

1 Article

2

Hydrological guidelines for reservoir operation: 3 application to the Brazilian Semiarid region

4 José Carlos de Araújo ^{1,*}, George Leite Mamede ² and Berthyer Peixoto de Lima ³5 ¹ Dept. Agricultural Engineering, Federal University of Ceará, Fortaleza, CE, Brazil; jcaraujo@ufc.br6 ² UNILAB, Redenção, CE, Brazil; georgemamede@hotmail.com7 ³ COGERH, Water Resources State Company, Fortaleza, CE, Brazil; berthyer@gmail.com

8 * Correspondence: jcaraujo@ufc.br; Tel.: +55-85-3366-9754

9

10 **Abstract:** The Brazilian water legislation advocates that some uses have priority over others, but
11 this aspect has never been clearly addressed, generating conflicts. Water authorities usually refer to
12 hydrological models to justify their decisions on water allocation. However, a significant group of
13 stakeholders does not feel qualified to discuss these models and is, therefore, excluded from the
14 decision process. We hereby propose a hydrologically robust method to correlate water uses with
15 their respective reservoir alert volumes, which should empower the less formally educated
16 stakeholders. The method consists of: (i) generating the water discharge versus reliability curve,
17 using a stochastic approach; (ii) generating the withdrawal discharge versus alert volume family of
18 curves, using a water-balance approach; (iii) calibrating the key parameter T using field data; and
19 (iv) associating each water use with its alert volume. We have applied the method to four of the
20 largest reservoirs (2.10^3 - 2.10^2 hm 3) in the semi-arid Ceará State. The results indicate that
21 low-priority water uses should be rationalized when the reservoir volume is below 20%; whereas
22 uses with very high priority should start rationalization when it is below 11%. These hydrological
23 guidelines should help enhance water governance among non-specialist stakeholders in
24 water-scarce and reservoir-dependent regions.

25 **Keywords:** reservoirs; water allocation; water scarcity; alert volume; governance.

26

27

1. Introduction

28 The Northeast of Brazil, where the semiarid Caatinga biome prevails, is home to 25 million
29 inhabitants with high water demand. Its rivers, however, are intermittent and groundwater is
30 limited and often salty [1]. To cope with the frequent and severe droughts, the water-supply policy
31 strongly relies on artificial surface reservoirs [2-3], whose eventually-poor management may
32 negatively affect the most vulnerable fraction of the population [4]. During the recurrent
33 water-scarce periods, when societal conflicts arise, efficient operation rules for multiple uses – a
34 requisite for efficient reservoir water allocation – become a great challenge [5-8]. The Brazilian
35 respective water legislation [9] advocates that under scarcity some uses (e.g., human and animal
36 provision) should be prioritized. Although the law is over two decades old, a clear supply
37 prioritization has not yet taken place, and this generates serious conflicts among water users. In
38 2012, for example, there was the onset of a severe multi-annual drought in the semiarid State of
39 Ceará [10]. During the second year of drought, the irrigation users stopped receiving water from the
40 reservoirs not only for production, but also to maintain trees alive. Contrastingly, industrial users
41 have been uninterruptedly supplied up to the moment [11]. The priority criteria used for these
42 decisions were not clearly justified.

43 In Brazil, water allocation is a participatory process coordinated by River Basin Committees,
44 which are composed by stakeholders among public authorities, civil society and water users. During
45 water-scarcity periods, the Water Agency is allowed to restrain supply, either partially or totally. In
46 these periods, authorities usually justify their decisions citing the results of operational hydrological

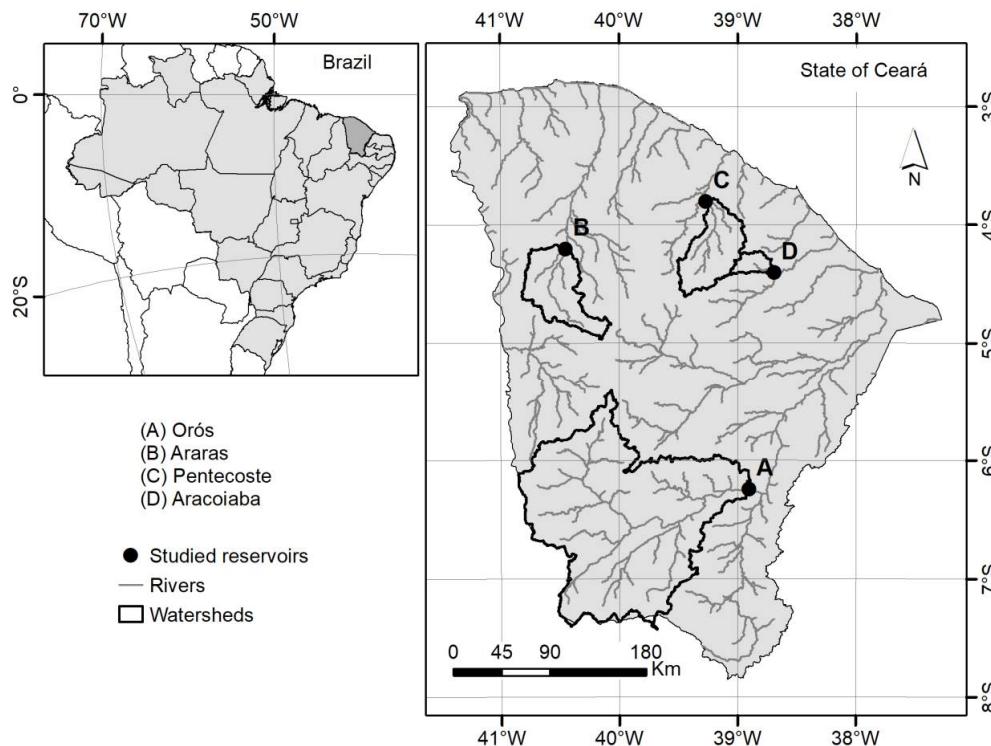
47 models. Reservoir operation rules are commonly based on hydrological available information [6] of
 48 long-term water storage and are lengthily maintained as once defined [12-13]. Several water
 49 allocation models have been developed in the last decades, e.g., AQUATOOL [14], ACQUANET
 50 [15], RIVERWARE [16], MODSIM [17], and ILMP [18]. However, among the committee members,
 51 there is a significant group that does not feel qualified to discuss such models and, therefore, is
 52 excluded from the decision process. Technocracy then defeats democracy, with biased losses for the
 53 peasants, who are poorer and less formally educated. They are, nevertheless, able to interpret the
 54 degree of water availability – especially during droughts – using the stored water volume in the
 55 reservoirs [19]. Thus, in order to guarantee proper governance of water allocation, guidelines based
 56 on the reservoir volume, which can be understood by all stakeholders, are certainly preferable to
 57 technocratic strategies. We hereby aim at proposing a hydrologically robust method that produces
 58 simple outputs, which correlate each water use with its respective alert volume. In this context, the
 59 alert volume is the stored volume that triggers water rationalization due to quantitative shortage.
 60 The four-step method, which uses the reservoir volume as the key variable, considers water balance
 61 in the reservoir, climate and hydrological variability, morphological features of the reservoir and
 62 historically released discharges. We have applied the method to four of the largest reservoirs ($2 \cdot 10^2$ -
 63 $2 \cdot 10^3 \text{ hm}^3$) of the State of Ceará.

