.7425 0.1 0.1477 0.1 0.1596 0.1 0.3941 0.1 0.6988 1 0.049 1 0.0538 1 0.3859 1 0.4573 1 0.0384 1 0.0428 1 0.3072 1 

VId 0.7426 0.3 0.1476 0.1 0.1596 0.1 0.3941 0.3 0.6988 1 0.049 1 0.0538 1 0.3859 1 0.4573 1 0.0384 1 0.0428 1 0.3072 1 

SI 0.7506 0.1 0.1476 0.1 0.1596 0.1 0.3953 1 0.7339 0.5 0.049 0.1 0.0539 1 0.3983 0.8 0.512 1 0.0384 0.2 0.0428 1 0.325 0.9 

CV 1.2864 0.1 0.1476 0.1 0.1596 0.1 0.3951 1 1.2281 0.1 0.049 1 0.0538 1 0.3859 1 1.1041 0.1 0.0384 1 0.0428 1 0.3072 1 

CC 0.7477 1 0.1476 0.1 0.1596 0.1 0.3946 0.7 0.7299 1 0.049 0.1 0.0539 1 0.386 1 0.5073 1 0.0384 0.2 0.0428 1 0.3072 1 

EWMA 0.7615 0.1 0.1477 0.1 0.1597 0.1 0.3981 0.1 0.7439 0.1 0.0491 0.1 0.0539 0.1 0.4043 0.1 0.5263 0.1 0.0384 0.1 0.0429 0.1 0.3346 0.1 

Panel E: n=6000 

S 0.9672 0 0.1302 0 0.1409 0 0.4821 0 0.5737 0 0.0539 0 0.0589 0 0.3481 0 0.5772 0 0.0402 0 0.0437 0 0.3436 0 

Id 0.9486 1 0.13 1 0.1408 1 0.4811 1 0.6085 0.7 0.0575 0.1 0.0639 0.1 0.4072 0.8 0.5428 1 0.0402 1 0.0437 1 0.3331 1 

VId 0.9486 1 0.13 1 0.1408 1 0.4811 1 0.5365 1 0.054 0.1 0.0589 0.7 0.3381 1 0.5428 1 0.0402 1 0.0437 1 0.3331 1 

SI 0.9675 0.1 0.1302 0.1 0.1409 1 0.482 1 0.5738 0.1 0.0539 0.1 0.0589 1 0.3478 1 0.5772 0.4 0.0402 0.1 0.0437 1 0.3433 0.8 

CV 1.4142 0.1 0.13 1 0.1408 1 0.4811 1 1.1436 0.1 0.054 0.1 0.0589 0.1 0.3381 1 1.1422 0.1 0.0402 1 0.0437 1 0.3331 1 

CC 0.9644 1 0.1302 0.1 0.1409 1 0.4812 1 0.5687 1 0.0539 0.1 0.0589 1 0.3381 1 0.5733 1 0.0402 0.9 0.0437 1 0.3331 1 

EWMA 0.9765 0.1 0.1302 0.1 0.1409 0.1 0.4832 0.1 0.5901 0.1 0.054 0.1 0.059 0.1 0.3561 0.1 0.59 0.1 0.0402 0.1 0.0438 0.1 0.3524 0.1 

 565 
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4.2.3 Sensitivity to shrinkage intensity 566 
 567 
To have a view on the whole shrinkage intensity spectrum (i.e. the interval [0; 1]) we refer to 568 

Figure 3, where we report the Frobenius Norms for the weights (y-axis) w.r.t. the shrinkage intensity 569 
(x-axis). Each column corresponds to a specific risk-based portfolio: from left to right, the Minimum 570 
Variance, the Inverse Volatility, the Equal-Risk-Contribution and the Maximum Diversification, 571 
respectively. Each row corresponds to the 𝑝/𝑛 ratio in 𝑛 ascending order. For each subfigure, the 572 
Identity is blue o-shaped, the Variance Identity is green square-shaped, the Single-Index is red 573 
hexagram-shaped, the Common Covariance is black star-shaped, the Constant Correlation is cyan +-574 
shaped and the EWMA is magenta diamond-shaped. 575 

 576 
Figure 4. Frobenius norm for portfolio weights with respect to the shrinkage parameter, when 𝑝 =577 100. 578 

Figure 4 illustrates the case 𝑝 = 100, so to include the high-dimensional scenario. Starting from 579 
the latter (first row, 𝑛 = 60), the Variance Identity is the only target matrix to always reduce weight 580 
misspecification for all the considered portfolios, for all shrinkage levels. The Identity do the same, 581 
excluding the ERC case where it performs worse than the sample covariance matrix. the remaining 582 
targets behave very differently across the four risk-based portfolios: the Common Covariance is the 583 
worst in both the MV and MD and the EWMA is the worst in both ERC and IV. The Market Model 584 
and the Constant Correlation do not improve much from the sample estimator across all portfolios. 585 

