

1 *Type of the Paper (Article)*

2 **Differential effects of red yeast rice, Berberis aristata 3 and Morus alba extracts, active components of 4 LopiGLIK®, on PCSK9 in HepG2 cells**

5 **Maria Giovanna Lupo¹, Chiara Macchi², Silvia Marchianò², Haixia Chen³, Cesare Sirtori⁴,
6 Alberto Corsini^{2,5}, Massimiliano Ruscica², Nicola Ferri¹**

7 ¹ Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, ITALY

8 ² Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, ITALY

9 ³ Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and
10 Technology, Tianjin University, Tianjin, China

11 ⁴ Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy 5IRCCS Multimedica,
12 Milan, Italy.

14 * Correspondence: Massimiliano Ruscica, Via Balzaretti 9, 20133, Milan, Italy; tel: 00390250318220

15 Email: massimiliano.ruscica@unimi.it

16

17

18 **Abstract:** Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the key regulator of low-density
19 lipoprotein cholesterol (LDL-C) plasma levels. We previously observed that treatment of
20 dyslipidemic subjects with nutraceutical combination containing red yeast rice (monacolin K 3.3 mg),
21 Berberis aristata cortex extract (Berberine 531.25 mg) and Morus alba leaves extract (1-
22 deoxynojirimycin 4 mg) (LopiGLIK®) did not alter the plasma PCSK9 levels. Thus, the aim of the
23 present study was to investigate the effect of these three components on PCSK9 expression in HepG2
24 cell line in relationship to their effects on LDL-C cellular uptake. HepG2 cell line were incubated with
25 Berberis aristata cortex extract (BCE), red yeast rice (RYR) and Morus alba leaves extract (MLE) alone
26 or in combination for 24h. RYR (50 µg/mL) increased PCSK9 protein expression (WB and ELISA
27 assays), PCSK9 mRNA and its promoter activity. BCE (40 µg/mL) reduced PCSK9 expression, mRNA
28 levels and promoter activity. MLE determined a concentration-dependent inhibition of PCSK9 at
29 mRNA and protein levels, with a maximal reduction at 1 mg/mL; no significant changes in PCSK9
30 promoter activity were found. MLE also downregulates the expression of fatty acid synthase and
31 HMG-CoA reductase mRNA levels. The combination of RYR, BCE and MLE reduced PCSK9 at
32 mRNA, protein, and promoter activity. Finally, this combination induced the LDL receptor and LDL-
33 C uptake by HepG2 cells. In conclusion, the positive effect of MLE on PCSK9 supports the rational of
34 using this nutraceutical combination to control hyperlipidemic conditions.

35 **Keywords:** red yeast rice, berberis aristata, morus alba, PCSK9

36 **1. Introduction**

37 Innovative nutritional strategies to control dyslipidaemias have been developed and the ESC/EAS
38 Guidelines for the Management of Dyslipidaemias encourages the consumption of the so-called
39 nutraceuticals as alternatives or in addition to lipid-lowering drugs [1]. Several nutraceutical
40 combinations have shown significant lipid lowering effects and potential positive impact on
41 cardiovascular risk [2]. LopiGLIK® possesses a specific composition represented by red yeast rice

42 (monacolin K 3.3 mg), Berberis aristata cortex extract (Berberine 531.25 mg) and Morus alba leaves
43 extract (1-deoxynojirimycin 4mg). The clinical efficacy of this nutraceutical combination was recently
44 evaluated in a randomized controlled trial that recruited subjects with mild hypercholesterolemia
45 and not on statin therapy [3]. A 16 week treatment led to a 21.9% reduction of low-density-
46 lipoprotein-cholesterol (LDL-C) with 72% subjects achieving LDL-C levels below 130 mg/dl [3]. The
47 analysis of a subgroup of these subjects, demonstrated an improvement of the serum lipoprotein
48 functional profile without any effect on proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma
49 levels [4].

50 PCSK9 plays a pivotal role on the regulation of LDL-C levels by acting on the degradation of the
51 LDL receptor (LDLR), although many other physiological functions beyond lipid metabolism have
52 also been reported [5-13]. The relevance of PCSK9 as new pharmacological target for controlling
53 hypercholesterolemia and cardiovascular diseases (CVD) has been firmly demonstrated by the
54 positive results of the FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition
55 in Subjects with Elevated Risk) trial, conducted by treating CVD patients with the monoclonal
56 antibody anti PCSK9, evolocumab [14].

57 Many nutraceuticals have been shown to modulate PCSK9 expression, including berberine [15],
58 curcumin [16], moracin C [17], and lignans [18]. In addition, statins induce PCSK9 in vitro [19,20],
59 and in clinical trials [21-24]. The mechanism by which statin induce PCSK9 is dependent on the
60 activation of the sterol responsive element binding protein (SREBP) transcriptional activity [25,26],
61 and by the presence of the small G protein Rac1 [27]. On this regards, it should bear in mind that
62 SREBP-2 preferentially transcribes for genes involved in the cholesterol biosynthetic pathway while
63 SREBP-1a and SREBP-1c preferentially activate genes involved in the synthesis of fatty acids and
64 triglycerides [28,29]. Differently from many of the SREBP-regulated genes, PCSK9 synthesis is
65 controlled at the gene transcriptional level by both SREBPs [21,26] and the hepatocyte nuclear factor-
66 1 (HNF-1) alpha [30,31].

67 Since monacolin K, the key component of RYR, is chemically indistinguishable from lovastatin,
68 it is conceivable to hypothesize its inducible effect on PCSK9. On the contrary, berberine does not
69 influence the SREBP pathway but rather increases the expression of the LDLR by stabilizing its
70 mRNA [32]. Nevertheless, additional experiments suggest that berberine inhibits the PCSK9
71 promoter activity by reducing both the HNF1 α and SREBP expression [15,30,31]. Indeed, at the
72 promoter level, the inhibitory effect of berberine is partially abolished by each single mutation of SRE
73 or HNF1 site of the PCSK9 promoter [30]. This effect counteracts the induction of PCSK9 by statins
74 [30], and for this reason berberine may be consider useful in combination to statins [15]. The
75 involvement of HNF1 α transcription factor on the inhibitory effect of berberine on PCSK9 has also
76 been confirmed in vivo and to be dependent from the proteasomal pathway [31]. Overall, the basic
77 molecular mechanisms underlying the opposite effects of statins (positive) and berberine (negative)
78 on the transcription of PCSK9 are defined. On the contrary, much less is known on Morus alba leaves
79 extract, the third component of LopiGLIK®. The leaves of Morus alba have been used as a remedy
80 since ancient times, and have many pharmacological effects, such as antidiabetic, hypolipidemic,
81 antiatherogenic, antibacterial, anticancer, cardiovascular, antioxidant, and anti-inflammatory [33].

82 An additional property of the major component of Morus alba, i.e. 1-deoxynojirimycic (DNJ), is
83 its inhibitory activity on α -glycosidase. This leads to a significant antobesity effect of DNJ in models
84 of experimental obesity [34]. Body weight reductions of around 20% are reported upon a one-month
85 study. When glucose tolerance evaluations are carried out, these are characterized by improved
86 glycemia and a markedly reduced insulinemic response. The α -glycosidase inhibitory activity
87 appears to be superior to that of acarbose and potentially this treatment may reduce the development
88 of diabetes in experimental animals, thus suggesting the application in clinical condition [35].
89 Experimental evidence also supports a positive effect of Morus alba on cholesterol and lipid
90 metabolism. For instance, the 3% supplementation of dry Morus alba leaves powder in an atherogenic
91 diet, determined hypolipidemic effects in LDLR null mice with a significant attenuation of
92 atherosclerotic lesion development [36]. The lipid lowering and antiatherosclerotic effects could be
93 related to the presence of quercetin 3-(6-Malonylglucoside), one of the most abundant flavonoid

94 present in *Morus alba* leaves [36]. A hypolipidemic action was observed in hypercholesterolemic rats
95 after supplementation of methanol fraction of *Morus alba* root bark extract [37]. The supplementation
96 of *Morus alba* leaves in normal chow diet of apoE null mice also demonstrated an antithrombotic
97 effect, although no changes in lipid levels were observed [38]. Finally, *Morus alba* fruits water extracts
98 showed a significant hypolipidemic effect in hamsters fed high fat (cholesterol diet [39].
99 Although the incubation of HepG2 cell line with *Morus alba* fruits water extracts was shown to affect
100 the SREBP-transcriptional dependent genes, fatty acid synthase and 3-hydroxy-3-methyl-3-glutaryl
101 coenzyme A (HMG-CoA) reductase, with a concomitant increase of LDLR and LDL uptake [39], the
102 molecular mechanism underlying the hypolipidemic effect of *Morus alba* is still unknown.

103 Thus, the aim of the present study was to define the effect of the LopiGLIK® nutraceutical
104 combination on genes involved in cholesterol homeostasis, including PCSK9, and thus the molecular
105 mechanism underlying its hypolipidemic effect.