64 2. Materials and Methods

65 2.1. Study area

66 The method was applied to four reservoirs, all located in the Caatinga biome (Figure 1), where
 67 annual rainfall is moderate (500 – 850 mm.yr⁻¹), potential evaporation is high (2,000 – 2,600
 68 mm.yr⁻¹), groundwater is limited and salty due to a prevailing crystalline basement, rivers are
 69 intermittent, runoff is low (10 – 70 mm.yr⁻¹) and droughts are recurrent [10]. The rainy season
 70 (January to June) encompasses almost 90% of the annual rainfall and almost 100% of the runoff,
 71 whereas the reservoirs suffer depletion in the long dry season (July to December), sometimes drying
 72 out completely [20]. The natural hydrological system constantly fails to provide enough water for
 73 that densely populated environment, which called for the construction of a reservoir-based water
 74 system [2-3]. Due to the considerable meteorological inter- and intra-annual variability, to the high
 75 number of reservoirs (one dam every 5 km² on average), and to the high residence time of the waters
 76 within the reservoirs (which causes low levels of water quality [21]), the Caatinga biome has become
 77 a challenging biome for water management [22]. Usually, River Basin Committees decide on water
 78 release shortly after the rainy season, the key information being the stored reservoir volume. The
 79 committee stakeholders use their empirical knowledge to adjust their demands to the operational
 80 water availability, taking into consideration the risk of water scarcity in the coming years. The main
 81 hydrological features of the focus reservoirs (Orós, Araras, Pentecoste, and Aracoiaba) are presented
 82 in Table 1.