Looking at the second row (𝑛 = 120), the Identity is the most efficient target, reducing the 586 
distance between estimated and true portfolio weights in all the considered portfolios. The Variance 587 
Identity is also very efficient in MV and MD portfolios, while the remaining targets show similar 588 
results as in the previous case. The same conclusions apply for the case 𝑛 = 180. 589 

When the number of observations is equal or higher than 𝑛 = 3000, results do not change much. 590 
The Identity, the Variance Identity, the Market model and the Constant Correlation are the most 591 
efficient target matrices towards to shrink, while the EWMA is the worst for both IV and ERC 592 
portfolios and the Common Covariance is the worst for the MV and MD ones. 593 

In conclusion, for the MV portfolio the Common Covariance should not be used, since it always 594 
produces weights very distant from the true ones being very unstable. At the same time, the EWMA 595 
should not be used to shrink the covariance matrix in the IV and ERC portfolios. The most convenient 596 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 October 2018                   doi:10.20944/preprints201810.0316.v1

Peer-reviewed version available at Risks 2018, 6, 125; doi:10.3390/risks6040125

http://dx.doi.org/10.20944/preprints201810.0316.v1
http://dx.doi.org/10.3390/risks6040125


 18 of 19 

 

matrices towards which to shrink are the Identity and the Variance Identity. Overall, the MV and the 597 
MD portfolios gain more from shrinkage than the IV and ERC. 598 
 599 

5. Conclusions 600 
In this article, we provide a comprehensive overview about shrinkage in risk-based portfolios. 601 

Portfolios solely based on the asset returns covariance matrix are usually perceived as “robust” since 602 
they avoid to estimate the asset returns mean. However, they still suffer from estimation error when 603 
the sample estimator is used, affecting with misspecification the portfolio weights. Shrinkage 604 
estimators have been proved to reduce the estimation error by pulling the sample covariance towards 605 
a more structured target. 606 

By the mean of an extensive Monte Carlo study, we compare six different target matrices: the 607 
Identity, the Variance Identity, the Single-index model, the Common Covariance, the Constant 608 
Correlation and the Exponential Weighted Moving Average, respectively. We do so considering their 609 
effects on weights for the Minimum Variance, Inverse Volatility, Equal-risk-contribution and 610 
Maximum diversification portfolios. Moreover, we control for the whole shrinkage intensity 611 
spectrum and for dataset size, changing observation length and number of assets. Therefore, we are 612 
able to (i) assess estimators’ statistical properties and similarity with the true target matrix; (ii) address 613 
the problem of how selecting a specific target estimator impacts on the portfolio weights.  614 

Regarding (i), findings suggest the identity matrix held the best statistical properties, being well-615 
conditioned across all the combinations of observations/assets, especially for high-dimensional 616 
dataset. Nevertheless, this target is not very similar to the true target matrix. The Single-Index and 617 
the Constant Correlation target matrices show the greater similarity with the true target matrix, 618 
minimizing the Frobenius norm, albeit they are poor-conditioned when observations and assets share 619 
similar sizes. Turning to (ii), the identity attains the best results in terms of distance reduction 620 
between the true and estimated portfolio weights for both the Minimum Variance and Maximum 621 
Diversification portfolio construction techniques. The identity matrix is also stable against shifts in 622 
the shrinkage intensity. 623 

Overall, selecting the target matrix is very important, since we verified there are large shifts in 624 
the distance between true and estimated portfolio weights when shrinking towards different targets. 625 
In risk-based portfolio allocations the Identity and the Variance Identity matrices represent the best 626 
target among the six considered in this study, especially in the case of Minimum Variance and 627 
Maximum Diversification portfolios. In fact, they are always well-conditioned and overperform their 628 
competitor in deriving the most similar weights to the true ones. 629 

Lastly, findings confirm that the Minimum Variance and Maximum Diversification portfolios 630 
are more sensitive to misspecification in the covariance matrix, therefore they benefit the most when 631 
the sample covariance matrix is shrunk. Findings are in line to what previously found in (Ardia et al. 632 
2017): the Inverse Volatility and the Equal-Risk-Contribution are more robust to covariance 633 
misspecification; hence, allocations do not improve significantly when shrinkage is used. 634 
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