106 2. Materials and Methods

107 2.1 Reagents

108 Eagle's minimum essential medium (MEM) was purchased from Sigma, trypsin-EDTA, penicillin,
109 streptomycin, sodium pyruvate, non-essential amino acid solution, fetal calf serum (FCS), plates and
110 Petri dishes were purchased from EuroClone. RYR (220 mg contains 3.3 mg of monacolin K), Berberis
111 aristata cortex extract (BCE; 625 mg contains 531.25 mg of berberine) and *Morus alba* leaves extract
112 (MLE; 200 mg contains 4 mg of DNJ) powders were supplied by Akademy Pharma Srl (Milano, Italy).
113 BCE and RYR were dissolved in DMSO while MLE was dissolved in H2O, filtered and stored at -20°C.
114 Actinomycin D was purchased from SIGMA, dissolved in DMSO and stored at -20°C.
115

116 2.2 Cell cultures

117 Human hepatic cancer cell line (HepG2) were cultured in MEM supplemented with 10% FCS, L-
118 glutamine, sodium-pyruvate and non-essential amino acids, penicillin/streptomycin at 37°C in a
119 humidified atmosphere of 5% CO2 and 95% air.
120

121 2.3 Cell viability assay

122 Cell viability was determined by sulphorhodamine B (SRB) assay, as previously described [40]. Cells
123 were seeded in a 96-well tray (5*10³ cells/well) and after 24h treated with nutraceutical extracts at
124 indicated concentrations. SRB assay was then performed after 48h incubation.
125

126 2.4 Retrotranscription and quantitative PCR (RT-qPCR)

127 RNA Preparation and Quantitative Real Time PCR-Total RNA was extracted with the iScriptTM RT-
128 qPCR Sample Preparation Buffer (BIO-RAD) cDNA synthesis preparation reagents (Bio-Rad)
129 according to manufacturer's instructions. Reverse transcription-polymerase first-strand cDNA
130 synthesis was performed by using the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific)
131 [41]. qPCR was then performed by using the PowerUpTM SYBRTM Green Master Mix (Thermo
132 Scientific) and specific primers for selected genes. Primer sequences used for qPCR analysis are
133 shown in table. The analyses were performed with the Mx3000P qPCR System (Agilent), with the
134 following cycling conditions: 95°C, 2 min; 95°C, 15 sec and 60°C, 1 min for 40 cycles. Data were
135 expressed as Ct values and used for the relative quantification of targets with the $\Delta\Delta Ct$ calculation.
136

137 **Table 1.** Primer sequence utilized for the qPCR analysis.

Gene	Forward	Reverse
PCSK9	5'- CCTGCGCGTGCTCACT-3'	5'- GCTGGCTTTCCGAAACTC-3'

HMG-CoA reductase	5'- CTTGTGTGTCCTTGGTATTAGA GCTT-3'	5'-GCTGAGCTGCCAAATTGGA-3'
LDLR	5'- TCTATGGAAGAACTGGCGGC- 3'	5'-ACCATCTGTCTCGAGGGGTA-3'
FAS	5'- GCAAATTCGACCTTCTCAGA AC-3'	5'-GGACCCCGTGGAATGTCA-3'
18S	5'- CGGCTACCACATCCACCGAA- 3'	5'- CCTGAATTGTTATTTTCTGCACTACC -3'

138

139 *2.5 Western blot analysis*

140 Cells were washed twice with PBS and lysed with a solution of 50mM Tris pH 7.5, 150mM NaCl, 0.5%
141 Nonidet-P40, containing a protease and phosphatase inhibitor cocktails (SIGMA, Milan, Italy) for 30
142 min. on ice. Twenty µg of proteins and a molecular mass marker (Thermo Scientific) were separated
143 on 4-12% SDS-PAGE (BIO-RAD) under denaturing and reducing conditions. Proteins were then
144 transferred to a nitrocellulose membrane by using the Trans-Blot® Turbo™ Transfer System (BIO-
145 RAD). The membranes were washed with Tris-buffered saline-Tween 20 (TBS-T), and nonspecific
146 binding sites were blocked in TBS-T containing 5% nonfat dried milk for 60 min at room temperature.
147 The blots were incubated overnight at 4 °C with a diluted solution (5% nonfat dried milk) of the
148 following human primary antibodies: anti-PCSK9 (mouse monoclonal antibody, Abcam ab84041;
149 dilution 1:1000), anti SREBP-2 (rabbit polyclonal antibody, Abcam ab30682; dilution 1:2000), anti
150 HNF1α (rabbit polyclonal antibody, Abcam ab96777; dilution 1:1000), anti LDLR (mouse monoclonal
151 antibody, Millipore clone 2H7.1; dilution 1:1000) and anti-α-tubulin (mouse monoclonal antibody,
152 Sigma clone DM1A; dilution 1:2.000). Membranes were washed with TBS-T and then exposed for 90
153 min at room temperature to a diluted solution (5% nonfat dried milk) of the secondary antibodies
154 (peroxidase-conjugate goat anti-rabbit, and anti-mouse, Jackson Immunoresearch). Immunoreactive
155 bands were detected by exposing the membranes to ClarityTM Western ECL chemiluminescent
156 substrates (Bio-Rad) for 5 min, and images were acquired with a VersaDoc 4000 Imaging System (Bio-
157 Rad) [42]. Densitometric readings were evaluated using the ImageLabTM software as previously
158 described.

159

160 *2.6 ELISA assay*

161 Conditioned media were cleared by centrifugation (13,000 rpm for 10 min at 4°C) and store at -20 °C.
162 The amount of PCSK9 was then quantified by using the ELISA assays (R&D System) according to
163 manufacturer's instructions and as previously described [9].

164

165 *2.7 Luciferase reported promoted activities assay*

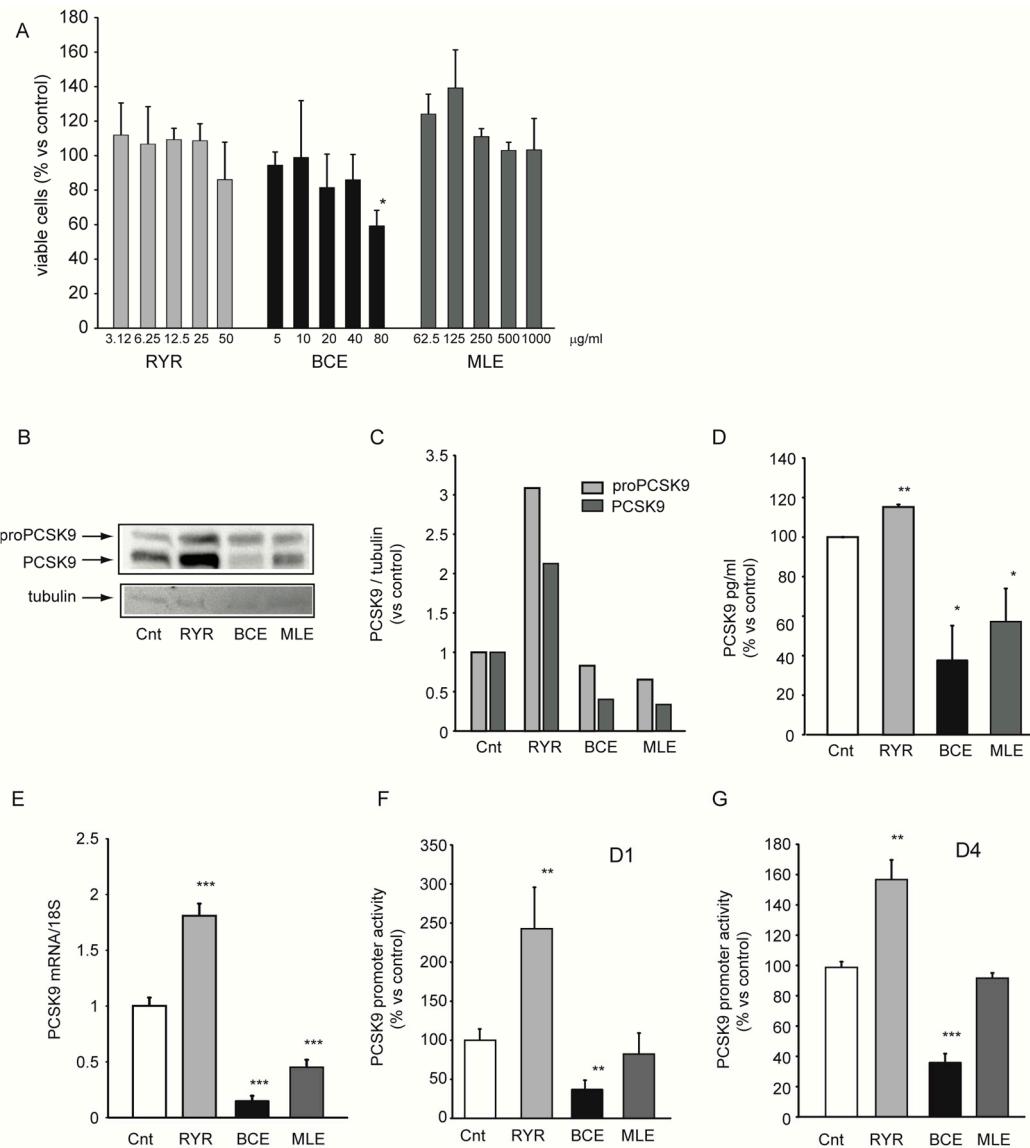
166 HepG2 cells were seeded into 60mm Petri dished (6 x 105 cells/dish). The day after, the cells were
167 transfected with pGL3-PCSK9-D4 and pGL3-PCSK9-D1 constructs [26] by using TurboFect reagent
168 (Thermo Fisher), as previously described [43]. The plasmid pGL3-PCSK9-D4 contains the 5' flanking
169 region of the PCSK9 gene from -440 to -94 relative to the ATG start codon as, while the pGL3-PCSK9-
170 D4 contains the region from -1711 to -94. Twenty-four hours post transfection, cells were seeded in a
171 48-well tray (8 x 104 cells/well) and treatments were performed after 24h. After 24h of treatment,
172 luciferase activity was assessed by using NeoLite reagent (PerkinElmer), according to manufacturer's
173 instructions.