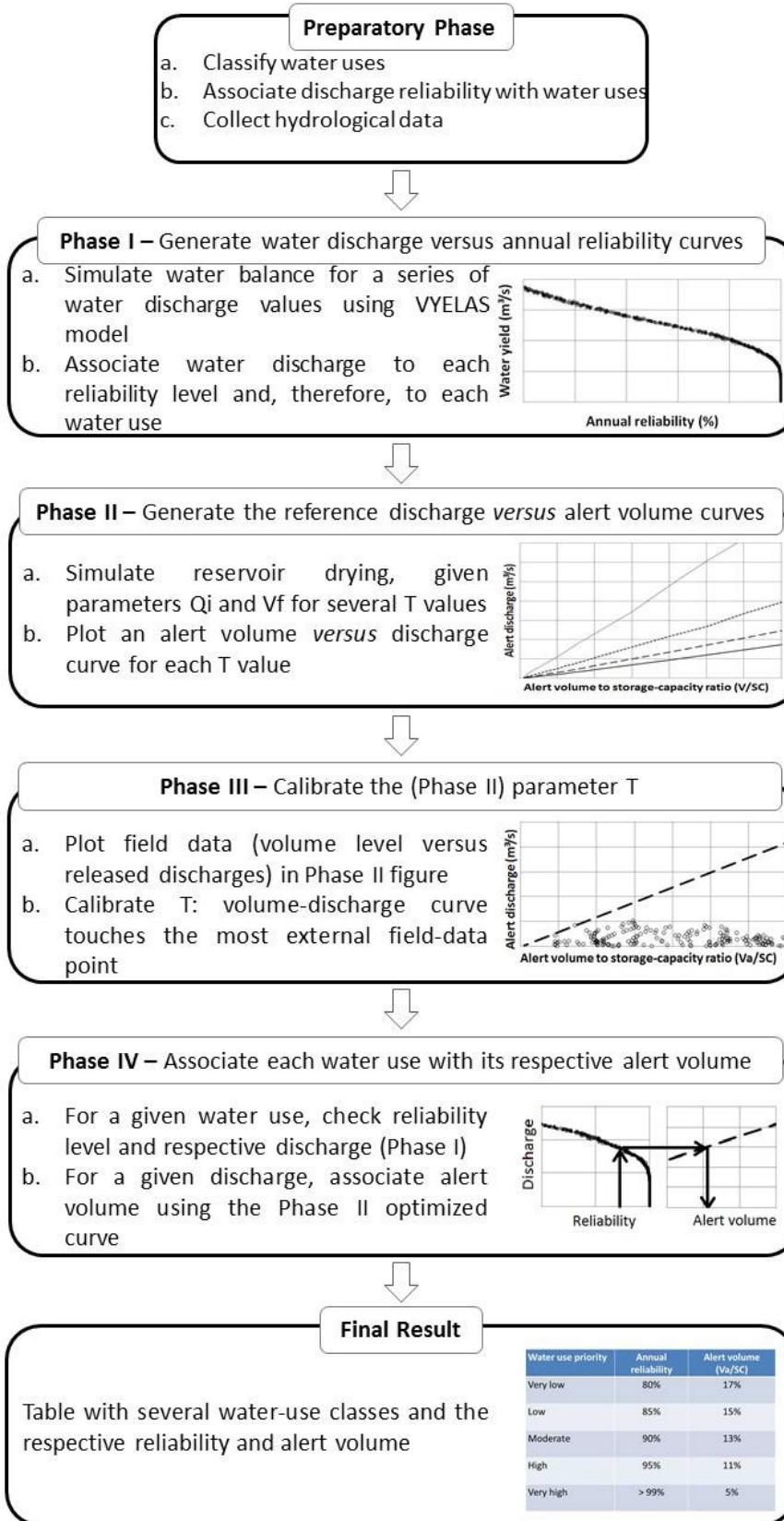
83


84

85 **Table 1.** Main variables of the four focus reservoirs. Each field data represents a pair, composed of
 the measured released discharge and the respective reservoir volume on the same day.

Variables	Orós	Araras	Pentecoste	Aracoiaba	Average
Storage capacity (hm ³)	1,940	891	360	162	838
Catchment area (km ²)	24,600	3,520	2,840	533	7,873
Annual rainfall (mm)	529	759	702	828	575 ^[3]
Average inflow (hm ³ .yr ⁻¹)	1,505	608	183	68	1261 ^[3]
Storage capacity/average inflow (yr)	1.29	1.47	1.97	2.38	1.39 ^[3]
Coefficient of variation of inflow (-)	0.9	1.2	1.0	0.6	0.9 ^[3]
Q ₉₀ /average inflow (-) ^[1]	0.43	0.38	0.35	0.76	0.42 ^[3]

Field data sample size	250	147	135	26	140
Field data sampling period (years)	22	20	19	14	19
First sampling year	1996	1996	1996	2003	(-)
Last sampling year	2017	2015	2014	2016	(-)
Optimal drying duration T (months) ^[2]	5.7	6.0	5.8	6.0	5.9
Number of outliers for T = 6 months	1	0	1	0	(-)


86 ^[1] Q_{90} = water yield with 90% annual reliability; ^[2] obtained by solving Equation (7), assuming that the
 87 parameters $Q_i = 0$; and $V_f = 0$; ^[3] average weighted with respect to the catchment area.

88
 89 **Figure 1.** Location of the State of Ceará, Brazil, the study reservoirs, and their respective
 90 catchment areas

91 *2.2. Synthesis of the proposed method and data sources*

92 Figure 2 presents a synthesis of the proposed method. Initially, there is the preparatory phase,
 93 in which the users collect respective data and associate each water use with a priority level
 94 associated with a certain degree of reliability. The preparatory phase is supposed to be outlined
 95 within the River Basin Committee, using a participatory approach. In Phase I, the main goal is to
 96 establish the relation between the withdrawal discharge from the reservoir and its respective
 97 reliability. In Phase II, reservoir depletion during the dry season is simulated, generating a family of
 98 curves rationally based in relation to the parameter T (depletion duration). The objective of Phase III
 99 is to calibrate the parameter T, establishing the function between a possible maximum withdrawal
 100 discharge and the effectively stored volume. The last step, Phase IV, is meant to associate each water
 101 use (and, therefore, its degree of reliability) to the respective alert volume and its withdrawal
 102 discharge. The output table generates reference values, which are to be validated or modified by the
 103 committees. The hydrological data were obtained in [23] and the specific dam data were retrieved
 104 from [24] and [10].

105
106
107

Figure 2. Flow chart of the proposed methodology. Q_i means input discharge, V_f the final reservoir volume after depletion, and T the depletion duration.

108

2.3. Phase I - Withdrawal discharge as a function of annual reliability

109
110

We used the VYELAS (Volume-Yield Elasticity) model to calculate the annual reliability of a given withdrawal discharge (Q_w , or water yield) of surface reservoirs [25]. It establishes the water

111 balance (Equations 1 and 2) at monthly time steps using long synthetic series to compute the annual
 112 reliability (G , Equation 3) of a given withdrawal discharge [26]. The model considers the operational
 113 rules as executed by the River Basin Committees in the Semi-arid [10]; and implicitly solves the
 114 simultaneous processes of evaporation, infiltration and withdrawal during the dry season.
 115

$$\frac{dV(t)}{dt} = (Q_H + Q_R + Q_G + Q_{imp}) - (Q_W + Q_E + Q_{inf} + Q_O + Q_{exp}) = \Delta Q(t). \quad (1)$$

116
 117 In Equation (1), $V(t)$ is the effectively stored reservoir volume at time t ; Q_H is the discharge of the
 118 direct precipitation over the lake; Q_R is the inflow discharge from the rivers; Q_G is the inflow
 119 discharge from the groundwater; Q_{imp} is the eventual import discharge from another basin by
 120 transfer structures; Q_W is the withdrawal discharge; Q_E is the evaporation discharge; Q_{inf} is the
 121 infiltration discharge; Q_O is the overflow discharge through the outlet; and Q_{exp} is the eventual
 122 export discharge to another basin by transfer structures. Field measurements in the Brazilian
 123 Semi-arid region have shown that, in most cases, the difference $(Q_H + Q_G) - (Q_E + Q_{inf})$ is negligible
 124 on a monthly time scale [25-26]. The term Q_{EW} represents the evaporation discharge of the wet
 125 season, and the annual evaporation discharge is constituted by $Q_E = Q_{EW} + Q_{ED}$, where Q_{ED} is the
 126 evaporation in the dry season. Equation (1) turns into Equation (2), which is used in the VYELAS
 127 model. For the reservoirs of this research, note that $Q_{imp} = Q_{exp} = 0$.
 128

$$\frac{dV(t)}{dt} \approx (Q_R + Q_{imp}) - (Q_W + Q_{ED} + Q_O + Q_{exp}), \quad (2)$$

129
 130

$$G = \frac{N_S}{N_S + N_{NS}}. \quad (3)$$

131 In Equation (3), G is the annual reliability for long series (we used 10,000 simulations), N_S is the
 132 number of successful years, whereas N_{NS} is the number of unsuccessful years in the simulation. In
 133 this context, a successful year is one in which the planned water demand can be integrally met
 134 without constraint, i.e., not leading to the reservoir level be below alert volume.
 135

2.4. Phase II - Reference discharge versus alert volume family of curves

136 The joint application of Equations (4), (5), and (6) yields Equation (7).
 137

$$\int_{V_0}^{V_f} dV = \int_0^T \Delta Q(t) \cdot dt, \quad (4)$$

$$Q_i = Q_H + Q_R, \quad (5)$$

$$\delta Q = Q_{inf} - Q_G = \varphi \cdot E_A \cdot A, \quad (6)$$

$$V_f = V_0 + \int_0^T [Q_i + Q_{imp} - (Q_W + Q_E + Q_O + \delta Q + Q_{exp})] \cdot dt. \quad (7)$$

141
 142 In Equations (4) – (7), t is time; V_0 is the reservoir volume in the beginning of the dry season; V_f is the
 143 reservoir volume after the simulated depletion; T is the simulated depletion duration; Q_i is the input
 144 discharge; δQ is the difference between infiltration and groundwater discharges; E_A is the
 145 evaporation rate; A is the effectively flooded area of the reservoir; and φ is a parameter. According
 146 to [2], φ equals 0.30 for a long-term balance in the Brazilian Semiarid. In the dry season, for a given
 147 reservoir volume (V_0), there is a withdrawal discharge (Q_W) that depletes the reservoir to volume V_f
 148 at duration T , given the input discharge Q_i . The withdrawal discharge Q_W is calibrated regarding the
 149 objective function (ψ : Equation 8), which should yield a value as close to zero as possible when
 150 solving Equation (7). The same procedure is repeated for varying initial volumes V_0 and T ,
 151 delivering a family of curves of $Q_W(V_0, T)$, for the given parameters Q_i and V_f .
 152

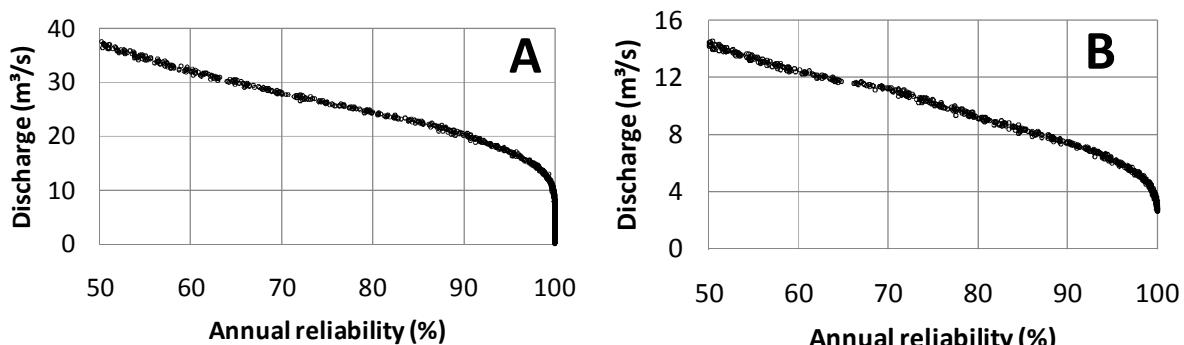
$$\psi = V(V_0, T, Q_W, Q_i) - V_f. \quad (8)$$

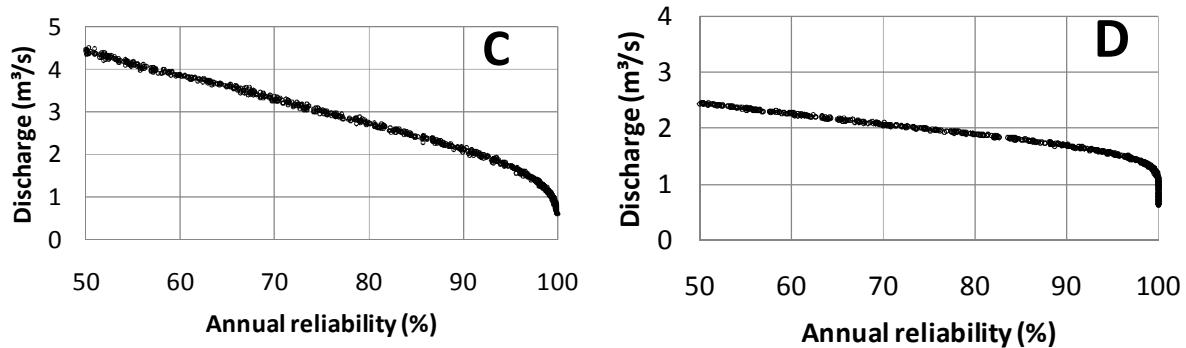
153

154 The three parameters (Q_i , V_f , and T) must be established. The model user elects two of them (Q_i
 155 and V_f , for example) and calibrate the third (T , in this case) during Phase III. In the study region, the
 156 water drawdown during the dry season is caused by simultaneous evaporation, infiltration and
 157 withdrawal; whereas the rainfall and runoff contribution is negligible [3, 23]. Therefore, in the
 158 simulations of the present research, we assumed that no input discharge occurred ($Q_i = 0$) and that
 159 the reservoir dried out ($V_f = 0$) after the duration T . Since no inflow was assumed, no overflow
 160 discharge through the outlet was expected either ($Q_o = 0$).

161 *2.5. Phase III - Calibration of the parameter T*

162 The curves generated by Equation (7) were confronted with the field data, which consisted of
 163 pairs of actually released discharges [$Q_w(t)$], associated with the reservoir volumes [$V(t)$] on the
 164 same day that Q_w was first released. The calibrated T value is the one with a curve that is tangent to
 165 the most external field-data point. The most external field-data point represents the highest-risk
 166 water release, i.e., the highest withdrawal discharge calculated for the reservoir level. It is important
 167 to observe that field data are only meaningful if the decision on water release is based on a valid
 168 criterion (a collective decision of the basin committee, for example), i.e., if the reservoir operation is
 169 acceptable to society. Otherwise, the data are not representative of the legitimate will of the users
 170 and should be discarded. The key output of Phase III is, thus, one curve that relates reference
 171 discharge to alert volume.