174 **2.8 LDL-isolation and labelling**
175 Total LDL (d >1.019 <1.063 g/mL) were isolated by ultracentrifugation at 4°C from the human plasma.
176 To remove the excess of EDTA LDL samples were transferred to dialyzing tubes and dialyzed in
177 physiologic solution (0.9% NaCl in deionized water) at 4°C, changing the solution three times (4h,
178 48h, 48h). Purified LDL were sterilized using a 0.22-μm filter and stored at 4°C. The protein content
179 was evaluated by the BCA assay [44], using BSA as a standard. For the labeling, LDL were incubated
180 with the fluorescent dye DiO (250 μg DiO/mg LDL protein) for 18h at 4°C. LDL-DiO were passed
181 on a Sephadex G25 column (PD10) with 0.01% PBS-EDTA (pH 7.4), to remove unbound DiO [8,45].
182

183 **2.9 Fluorescent LDL-uptake cell-based assay**
184 HepG2 cells were seeded into 96-well tray (25 x 103 cells/well in a complete medium) and after
185 24h treated in 0.4% FCS media. 24h after treatment, cells were incubated with 100 μg/mL of LDL-DiO
186 (3,3'- dioctadecyloxacarbocyanine). After 3h of incubation at 37°C, cells were washed PBS and cells
187 dissolved with 100μl of 2% SDS and the DiO fluorescence were measured by using the microplate
188 fluorimeter (Victor MultiPlate Reader by PerkinElmer) at excitation and emission wavelength of
189 484nm and 501nm, respectively).

190
191 **2.10 Statistical analysis**
192 Statistical analysis was performed using the Prism statistical analysis package Version 5.01
193 (GraphPad Software, San Diego, CA). When possible, p values were determined by Student's t test.
194 Otherwise, differences between treatment groups were evaluated by oneway ANOVA. A probability
195 value of p < 0.05 was considered statistically significant. The data are representative of three
196 independent experiments.

197


198 **3. Results**

199 **3.1 Effect of RYR, BCE and MLE on PCSK9 expression**

200 In a first series of experiments, we compared the effect of the three active components of LopiGLIK®
201 on PCSK9 expression. HepG2 cells were incubated for 24h with non-cytotoxic concentrations of RYR
202 (50μg/mL), MLE (1 mg/mL) or BCE (40μg/mL) (Figure 1A), and PCSK9 protein levels were
203 determined by western blot analysis of total cell lysates. As expected, RYR significantly induced both
204 proPCSK9 (74 kDa; 3.1 fold) and the active form (62 kDa; 2.1 fold), while BCE partially reduce their
205 intracellular levels, compared to untreated control cells (-34.7% proPCSK9 and -64.3% PCSK9 vs
206 control, respectively) (Figure 1B and C). The water-soluble extract of Morus alba leaves (MLE) acted
207 similarly to BCE, such as determined a significant reduction of the intracellular levels of both
208 proPCSK9 and active form of PCSK9 (-17.1% proPCSK9 and -59.3% PCSK9, respectively; Figure 1B
209 and C). PCSK9 levels released in the conditioned media were significant raised upon RYR treatment
210 (+9.8% ± 1.2% vs control), whilst were reduced by BCE (-64.8% ± 16.2% vs control) and MLE (-43.8%
211 ± 23.6% vs control) treatments (Figure 1D).

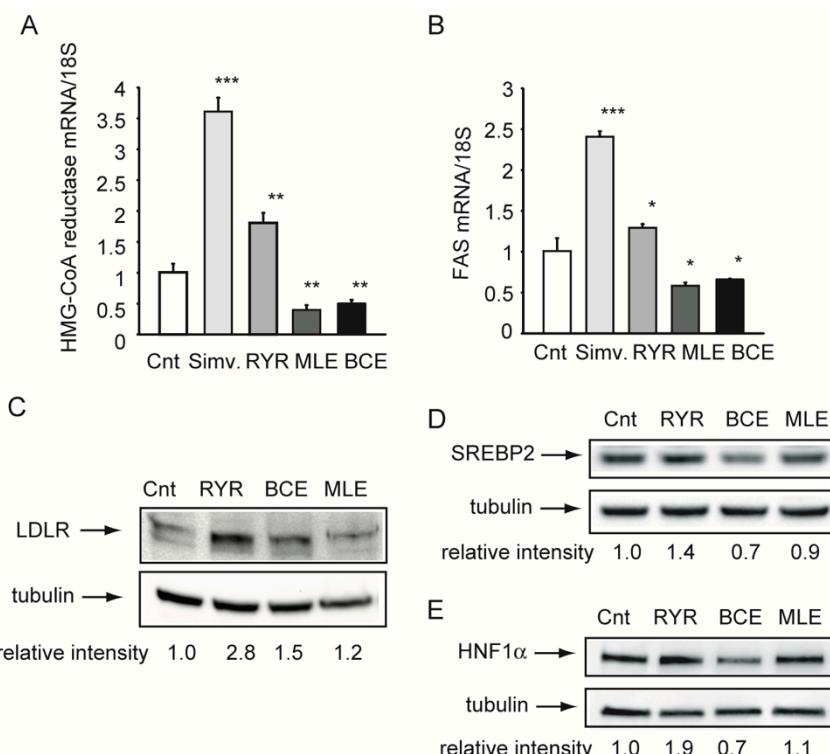
212 The quantification of the mRNA levels, by real time qPCR, showed that RYR induced PCSK9
213 levels by 1.89 ± 0.11 fold, while MLE and BCE significantly suppressed its expression by $54.8\% \pm 0.7\%$
214 and by $85.0\% \pm 0.5\%$, respectively (Figure 1E). To demonstrate the transcriptional inhibition of PCSK9
215 mRNA expression by MLE, HepG2 cells were transfected with a luciferase construct containing the
216 5'-flanking region of PCSK9 gene from -1711 to -94 (pGL3-PCSK9-D1), relative to ATG starting codon
217 [30]. As expected, RYR significantly increased the luciferase activity (2.4±0.5 fold vs control) while
218 BCE determined an opposite effect (-63.0 ± 11.8% vs control; Figure 1F). Importantly, MLE did not
219 affect the PCSK9 promoter activity, thus indicating a different mechanism of action compared to BCE.
220 Similar results were observed when a different plasmid was used, pGL3-PCSK9-D4 plasmid
221 containing the Sp1, SRE and HNF1α sites [30]. Upon treatment with RYR and BCE, the luciferase
222 activity was increased by 1.6 ± 0.08 fold and reduced by $63.6 \pm 16.3\%$ vs control, respectively (Figure

223 1G). These results provide new evidence on the inhibitory effect of MLE on PCSK9 expression,
 224 without any interference with its promoter activity.

225

226 **Figure 1.** Effect of RYR, BCE and MLE on PCSK9 expression. A) HepG2 cells were incubated for 48h
 227 with indicated concentrations of RYR, MLE, and BCE. The cell viability was then determined by SRB
 228 assay. B-E) HepG2 cells were seeded in MEM/10% FCS and the day after incubated with
 229 MEM/10%FCS in the presence or absence of RYR (40 μ g/mL), BCE (50 μ g/mL) and MLE (1mg/mL).
 230 After 24h, total protein extract and RNA were prepared and conditioned media collected. B) PCSK9
 231 protein expression was evaluated by western blot analysis from total protein extracts. Tubulin was
 232 used as loading control. C) Densitometric readings were evaluated using the ImageLabTM software.
 233 D) PCSK9 levels in the conditioned media were evaluated by ELISA assay. E) mRNA levels of PCSK9
 234 were determined by quantitative real-time PCR. F and G) HepG2 cells were transfected with pGL3-
 235 PCSK9-D1 (G) or pGL3-PCSK9-D4 (H). The day after the transfection the cells were seeded in a 48well
 236 tray and after an additional 24h were incubated with RYR, BCE or MLE. After 24h, luciferase activities
 237 were determined by Neolite reagent. Differences between treatments were assessed by Student's t
 238 test, and one-way ANOVA (when necessary). * $p<0.05$; ** $p<0.01$; *** $p<0.001$.