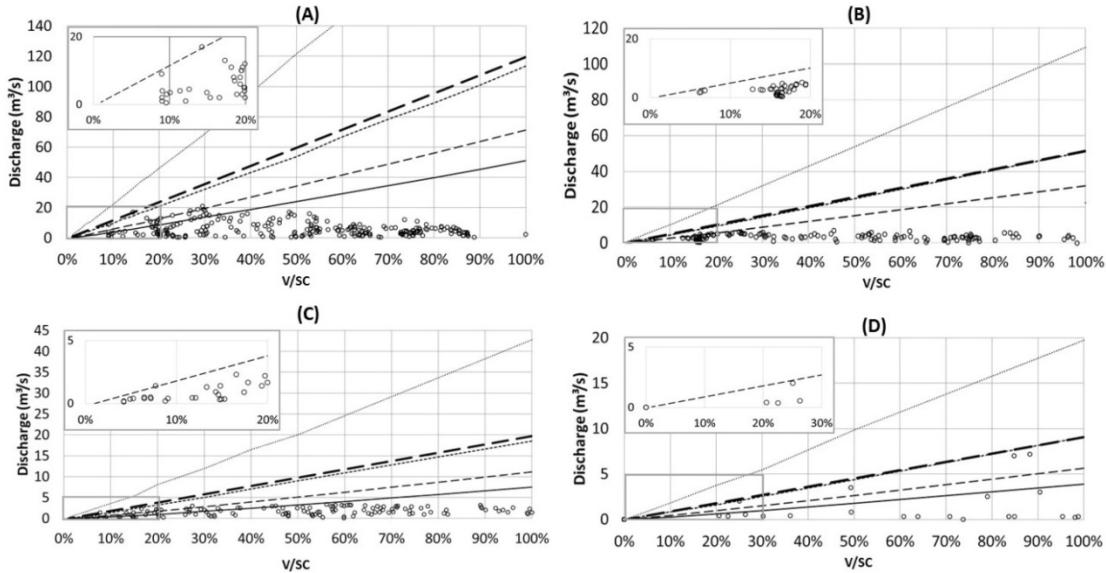

172 *2.6. Phase IV - Association of each water use with its respective alert volume*


173 For the water committee, each water use must be associated with a priority category (e.g., very
 174 low, low, moderate, high and very high) and, therefore, with the respective reliability level. Based on
 175 the result of Phase I, the users can compute the withdrawal discharge as a function of its respective
 176 reliability level. Subsequently, based on the result of Phases II and III, they can assess the alert
 177 volume as a function of the withdrawal discharge. At the end of Phase IV, there is a direct
 178 association between each water use and its respective alert volume. This means that, when the
 179 reservoir reaches alert volume, the respective users must start rationing water. This output, although
 180 based on a robust hydrological analysis, is simple and refers directly to the key decision variable of
 181 the stakeholders: the effective reservoir volume.

182 **3. Results**

183 *3.1. Discharges as a function of the annual reliability level*

184 Figure 3 depicts the monotonically-decreasing relation among withdrawal discharges with
 185 their respective annual reliability for the investigated reservoirs. It is also noteworthy that model
 186 sensitivity increases particularly in a region of high reliability (90% – 100%). The derivative dQ_w/dG
 187 in the vicinity of $G = 100\%$, for example, is almost five times higher than that of the $G = 80\%$ vicinity.



188 **Figure 3.** Withdrawal discharge as a function of the annual reliability level for the focus
 189 reservoirs: (A) Orós; (B) Araras; (C) Pentecoste; and (D) Aracoiaiba.

190 *3.2. Released discharges as a function of the reservoir volumes*

191 The field data (Figure 4) evince that there is a declining-demand trend when the stored volume
 192 is high. At the other extreme, when the stored volume decreases below 25% of the reservoir capacity,
 193 the withdrawal discharges also decrease. From Figure 4 and Table 1, it is clear that the optimal T
 194 value (for null Q_i and V_f) for the focus reservoirs lies close to six months for all cases (ranging from
 195 5.7 to 6.0 months). The boxes inside the plots (Figure 4) show that the highest-risk discharges (i.e.,
 196 those of the most external points) are usually released when the reservoir volumes lie between 5%
 197 and 25% of the storage capacity.

198
 199 **Figure 4.** Field data (dots) and simulation (lines) of released discharges as a function of the
 200 reservoir volumes (V) divided by the storage capacities (SC) for several depletion periods (T). The
 201 continuous black line refers to $T = 12$ months; the dashed line to 9 months; the dotted line to 6
 202 months; and the continuous grey line to 3 months. The bold dashed line refers to the optimal drying
 203 period. The small box on the top right zooms the optimal curve and the field data near the most
 204 external point: (A) Orós; (B) Araras; (C) Pentecoste; and (D) Aracoiaiba.

205 *3.3. Simulations for the focus reservoirs*

206 Table 2 presents the final results of the simulations for the focus reservoirs. On average, water
 207 rationing should start when the reservoir stores 20% of its capacity for very low priority uses (80%

208 annual reliability); 17% for moderate priority uses (90% reliability); and 11% for very high priority
 209 uses (99% reliability), such as human and animal supply.

210
 211 **Table 2.** Example of simulation. Withdrawal discharges (Q_w , in m^3/s) and the ratio between alert
 212 volume (V_a) and the storage capacity (SC) for the focus reservoirs, considering five water-use
 213 priorities and their respective annual supply reliability. Simulation parameters consider reservoir
 214 completely dry-out ($V_f = 0$) and no inflow ($Q_i = 0$) during six months ($T = 6$ months).

Water use	Water-use priority	Water-use reliability	Orós		Araras		Pentecoste		Aracoiba	
			Q_w	V_a/SC	Q_w	V_a/SC	Q_w	V_a/SC	Q_w	V_a/SC
Temporary-culture irrigation	Very low	80%	24.35	0.23	9.12	0.19	2.71	0.17	1.89	0.23
Aquaculture and similar	Low	85%	22.74	0.21	8.36	0.17	2.46	0.15	1.81	0.22
Permanent-culture irrigation	Moderate	90%	20.55	0.19	7.35	0.15	2.06	0.13	1.65	0.20
Industries and energy provision	High	95%	17.09	0.16	6.16	0.13	1.72	0.11	1.54	0.19
Human and animal supply	Very high	99%	9.57	0.10	4.61	0.10	1.15	0.08	1.32	0.16

215 4. Discussion

216 The fact that the derivative dQ_w/dG increases with reliability level means that, to obtain small
 217 increments of high-reliability levels, the withdrawal discharge must be considerably reduced. This is
 218 an important feature for decision making in systems designed to supply for high-reliability
 219 demands, such as human provision. In Brazil, the annual reliability discharge of 90% (Q_{90}) is
 220 commonly used for water resource planning and can be interpreted as the reference water
 221 availability of the reservoir [26]. The largest reservoir, Orós, is capable of yielding Q_{90} over 20 m^3/s
 222 (Table 2), whereas the smallest dam, Aracoiba, yields less than 2 m^3/s with the same reliability.
 223 Figure 3 and Table 1 indicate that Q_{90} is, on average, only 42% of the inflow, which means that 58% of
 224 the inflow either evaporates or overflows through the spillway. In fact, hydrological losses are much
 225 higher in a semiarid environment than in other climatic zones, including tropical wet basins, due to
 226 excessive evaporation and high variation coefficients of the annual inflow to the reservoirs, which
 227 leads to considerable outflow during wet years. De Araújo and Piedra [27] compared water
 228 availability in two meso-scale basins: one semiarid (in Brazil) and one wet (in Cuba). The results
 229 showed that, although the average precipitation in the wet basin was only twice that of the semiarid
 230 one, the first had a water availability of 280 mm.yr^{-1} against 20 mm.yr^{-1} in the latter. Another aspect
 231 that has to be considered is the effect of the inter-annual hydrological variability [6]. For example,
 232 the Q_{90} of the Pentecoste dam is only 20% higher than that of Aracoiba, although the Pentecoste
 233 storage capacity is two-fold and its catchment area is five times as big as the one of Aracoiba. This
 234 occurs because the hydrological variability of the Pentecoste basin (coefficient of variation of annual
 235 inflow 1.0) is considerably higher than that of Aracoiba (0.6). The difference of the hydrological
 236 variability between both basins is mainly due to their respective upper basin morphologies. In
 237 Pentecoste, located in the dry hinterlands, the upper-basin terrain slopes are mild (typically below
 238 20%), the air is dry and temperatures are high; whereas in the upper Aracoiba basin, located in
 239 higher altitude, the terrain is steeper, air moisture is higher and temperatures are lower. These
 240 features determine evaporation losses, as well as the initial runoff conditions, as investigated by [28].

241 The declining-demand trend when the stored volume is high means that demand decreases as
 242 the stored volume increases above a threshold value (around 50%), and so do the withdrawal
 243 discharges, due to the relative abundance of water from other sources in the basin, such as cisterns,

244 ponds and wells [10]. However, the demand depletion for low stored volume is due to another
245 reason: in that case, despite water scarcity in the basin, the stakeholders fear the lack of water in the
246 near future. In fact, drought experiences strongly affect people emotionally [29], culturally [30] and
247 socially [32-33]. A possible explanation for the optimal duration to be 6 months is its similarity with
248 the length of the dry season, i.e., the stakeholders try to use the available water as rationally as
249 possible before the next rainy season. Considering the differences in the catchment areas of the
250 reservoirs (size, precipitation, runoff), the constancy of the optimal T value suggests that it is
251 representative of the committees located in the Brazilian Semiarid region. What concerns the
252 highest-risk discharges (see the boxes in Figure 4), we noticed that, in the Araras and Pentecoste
253 reservoirs, this limit is low (below 10% of the storage capacity), showing that their stakeholders are
254 willing to take higher risks concerning the water supply of the following year. In the Orós and
255 Aracoiaba reservoirs, observations differed (15% and 25%, respectively). The more conservative
256 policy in Orós is probably due to the dam's relevance for the regional water supply. In fact, it is a
257 central supplier to other regions in the State within the drought-relief policies [22]. The Orós
258 operation is, therefore, decided not only by direct water users, but rather by the Management
259 Company, which plans the water policy for the State as a whole. The Aracoiaba dam is the least
260 vulnerable reservoir among those investigated in this research: it has the highest (2.38 years) average
261 residence time (i.e., the ratio between the storage capacity and the average inflow), which is 50%
262 higher than the average of the remaining reservoirs. It also counts on the highest precipitation (828
263 mm.yr⁻¹) and the highest (76%) hydrologic efficiency (Q₉₀/average inflow, Table 1; see also [27]). This
264 means that the Aracoiaba reservoir rarely dries out, and its stakeholders fear extreme scarcity
265 already when the stored volume is 25% of its capacity (against 15% in Orós, 7% in Araras, and 8% in
266 Pentecoste). From Table 2, it is noticeable that Aracoiaba presents the highest relative alert volumes.