239


3.2 Effect of RYR, BCE, and MLE on mRNA levels of SREBP-regulated genes

240
 241

As MLE reduces the expression of PCSK9 mRNA, we investigated its possible effect on
 additional genes regulated by the SREBP transcription factor, such as HMG-CoA reductase,

242 and FAS. This analysis revealed that MLE significantly reduces the expression of both FAS
 243 and HMG-CoA reductase at similar extent than BCE. On the contrary, RYR induced both
 244 transcripts in a significant manner (Figure 2A-B). In particular, the incubation of HepG2
 245 cells with MLE significantly reduced HMG-CoA reductase expression (-33.7 ± 1.17% vs
 246 control), similarly to BCE (-54.5% ± 3.5% vs control); conversely, RYR led to opposite results:
 247 +1.77 ± 0.14-fold vs control. A similar effect was observed on FAS mRNA expression (-41.7
 248 ± 3.9%, -33.9 ± 0.8% and 1.41 ± 0.07 fold vs control for MLE, BCE and RYR, respectively). At
 249 the protein levels, both RYR and BCE induced LDLR expression by 2.8 and 1.5 fold,
 250 respectively, while MLE showed a minor effect (1.2 fold) (Figure 2D). These data indicate
 251 that MLE elicit an inhibitory effect on additional genes, beyond PCSK9, that are involved
 252 in cholesterol metabolism and are transcriptionally regulated by SREBP pathway.

253 To further investigate the effect of MLE on gene expression, we determined, by
 254 Western blot analysis, the expression of SREBP2 and HNF1 α from total cell lysates. RYR
 255 determined a significant increase of both transcription factors (1.9 and 1.4 fold for SREBP2
 256 and HNF1 α , respectively; Figure 2E and F), while BCE determined a significant
 257 downregulation (-30% for both SREBP2 and HNF1 α). Interestingly, MLE did not determine
 258 any significant variation of SREBP and HNF1 α (Figure 2E and F), suggesting that the
 259 inhibitory effects on PCSK9, HMG-CoA reductase and FAS by MLE is due to a different
 260 mechanism of action.

261

262 **Figure 2.** Effect of RYR, BCE and MLE on SREBP-regulated genes. A-E) HepG2 cells were seeded in
 263 MEM/10% FCS and the day after incubated with MEM/10% FCS in the presence or absence of
 264 simvastatin (40 μ M), RYR (40 μ g/mL), BCE (50 μ g/mL) and MLE (1mg/mL). After 24h total RNA and
 265 total protein extract were prepared. A and B) mRNA levels of HMG-CoA reductase and FAS mRNA
 266 were determined by quantitative real-time PCR. C-E) LDLR, SREBP2 and HNF1 α protein expression
 267 were evaluated by western blot analysis from total protein extracts. Tubulin was used as loading
 268 control. Densitometric readings were evaluated using the ImageLabTM software and indicated below
 269 the representative western blot pictures. Differences between treatments were assessed by Student's
 270 t test, and one-way ANOVA (when necessary). * p <0.05; ** p <0.01; *** p <0.001.

271

272

3.3 Concentration-dependent effect of MLE on PCSK9 and genes involved in cholesterol homeostasis

273

To better define the effect of MLE on genes involved in lipid metabolism, a series of experiments were conducted by incubating HepG2 cells with increasing concentration of MLE (0.25, 0.5, and 1.0 mg/mL). This analysis revealed a concentration dependent effect of MLE on PCSK9 mRNA and extracellular levels, determined by RT-qPCR and ELISA assay, respectively (Figure 3A and B). MLE significantly inhibited PCSK9 at any concentration utilized, while no effect was observed on the PCSK9 promoter activity, as assessed by luciferase assay (Figure 3C). The incubation with the transcriptional activity inhibitor, actinomycin D, showed that MLE did not alter the stability of PCSK9 mRNA (Figure 3D).

274

The inhibition on HMG-CoA reductase mRNA expression was observed at very similar range of concentration as those utilized for PCSK9 (Figure 3E), while the LDLR mRNA levels were not affected by MLE (Figure 3F) and only a minor, but significant inhibition was seen on FAS (-26.2 ± 15.9% vs control; Figure 3G).