267 According to the Brazilian National Water Law (BRAZIL, 1997), some water uses should have
268 priority when it comes to water access during water-scarcity occasions. We assumed, hence, several
269 (five) priority levels among the water uses, and associated an annual reliability to each priority,
270 simulating a possible result from a committee decision meeting (Table 2). After six years of
271 hydrological drought, on 23 January 2018, Orós had 6% of its storage capacity, Araras 7%, Pentecoste
272 less than 1%, and Aracoiaba 15% [23]. Considering the results of Table 2, on this date, all studied
273 reservoirs should rationalize water even for very high priority uses, which has not occurred so far.
274 Another important issue is the decision on how much water should be rationalized for each water
275 use in each situation. The hierarchical water-reliability policy, although necessary and helpful, is
276 also a source of conflicts. Take, for example, the case of Orós reservoir at 20% of its capacity. Very
277 low and low priority users will have to save water, but they will struggle to get as much as possible,
278 whereas higher priority users will try to release as little as possible, so as to delay (or even avoid)
279 having to rationalize water themselves. An even worse scenario is that, in which all users have to
280 suffer supply restriction. By how much should each use be reduced? Should rationalization be linear
281 with the licensed discharge? Another gap – still to be developed within the model framework – is the
282 consideration of water quality [21] as a key parameter in the decision making. These problems are
283 still technically unsolved, but a democratic and representative basin committee seems to be the best
284 forum to decide such matters and provide proper water governance in reservoir-dependent regions
285 [34].

286 5. Conclusions

287 We introduce a novel and hydrologically-sound method to provide a simple relation between
288 classes of water uses and their respective alert volumes. The method uses a new approach and
289 considers the input from committee stakeholders to classify water uses and to associate them with
290 the annual reliability level. Hydrological models associate withdrawal discharges with both the
291 reliability level and the alert volume. Our method was applied to four important reservoirs (2.10² -
292 2.10³ hm³) of the Brazilian Semiarid region. The results indicate that uses with very low priority
293 should start rationalization when the reservoir volume is, on average, below 20%; whereas uses with
294 very high priority should start rationalization when the reservoir volume is below 11%. It was

295 observed that, after six years of hydrological drought, all the users of the focus reservoirs should be
296 under water rationalization, but this has not happened until now. The field data shows that, when
297 the stored reservoir volume is higher than 50%, demand decreases because of the relative abundance
298 of water from other sources in the basin. When the stored volumes are low (typically below 25%), the
299 withdrawal discharges also decrease, most likely due to the fear of water scarcity in the near future.
300 The field data also give evidence that the highest-risk discharges (i.e., those of the most external
301 points) are usually released when the reservoir volumes lie between 5% and 25% of the storage
302 capacity. Despite the water-priority policy's relevance, it is also a source of conflicts, with no
303 technical solution whatsoever. However, a democratic and representative committee seems to be the
304 best forum to decide such matters. The here-derived guidelines are simple and should help to
305 enhance water governance among the less educated stakeholders (in terms of hydrological
306 modeling) in water-scarce and reservoir-dependent regions.

307 **Author Contributions:** conceptualization, José Carlos de Araújo; methodology, José Carlos de Araújo and
308 George Leite Mamede; validation, José Carlos de Araújo, George Leite Mamede and Berthyer Peixoto de Lima;
309 formal analysis, José Carlos de Araújo and George Leite Mamede; investigation, José Carlos de Araújo; data
310 curation, José Carlos de Araújo, George Leite Mamede and Berthyer Peixoto de Lima; writing—original draft
311 preparation, José Carlos de Araújo; writing—review and editing, George Leite Mamede; funding acquisition,
312 José Carlos de Araújo.

313 **Funding:** This research was funded by CNPq – Brazilian National Research Council (grant numbers
314 407999/16-7; 301677/15-8).

315 **Acknowledgments:** We acknowledge the support given by CAPES - Coordenação de Aperfeiçoamento de
316 Pessoal de Nível Superior, from the Brazilian Ministry of Education.

317 **Conflicts of Interest:** The authors declare no conflict of interest.

318

319 References

- 320 1. Gaiser, T.; Krol, M.; Frischkorn, H.; de Araújo, J. C. ,Eds. Global change and regional impacts. Springer Verlag: Berlin, Germany, 2003. ISBN 978-3-540-43824-3.
- 321 2. Mamede, G.L.; Araújo, N.; Schneider, C.M.; de Araújo, J.C.; Herrmann, H.J. Overspill avalanching in a dense reservoir network. *Proceedings of the National Academy of Sciences of the USA*, 2012, 109(19), 7191–7195. DOI: 10.1073/pnas.1200398109.
- 322 3. Peter, S.; de Araújo, J.C.; Araújo, N.; Herrmann, H. Flood avalanches in a semiarid basin with a dense reservoir network. *J Hydrol.*, 2014, 512, 408–420. DOI: 10.1016/j.jhydrol.2014.03.001.
- 323 4. Pararage, K. Understanding the relationship between water infrastructure and socio-political configurations: a case study from Sri Lanka. *Water*, 2018, 10(10), 1402. DOI: 10.3390/w10101402
- 324 5. Song, W.; Yuan, Y.; Jiang, Y.; Lei, X.; Shu, D. Rule-based water resource allocation in the Central Guizhou Province, China. *Ecological Engineering*, 2016, 87, 194–202. DOI: 10.1016/j.ecoleng.2015.11.051.
- 325 6. Chen, K.; Guo, S.; He, S.; Xu, T.; Zhong, Y.; Sun, S. The value of hydrologic information in reservoir outflow decision-making. *Water*, 2018, 10, 1372; DOI: 10.3390/w10101372.
- 326 7. Tan, Q.; Wang, X.; Wang, H.; Wang, C.; Lei, X.; Xiong, Y.; Zhang, W. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. *J Hydrol.*, 2017, 551, 253–264. DOI: 10.1016/j.jhydrol.2017.06.009.
- 327 8. Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. *Science of the Total Environment*, 2017, 607–608, 294–303. DOI: 10.1016/j.scitotenv.2017.06.265.
- 328 9. BRAZIL. Law N° 9 433, from 8 January 1997. Brasília. (In Portuguese).
- 329 10. De Araújo, J.C.; Bronstert, A. A method to assess hydrological drought in semiarid environments and its application to the Jaguaribe River basin, Brazil. *Water Int.*, 2016, 41, 213–230. DOI: 10.1080/02508060.2015.1113077.
- 330 11. Telles Melo, J.A.; Montezuma, T.F.; Marques, G.O.P. Direito à água e injustiça hídrica: um estudo sobre a (in)constitucionalidade dos benefícios tarifários às indústrias hidrointensivas no Complexo Industrial do Pecém. 2017. Available at <http://www>.