275

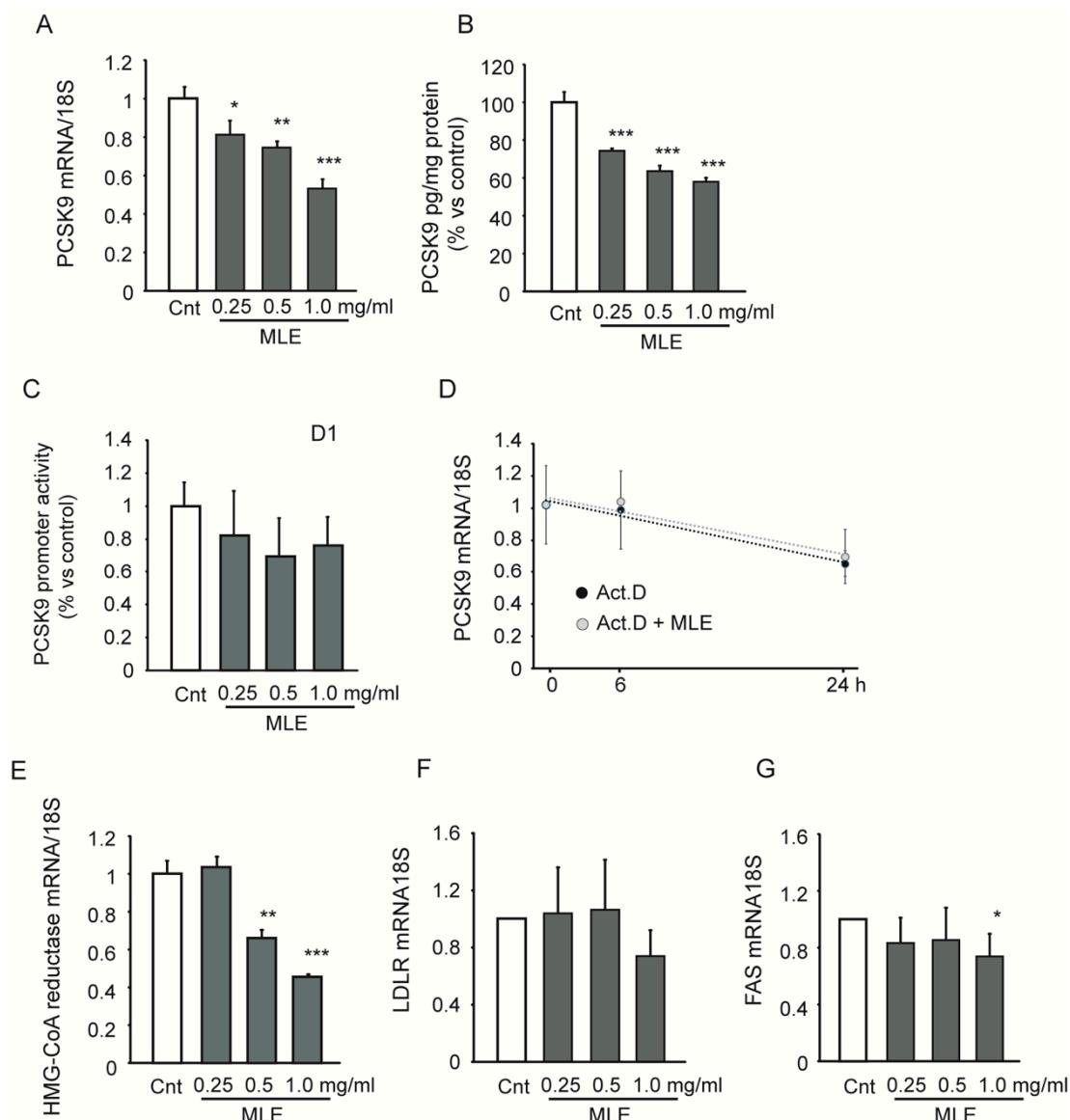
276

277

278

279

280


281

282

283

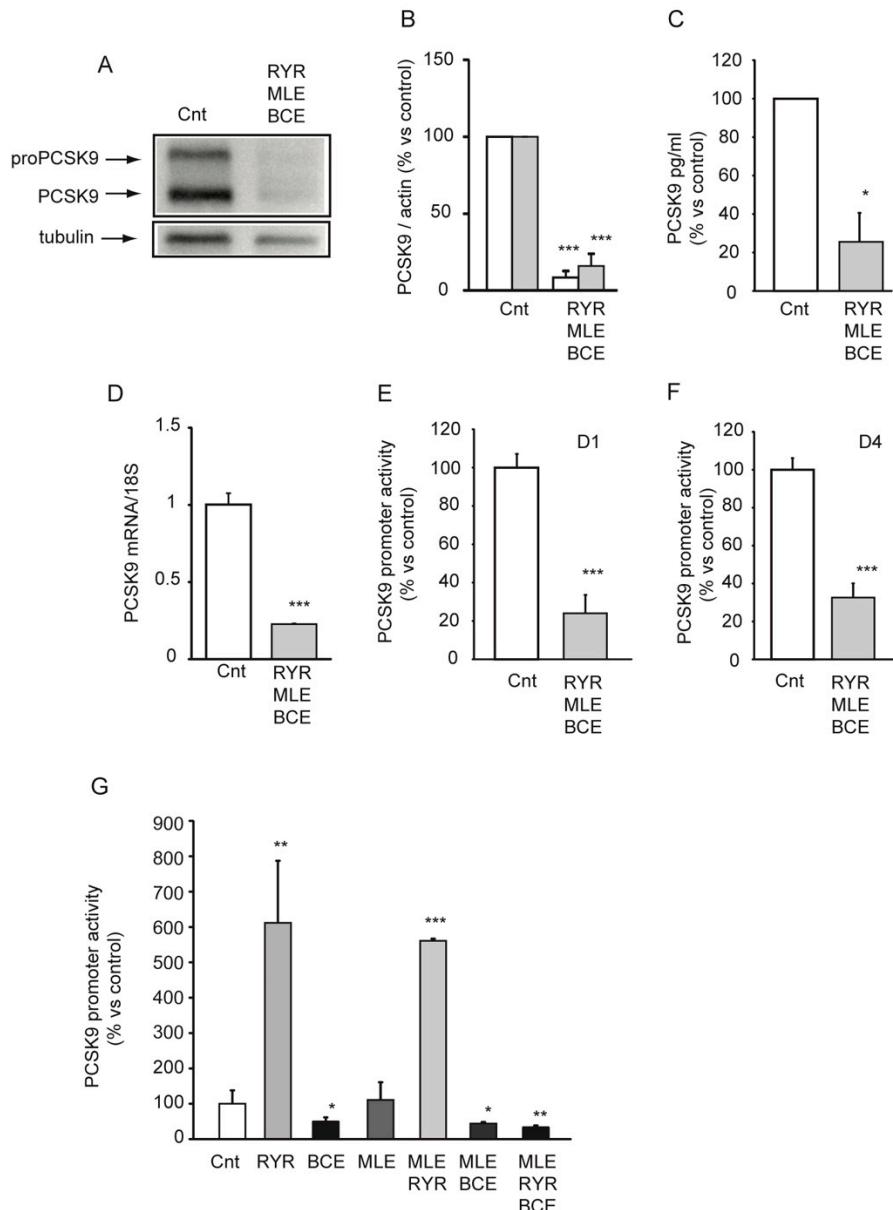
284

285

286

Figure 3. Concentration-dependent effect of MLE on PCSK9 and SREBP-related genes expression. A-E-G) HepG2 cells were seeded in MEM/10% FCS and the day after incubated with MEM/10% FCS in the presence or absence of increasing concentration of MLE (0.25, 0.5 and 1mg/mL). After 24h, total

290 RNA was prepared and conditioned media collected. A) mRNA levels of PCSK9 were determined by
291 quantitative real-time PCR. B) PCSK9 levels in the conditioned media were evaluated by ELISA assay.
292 C) HepG2 cells were transfected with pGL3-PCSK9-D1. The day after the transfection the cells were
293 seeded in a 48well tray and after an additional 24h were incubated with MLE. After 24h, luciferase
294 activities were determined by Neolite reagent. D) HepG2 were incubated for the indicated times with
295 MLE in the presence or absence of actinomycin D (5 μ g/mL) and PCSK9 mRNA levels were
296 determined by qPCR. E-G) mRNA levels of HMG-CoA reductase, FAS, and LDLR mRNA were
297 determined by quantitative real-time PCR. Differences between treatments were assessed by
298 Student's t test, and one-way ANOVA (when necessary). *p<0.05; **p<0.01; ***p<0.001.


299

300 *3.4 Effect of the combination of RYR, BCE and MLE on genes involved in cholesterol homeostasis.*

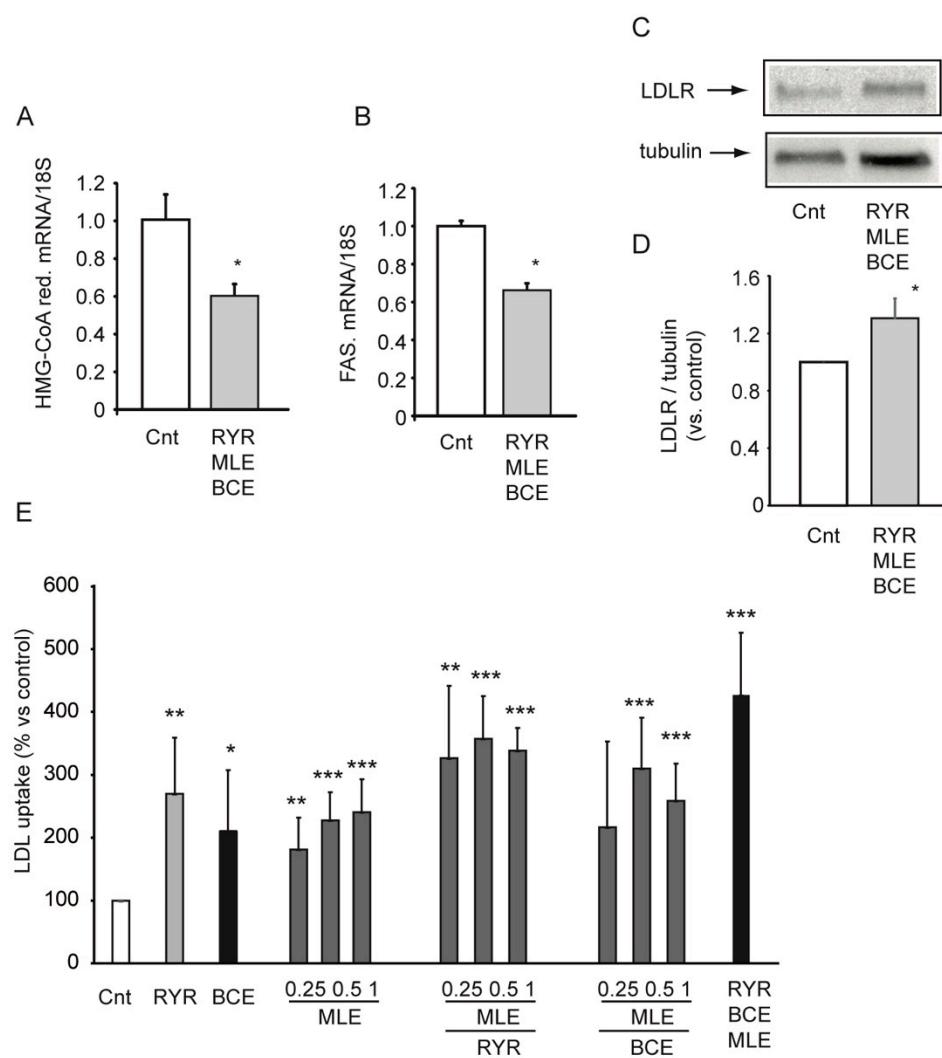
301 Previous studies have shown that berberine counteract the effect of statins on PCSK9
302 expression [15,30]. For this reason, we performed a series of experiments in order to define
303 the effect of the combination of RYR, MLE and BCE on cholesterol homeostasis in HepG2
304 cells.

305 The incubation with the three extracts resulted in a significant reduction of intracellular
306 and secreted form of PCSK9, as determined by western blot analysis and ELISA assays,
307 respectively (Figure 4A-C). In particular, LopiGLIK® components reduced by 96.6% and
308 93.3% the levels of proPCSK9 and PCSK9 respectively, and by $74.4 \pm 14.9\%$ the extracellular
309 PCSK9 in the cultured media. A similar effect was also observed at transcriptional level,
310 with lower mRNA levels ($-77.3 \pm 0.8\%$ vs control) and PCSK9 promoter activities of pGL3-
311 PCSK9-D1 and pGL3-PCSK9-D4 plasmids ($-76.0 \pm 9.6\%$ and $-67.4 \pm 7.5\%$ vs control
312 respectively; Figure 4D-F). These data suggest that BCE and MLE actively counteract the
313 induction of PCSK9 by RYR. We therefore investigated the effect of different combination
314 of active component of LopiGLIK® on PCSK9 promoter activity. As shown in Figure 4G,
315 MLE did not interfere with the induction PCSK9 promoter activity by RYR. However, the
316 combination of three active components of LopiGLIK® reduced the PCSK9 promoter
317 activity below the basal condition. These data suggest that the addition of BCE and MLE to
318 a nutraceutical based on RYR could facilitate the LDL-C reduction by interfering with
319 PCSK9 expression.

320

321
322

323 **Figure 4.** Effect of the combination of LopiGLIK® constituents on PCSK9 expression. A-D) HepG2
 324 cells were seeded in MEM/10% FCS and the day after incubated with MEM/10% FCS in the presence
 325 or absence of three active components simultaneously (RYR, 40 µg/mL; BCE, 50 µg/mL and MLE,
 326 1mg/mL). After 24h, total protein extract and RNA were prepared and conditioned media collected.
 327 A) PCSK9 protein expression was evaluated by western blot analysis from total protein extracts.
 328 Tubulin was used as loading control. B) Densitometric readings were evaluated using the
 329 ImageLabTM software. C) PCSK9 levels in the conditioned media were evaluated by ELISA assay. D)
 330 mRNA levels of PCSK9 were determined by quantitative real-time PCR. E and F) HepG2 cells were
 331 transfected with pGL3-PCSK9-D1 (E) or pGL3-PCSK9-D4 (F). The day after the transfection the cells
 332 were seeded in a 48well tray and after an additional 24h were incubated with RYR, BCE and MLE.
 333 After 24h, luciferase activities were determined by Neolite reagent. G) Under the same experimental
 334 conditions of panel F, the effect of different combinations of LopiGLIK® components on PCSK9
 335 promoter activity were determined. Differences between treatments were assessed by Student's t
 336 test, and one-way ANOVA (when necessary). *p<0.05; **p<0.01; ***p<0.001.


337

338 In order to extend this evidence, we investigated, under the same experimental conditions,
 339 the effect of LopiGLIK® combination on additional SREBP-regulated genes. As shown in
 340 Figure 5, the combination of RYR, BCE and MLE reduced both the expression of HMG-CoA

341 reductase ($-41.1 \pm 6.4\%$ vs control) and FAS ($-33.8 \pm 3.7\%$ vs control) mRNA. The western
 342 blot analysis of total cell lysates, revealed a significant induction of the LDLR after
 343 incubation of HepG2 cells with LopiGLIK® combination (1.3 fold; Figure 5C and 5D).

344 Since the outcome for an efficient lipid lowering effect is the induction of the LDLR
 345 and the uptake of LDL-C, we determined the effect of RYR, BCE and MLE on this parameter
 346 by incubating HepG2 cells for 24h with different combination of these active components
 347 followed by 3h incubation of fluorescently labeled LDL-DiO. As expected, both RYR and
 348 BCE significantly improved the capacity of HepG2 cells to capture LDL (2.7 ± 0.9 and $2.1 \pm$
 349 1.0 fold, respectively; Figure 5E). MLE also increased, in a concentration dependent manner,
 350 the uptake of LDL-C reaching a maximal induction at concentration of 1 mg/ml (2.4 ± 0.5
 351 fold; figure 5E). Importantly, MLE partially improved the effect of both RYR and BCE on
 352 LDL-C uptake and the final combination of the three active components showed the
 353 maximal effect (4.3 ± 1.2 fold increase). These data support the use of these nutraceutical
 354 combination for an effective lipid-lowering action.

355

356
 357

358 **Figure 5.** Effect of the combination of LopiGLIK® constituents on genes involved in cholesterol
 359 homeostasis and LDL-C uptake. A-D) HepG2 cells were seeded in MEM/10% FCS and the day after
 360 incubated with MEM/10%FCS in the presence or absence of three active components simultaneously
 361 (RYR, 40 μ g/mL; BCE, 50 μ g/mL and MLE ,1mg/mL). After 24h, total protein extract and RNA were
 362 prepared. A and B) mRNA levels of HMG-CoA reductase, and FAS mRNA were determined by
 363 quantitative real-time PCR. C) LDLR protein expression was evaluated by western blot analysis from
 364 total protein extracts. Tubulin was used as loading control. D) Densitometric readings were evaluated

365 using the ImageLabTM software. E) HepG2 cells were seeded in MEM/10% FCS and the day after
366 incubated with MEM/0.4% FCS in the presence or absence of different combination of LopiGLIK®
367 active components. After 24h, HepG2 cells were incubated with 10 μ g/mL of LDL-DiO and
368 fluorescence intensity determined by flowcytometry analysis after 3h incubation. Differences between
369 treatments were assessed by Student's t test, and one-way ANOVA (when necessary). *p<0.05;
370 **p<0.01; ***p<0.001.
371

372 4. Discussion

373 In the present study, we have investigated the effect of LopiGLIK® constituents, such as RYR, BCE
374 and MLE, on PCSK9 expression and additional genes regulated by the SREBP transcription factors
375 (LDLR, HMG-CoA reductase and FAS). The rational of the study was based on our previous
376 observation on the lack of effect of LopiGLIK® on the plasma levels of PCSK9 treated for 16 weeks
377 [4]. In particular, the active components of LopiGLIK® on cholesterol levels, such as RYR containing
378 monacolin K and berberine have been previously shown to act in an opposite fashion on the
379 transcription of PCSK9 [15,31]. Thus, the fact that RYR, present in LopiGLIK, did not induce PCSK9
380 plasma levels, as predicted by its ability to activate the SREBP pathway, could be due to berberine, a
381 strong suppressor of PCSK9 expression [15,30]. Nonetheless, the contribution of MLE extract on the
382 plasma levels of PCSK9 was not defined. Our results clearly demonstrated that the water-soluble
383 extract of Morus alba leaves (MLE), significantly inhibited the expression of PCSK9, by reducing both
384 the mRNA and the protein levels in HepG2 cells. However, differently from berberine [30], MLE did
385 not affect the promoter activity of PCSK9, as determined by using both the pGL3-PCSK9-D1 and
386 pGL3-PCSK9-D4 constructs, as well as the expression of both SREBP2 and HNF1 α . However, it is
387 important to point out that MLE negatively regulated the expression of both HMG-CoA reductase
388 and FAS, two additional SREBP-regulated genes. We also exclude an effect of MLE on PCSK9 mRNA
389 stability, as the degradation of PCSK9 was similar in control and MLE treated cells in the presence of
390 the transcriptional inhibitor actinomycin D. Thus, this data suggest that MLE may interfere with the
391 SREBP pathway but at a post-transcriptional levels. Similar results have been observed with
392 oncostatin M, a cytokine that effectively suppress the PCSK9 mRNA levels without affecting its
393 promoter activity [46]. In addition, suppressor of cytokine signaling 3 (SOCS3) molecule has been
394 shown to induce PCSK9 without activating the PCSK9 promoter activity [43]. Thus, additional
395 experiments need to be performed to explore a possible effect of MLE on the mRNA stability of
396 PCSK9 or on epigenetic regulation of PCSK9 expression.

397 Regarding the active components of MLE, it has been recently reported that moracin C, present
398 in dried immature Morus alba fruits, reduced both the mRNA and protein of PCSK9 [17]. Moracin C
399 was identified from a chloroform soluble extract of Morus alba fruits while in our study we have
400 utilized water soluble extracts of Morus alba leaves. Interestingly, the water-soluble extracts of Morus
401 alba fruits did not show any activity on PCSK9 expression [17]. Thus, although moracin C is present
402 in Morus alba leaves [47], it is unlikely that was present in our water extract.

403 Regardless the mechanism of action and the active component/s of Morus alba responsible for
404 the inhibitory expression of PCSK9, due to this effect, it was conceivable to hypothesize that MLE,
405 together with BCE, may effectively counteract the induction of PCSK9 by RYR that contains
406 monacolin K, ameliorating the final hypocholesterolemic action of LopiGLIK®. On this regards, we
407 showed that the combination of MLE and BCE effectively counteracted the effect of RYR, by blocking
408 the PCSK9 expression at protein, mRNA and promoter activity levels, together with a significant
409 reduction of HMG-CoA reductase and FAS levels. The same combination induces the LDLR and
410 LDL-DiO uptake in HepG2 cells, compared to control untreated cells.

411 Taken together, in the present study we demonstrated an effective combination of three active
412 components of LopiGLIK® on genes regulating the cholesterol homeostasis, with a significant
413 reduction of PCSK9, an increase of the LDLR and LDL-C uptake. In addition, we provided new

414 evidence of the contribution of water soluble extracts of *Morus alba* leaves on the
415 hypocholesterolemic effect of LopiGLIK® by reducing PCSK9 levels.

416 An important limitation of the present study is represented by the fact the molar ratio of the
417 active components present in the extracts of RYR, BCE and MLE is potentially different from that
418 observed in patients assuming LopiGLIK®. On this regard, it is relevant to point out that LopiGLIK®
419 contains 3.3 mg di monacolin K (0.008 mmol) and 531.25 mg of berberine (1.5 mmol), thus with a
420 molar ratio of 1 to 190. On the other hand, the bioavailability of monacolin K and berberine is
421 approximately 20% [48,49] and 0.5% [50-52], respectively. Thus, the final molar ratio of these two
422 active components that reached the circulation system is approximately 1 to 5 in favor of berberine.
423 Under our experimental condition, we have utilized 50 µg/mL of RYR containing 15 µg/mL of
424 monacolin K and 40 µg/mK BCE containing 34 µg/mL of berberine, thus with a molar ratio of 1 to 2.3
425 in favor of berberine, very similar that predicted to be present in human plasma. These in vitro
426 concentrations are similar to those utilized in previous study [15,17,32,53], and have been shown to
427 be not cytotoxic. Regarding the final concentration utilized for water-soluble extracts of *Morus alba*
428 leaves, the interval of 0.25 ± 1 mg/mL, is lower than the previously tested 1 ± 6 mg/mL of mulberry
429 water extracts on HepG2 cells [39]. In particular, we decided to utilize these concentrations since they
430 show to be not cytotoxic in HepG2 cells. These concentrations appear to exceed those utilized for RYR
431 and BCE and thus it is difficult to established if the observed effect on PCSK9 on HepG2 cells can be
432 relevant for the clinical effects of LopiGLIK®. However, the reduction of PCSK9 was observed at
433 concentration of 250 µg/mL, thus similar to the 40µg/mL of BCE or 50µg/mL of RYR. The relevant
434 aspect is that the concentration and the bioavailability of the component/s with PCSK9 inhibitory
435 activity present in MLE. On this regard, we tested the effect of DNJ that show no significant effect on
436 PCSK9 expression in HepG2 cells.
437

438 5. Conclusions

439 The results of the present study indicate that the inhibitory effect of MLE on PCSK9 may
440 contribute to the lipid-lowering action of LopiGLIK, supporting the rational of using this
441 nutraceutical combination for controlling both a hyperlipidemic and hyperglycemic conditions [3,4].
442

443 **Author Contributions:** NF conceived the study and wrote the manuscript. MGL and CM conducted the
444 experiments. SM and HC conducted some experiments related to figures 4 and 5. AC and CRS critically revised
445 the manuscript. MR wrote the manuscript and critically revised it.

446 **Acknowledgments:** The authors acknowledge Akademy Pharma Srl (Milano, Italy) for supporting this study
447 and Dr. Raffaella Marin, Dr. Daniela Vianello, and Prof. Alberto Zambon for providing the low-density
448 lipoproteins (Department of Medicine; University of Padua). **Conflicts of Interest:** The authors declare no
449 conflict of interest.

450 References

1. Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R., et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). *Eur Heart J* 2016, 10.1093/eurheartj/ehw272, doi:10.1093/eurheartj/ehw272.
2. Li, J.J.; Lu, Z.L.; Kou, W.R.; Chen, Z.; Wu, Y.F.; Yu, X.H.; Zhao, Y.C.; Chinese Coronary Secondary Prevention Study, G. Beneficial impact of Xuezhikang on cardiovascular events and mortality in elderly hypertensive patients with previous myocardial infarction from the China Coronary Secondary Prevention Study (CCSPS). *Journal of clinical pharmacology* 2009, 49, 947-956, doi:10.1177/0091270009337509.
3. Trimarco, V.; Battistoni, A.; Tocci, G.; Coluccia, R.; Manzi, M.V.; Izzo, R.; Volpe, M. Single blind, multicentre, randomized, controlled trial testing the effects of a novel nutraceutical compound on plasma lipid and cardiovascular risk factors: Results of the interim analysis. *Nutrition, metabolism, and cardiovascular diseases* : NMCD 2017, 27, 850-857, doi:10.1016/j.numecd.2017.08.003.

465 4. Adorni, M.P.; Ferri, N.; Marchiano, S.; Trimarco, V.; Rozza, F.; Izzo, R.; Bernini, F.; Zimetti, F. Effect of a
466 novel nutraceutical combination on serum lipoprotein functional profile and circulating PCSK9. *Therapeutics and*
467 *clinical risk management* 2017, 13, 1555-1562, doi:10.2147/TCRM.S144121.

468 5. Adorni, M.P.; Cipollari, E.; Favari, E.; Zanotti, I.; Zimetti, F.; Corsini, A.; Ricci, C.; Bernini, F.; Ferri, N.
469 Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. *Atherosclerosis*
470 2016, 256, 1-6, doi:10.1016/j.atherosclerosis.2016.11.019.

471 6. Ferri, N.; Corsini, A.; Macchi, C.; Magni, P.; Ruscica, M. Proprotein convertase subtilisin kexin type 9 and
472 high-density lipoprotein metabolism: experimental animal models and clinical evidence. *Translational research : the journal of laboratory and clinical medicine* 2016, 173, 19-29, doi:10.1016/j.trsl.2015.10.004.

473 7. Ferri, N.; Marchiano, S.; Tibolla, G.; Baetta, R.; Dhyani, A.; Ruscica, M.; Ubaldi, P.; Catapano, A.L.; Corsini,
474 A. PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar
475 placement. *Atherosclerosis* 2016, 253, 214-224, doi:10.1016/j.atherosclerosis.2016.07.910.

476 8. Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein
477 convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR
478 levels. *Atherosclerosis* 2012, 220, 381-386.

479 9. Ruscica, M.; Ferri, N.; Fogacci, F.; Rosticci, M.; Botta, M.; Marchiano, S.; Magni, P.; D'Addato, S.; Giovannini,
480 M.; Borghi, C., et al. Circulating Levels of Proprotein Convertase Subtilisin/Kexin Type 9 and Arterial Stiffness
481 in a Large Population Sample: Data From the Brisighella Heart Study. *Journal of the American Heart Association*
482 2017, 6, doi:10.1161/JAHA.117.005764.

483 10. Zimetti, F.; Caffarra, P.; Ronda, N.; Favari, E.; Adorni, M.P.; Zanotti, I.; Bernini, F.; Barocco, F.; Spallazzi,
484 M.; Galimberti, D., et al. Increased PCSK9 Cerebrospinal Fluid Concentrations in Alzheimer's Disease. *Journal of*
485 *Alzheimer's disease : JAD* 2016, 10.3233/JAD-160411, doi:10.3233/JAD-160411.

486 11. Cariou, B.; Si-Tayeb, K.; Le May, C. Role of PCSK9 beyond liver involvement. *Curr Opin Lipidol* 2015, 26,
487 155-161, doi:10.1097/MOL.0000000000000180.

488 12. Le May, C.; Kourimate, S.; Langhi, C.; Chetiveaux, M.; Jarry, A.; Comera, C.; Collet, X.; Kuipers, F.; Krempf,
489 M.; Cariou, B., et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial
490 triglyceridemia. *Arterioscler Thromb Vasc Biol* 2009, 29, 684-690.

491 13. Ricci, C.; Ruscica, M.; Camera, M.; Rossetti, L.; Macchi, C.; Colciago, A.; Zanotti, I.; Lupo, M.G.; Adorni,
492 M.P.; Cicero, A.F.G., et al. PCSK9 induces a pro-inflammatory response in macrophages. *Scientific reports* 2018,
493 8, 2267, doi:10.1038/s41598-018-20425-x.

494 14. Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang,
495 H.; Liu, T.; Wasserman, S.M., et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease.
496 *N Engl J Med* 2017, 376, 1713-1722, doi:10.1056/NEJMoa1615664.

497 15. Cameron, J.; Ranheim, T.; Kulseth, M.A.; Leren, T.P.; Berge, K.E. Berberine decreases PCSK9 expression in
498 HepG2 cells. *Atherosclerosis* 2008, 201, 266-273, doi:10.1016/j.atherosclerosis.2008.02.004.

499 16. Tai, M.H.; Chen, P.K.; Chen, P.Y.; Wu, M.J.; Ho, C.T.; Yen, J.H. Curcumin enhances cell-surface LDLR level
500 and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. *Molecular*
501 *nutrition & food research* 2014, 58, 2133-2145, doi:10.1002/mnfr.201400366.

502 17. Pel, P.; Chae, H.S.; Nhoek, P.; Kim, Y.M.; Chin, Y.W. Chemical Constituents with Proprotein Convertase
503 Subtilisin/Kexin Type 9 mRNA Expression Inhibitory Activity from Dried Immature *Morus alba* Fruits. *Journal*
504 *of agricultural and food chemistry* 2017, 65, 5316-5321, doi:10.1021/acs.jafc.7b02088.

505 18. Pel, P.; Chae, H.S.; Nhoek, P.; Yeo, W.; Kim, Y.M.; Chin, Y.W. Lignans from the fruits of *Schisandra*
506 *chinensis* (Turcz.) Baill inhibit proprotein convertase subtilisin/kexin type 9 expression. *Phytochemistry* 2017, 136,
507 119-124, doi:10.1016/j.phytochem.2017.01.010.

508 19. Maxwell, K.N.; Soccio, R.E.; Duncan, E.M.; Sehayek, E.; Breslow, J.L. Novel putative SREBP and LXR target
509 genes identified by microarray analysis in liver of cholesterol-fed mice. *J Lipid Res* 2003, 44, 2109-2119,
510 doi:10.1194/jlr.M300203-JLR200.

511 20. Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate
512 PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in
513 familial hypercholesterolemia. *Arterioscler Thromb Vasc Biol* 2004, 24, 1454-1459,
514 doi:10.1161/01.ATV.0000134621.14315.43.

515 21. Careskey, H.E.; Davis, R.A.; Alborn, W.E.; Troutt, J.S.; Cao, G.; Konrad, R.J. Atorvastatin increases human
516 serum levels of proprotein convertase subtilisin/kexin type 9. *J Lipid Res* 2008, 49, 394-398,
517 doi:10.1194/jlr.M700437-JLR200.

518 22. Berthold, H.K.; Seidah, N.G.; Benjannet, S.; Gouni-Berthold, I. Evidence from a randomized trial that
519 simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. *PloS one* 2013, 8, e60095,
520 doi:10.1371/journal.pone.0060095.

521

522 23. Awan, Z.; Seidah, N.G.; MacFadyen, J.G.; Benjannet, S.; Chasman, D.I.; Ridker, P.M.; Genest, J.
523 Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the
524 JUPITER trial. *Clin Chem* 2012, 58, 183-189, doi:10.1373/clinchem.2011.172932.

525 24. Guo, Y.L.; Liu, J.; Xu, R.X.; Zhu, C.G.; Wu, N.Q.; Jiang, L.X.; Li, J.J. Short-term impact of low-dose
526 atorvastatin on serum proprotein convertase subtilisin/kexin type 9. *Clinical drug investigation* 2013, 33, 877-883,
527 doi:10.1007/s40261-013-0129-2.

528 25. Costet, P.; Cariou, B.; Lambert, G.; Lalanne, F.; Lardeux, B.; Jarnoux, A.L.; Grefhorst, A.; Staels, B.; Krempf,
529 M. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding
530 protein 1c. *J Biol Chem* 2006, 281, 6211-6218.

531 26. Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein
532 convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. *J Lipid Res* 2008, 49,
533 399-409, doi:10.1194/jlr.M700443-JLR200.

534 27. Ferri, N.; Marchiano, S.; Lupo, M.G.; Trenti, A.; Biondo, G.; Castaldello, P.; Corsini, A. Geranylgeraniol
535 prevents the simvastatin-induced PCSK9 expression: Role of the small G protein Rac1. *Pharmacological research*
536 2017, 122, 96-104, doi:10.1016/j.phrs.2017.05.021.

537 28. Goldstein, J.L.; DeBose-Boyd, R.A.; Brown, M.S. Protein sensors for membrane sterols. *Cell* 2006, 124, 35-46,
538 doi:10.1016/j.cell.2005.12.022.

539 29. Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: activators of the complete program of cholesterol and
540 fatty acid synthesis in the liver. *J Clin Invest* 2002, 109, 1125-1131, doi:10.1172/JCI15593.

541 30. Li, H.; Dong, B.; Park, S.W.; Lee, H.S.; Chen, W.; Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role
542 in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. *J Biol Chem*
543 2009, 284, 28885-28895, doi:10.1074/jbc.M109.052407.

544 31. Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-
545 regulation of hepatic HNF1alpha protein expression through the ubiquitin-proteasome degradation pathway. *J
546 Biol Chem* 2015, 290, 4047-4058, doi:10.1074/jbc.M114.597229.

547 32. Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H., et al. Berberine is a
548 novel cholesterol-lowering drug working through a unique mechanism distinct from statins. *Nature medicine*
549 2004, 10, 1344-1351, doi:10.1038/nm1135.

550 33. Chan, E.W.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of *Morus alba*. *Chinese
551 journal of natural medicines* 2016, 14, 17-30, doi:10.3724/SP.J.1009.2016.00017.

552 34. Kong, W.H.; Oh, S.H.; Ahn, Y.R.; Kim, K.W.; Kim, J.H.; Seo, S.W. Antidiobesity effects and improvement of
553 insulin sensitivity by 1-deoxynojirimycin in animal models. *Journal of agricultural and food chemistry* 2008, 56,
554 2613-2619, doi:10.1021/jf073223i.

555 35. Takasu, S.; Parida, I.S.; Onose, S.; Ito, J.; Ikeda, R.; Yamagishi, K.; Higuchi, O.; Tanaka, F.; Kimura, T.;
556 Miyazawa, T., et al. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-
557 deoxynojirimycin. *PLoS one* 2018, 13, e0199057, doi:10.1371/journal.pone.0199057.

558 36. Enkhmaa, B.; Shiwaku, K.; Katsube, T.; Kitajima, K.; Anuurad, E.; Yamasaki, M.; Yamane, Y. Mulberry
559 (*Morus alba* L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion
560 development in LDL receptor-deficient mice. *The Journal of nutrition* 2005, 135, 729-734.

561 37. El-Beshbishi, H.A.; Singab, A.N.; Sinkkonen, J.; Pihlaja, K. Hypolipidemic and antioxidant effects of *Morus*
562 alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. *Life sciences* 2006, 78,
563 2724-2733, doi:10.1016/j.lfs.2005.10.010.

564 38. Harauma, A.; Murayama, T.; Ikeyama, K.; Sano, H.; Arai, H.; Takano, R.; Kita, T.; Hara, S.; Kamei, K.;
565 Yokode, M. Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. *Biochem Biophys
566 Res Commun* 2007, 358, 751-756, doi:10.1016/j.bbrc.2007.04.170.

567 39. Liu, L.K.; Chou, F.P.; Chen, Y.C.; Chyau, C.C.; Ho, H.H.; Wang, C.J. Effects of mulberry (*Morus alba* L.)
568 extracts on lipid homeostasis in vitro and in vivo. *Journal of agricultural and food chemistry* 2009, 57, 7605-7611,
569 doi:10.1021/jf9014697.

570 40. Keepers, Y.P.; Pizao, P.E.; Peters, G.J.; van Ark-Otte, J.; Winograd, B.; Pinedo, H.M. Comparison of the
571 sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. *Eur J Cancer* 1991,
572 27, 897-900.

573 41. Rimoldi, I.; Facchetti, G.; Lucchini, G.; Castiglioni, E.; Marchiano, S.; Ferri, N. In vitro anticancer activity
574 evaluation of new cationic platinum(II) complexes based on imidazole moiety. *Bioorganic & medicinal chemistry*
575 2017, 25, 1907-1913, doi:10.1016/j.bmc.2017.02.010.

576 42. Raines, E.W.; Garton, K.J.; Ferri, N. Beyond the endothelium: NF- κ B regulation of smooth muscle
577 function. *Circ Res* 2004, 94, 706-708, doi:10.1161/01.RES.0000125646.08156.4D.

578 43. Ruscica, M.; Ricci, C.; Macchi, C.; Magni, P.; Cristofani, R.; Liu, J.; Corsini, A.; Ferri, N. Suppressor of
579 Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in
580 Hepatic HepG2 Cell Line. *J Biol Chem* 2016, **291**, 3508-3519, doi:10.1074/jbc.M115.664706.

581 44. Morton, R.E.; Evans, T.A. Modification of the bicinchoninic acid protein assay to eliminate lipid interference
582 in determining lipoprotein protein content. *Analytical biochemistry* 1992, **204**, 332-334.

583 45. Pirillo, A.; Reduzzi, A.; Ferri, N.; Kuhn, H.; Corsini, A.; Catapano, A.L. Upregulation of lectin-like oxidized
584 low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. *Atherosclerosis*
585 2011, **214**, 331-337, doi:10.1016/j.atherosclerosis.2010.11.006.

586 46. Cao, A.; Wu, M.; Li, H.; Liu, J. Janus kinase activation by cytokine oncostatin M decreases PCSK9 expression
587 in liver cells. *J Lipid Res* 2011, **52**, 518-530, doi:10.1194/jlr.M010603.

588 47. Yang, Z.Z.; Wang, Y.C.; Wang, Y.; Zhang, Y. Bioassay-guided screening and isolation of α -glucosidase and
589 tyrosinase inhibitors from leaves of *Morus alba*. *Food Chemistry* 2012, **131**.

590 48. Chen, C.H.; Yang, J.C.; Uang, Y.S.; Lin, C.J. Improved dissolution rate and oral bioavailability of lovastatin
591 in red yeast rice products. *International journal of pharmaceutics* 2013, **444**, 18-24, doi:10.1016/j.ijpharm.2013.01.028.

592 49. Bellosta, S.; Paoletti, R.; Corsini, A. Safety of statins: focus on clinical pharmacokinetics and drug
593 interactions. *Circulation* 2004, **109**, III50-57, doi:10.1161/01.CIR.0000131519.15067.1f.

594 50. Maeng, H.J.; Yoo, H.J.; Kim, I.W.; Song, I.S.; Chung, S.J.; Shim, C.K. P-glycoprotein-mediated transport of
595 berberine across Caco-2 cell monolayers. *Journal of pharmaceutical sciences* 2002, **91**, 2614-2621,
596 doi:10.1002/jps.10268.

597 51. Pan, G.Y.; Wang, G.J.; Liu, X.D.; Fawcett, J.P.; Xie, Y.Y. The involvement of P-glycoprotein in berberine
598 absorption. *Pharmacology & toxicology* 2002, **91**, 193-197.

599 52. Wang, X.; Wang, R.; Xing, D.; Su, H.; Ma, C.; Ding, Y.; Du, L. Kinetic difference of berberine between
600 hippocampus and plasma in rat after intravenous administration of *Coptidis rhizoma* extract. *Life sciences* 2005,
601 **77**, 3058-3067, doi:10.1016/j.lfs.2005.02.033.

602 53. Huang, C.H.; Shiu, S.M.; Wu, M.T.; Chen, W.L.; Wang, S.G.; Lee, H.M. Monacolin K affects lipid metabolism
603 through SIRT1/AMPK pathway in HepG2 cells. *Archives of pharmacal research* 2013, **36**, 1541-1551,
604 doi:10.1007/s12272-013-0150-2.