347 planetaverde.org/arquivos/biblioteca/arquivo_20170605175106_890.pdf Instituto Direito por um
348 Planeta Verde. São Paulo. (In Portuguese).

349 12. Liu, P.; Li, L.; Chen, G.; Rheinheimer, D.E. Parameter uncertainty analysis of reservoir operating rules
350 based on implicit stochastic optimization. *J. Hydrol.*, 2014, 514, 102–113. DOI:
351 10.1016/j.jhydrol.2014.04.012.

352 13. Feng, M.; Liu, P.; Guo, S.; Gui, Z.; Zhang, X.; Zhang, W.; Xiong, L. Identifying changing patterns of
353 reservoir operating rules under various inflow alteration scenarios. *Advances in Water Resource*,
354 2017, 104, 23–36. DOI: 10.1016/j.advwatres.2017.03.003.

355 14. Andreu, J.; Capilla, J.; Sanchis, E. A generalized decision-support system for water-resources planning
356 and operational management. *Journal of Hydrology*, 1996, 177(4), 269–291.

357 15. Porto, R.L.L.; Azevedo, L.G.T. Sistemas de suporte a decisões de recursos hídricos. In *Técnicas*
358 *quantitativas para o gerenciamento de recursos hídricos*; Porto, R.L.L., Ed.; ABRH: Porto Alegre,
359 Brazil, 1997; pp.43-95. (In Portuguese).

360 16. Zagona, E.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. RiverWare: A generalized tool for complex
361 reservoir system modeling. *Journal of the American Water Resources Association*, 2001, 37, 913 - 929.
362 DOI: 10.1111/j.1752-1688.2001.tb05522.x.

363 17. Labadie, J. MODSIM: River basin management decision support system, In *Watershed Models*, Singh,
364 V., Frevert, D., Eds.; CRC Press, Boca Raton, Florida, 2005; Chapter 23.

365 18. Li, M.; Fu, Q.; Singh, V.P.; Liu, D. An interval multi-objective programming model for irrigation water
366 allocation under uncertainty. *Agricultural Water Management*, 2018, 196, 24–36. DOI:
367 10.1016/j.agwat.2017.10.016.

368 19. Alexandre, D.M.B. Gestão de pequenos sistemas hídricos no semiárido nordestino. Doctorate
369 Dissertation. Federal University of Ceará, Fortaleza, Brazil, 147 p. (In Portuguese).

370 20. Zhang, S.; Foerster, S.; Medeiros, P.; de Araújo, J.C.; Motagh, M.; Waske, B. Bathymetric survey of
371 water reservoirs in north-eastern Brazil based on TanDEM-X satellite data. *Sci. Total Environ.*, 2016,
372 571, 575–593. DOI: 10.1016/j.scitotenv.2016.07.024.

373 21. Coelho, C.F.; Heim, B.; Foerster, S.; Brosinsky, A.; de Araújo, J.C. In situ and satellite observation of
374 CDOM and chlorophyll-a dynamics in small water surface reservoirs in the Brazilian Semiarid
375 Region. *Water*, 2017, 9, 913. DOI: 10.3390/w9120913.

376 22. Campos, J.N.B. Paradigms and public policies on drought in Northeast Brazil: a historical perspective.
377 *Environmental Management*, 2015, 55(5), 1052–1063. DOI: 10.1007/s00267-015-0444-x.

378 23. CEARÁ (2018). Electronic Atlas of Water Resources of Ceará. Available online:
379 <http://atlas.srh.ce.gov.br/> (accessed on 23 January 2018). (In Portuguese).

380 24. COGERH – Companhia de Gestão dos Recursos Hídricos. Available online:
381 <https://www.cogerh.com.br/> (accessed on 03 January 2018). (In Portuguese).

382 25. De Araújo, J. C.; Guntner, A.; Bronstert, A. Loss of reservoir volume by sediment deposition and its
383 impact on water availability in semiarid Brazil. *Hydrological Sciences Journal des Sciences
384 Hydrologiques*, 2006, 51(1), 157–170. DOI: 10.1623/hysj.51.1.157.

385 26. Campos, J.N.B. Modeling the yield evaporation spill in the reservoir storage process: The regulation
386 triangle diagram. *Water Resources Management*, 2010, 24(13), 3487–3511. DOI:
387 10.1007/s11269-010-9616-x.

388 27. De Araújo J.C.; Piedra, J.I.G. Comparative hydrology: analysis of a semiarid and a humid tropical
389 watershed. *Hydrological Processes*, 2009, 23: 1169–1178. DOI:10.1002/hyp.7232.

390 28. De Figueiredo, J.V.; de Araújo, J.C.; Medeiros, P.H.A.; Costa, A.C. Runoff initiation in a preserved
391 semiarid Caatinga small watershed, Northeastern Brazil. *Hydrological Processes*, 2016, 30(13),
392 2390–2400. DOI: 10.1002/hyp.10801

393 29. Keshavarz, M.; Karami, E.; Vanclay, F. The social experience of drought in rural Iran. *Land Use and
394 Policy*, 2013, 30, 120–129. DOI:10.1016/j.landusepol.2012.03.003.

395 30. Xi, J. Types of integration and depressive symptoms: a latent class analysis on the resettled population
396 for the Three Gorges dam project, China. *Social Science & Medicine*, 2016, 157, 78–86. DOI:
397 10.1016/j.socscimed.2016.03.045.

398 31. Keilty, K.; Beckley, T.M.; Sherren, K. Baselines of acceptability and generational change on the
399 Mactaquac hydroelectric dam headpond (New Brunswick, Canada). *Geoforum*, 2016, 75, 234–248.
400 DOI: 10.1016/j.geoforum.2016.08.001.

401 32. Wilhite, D. A.; Svoboda, M. D.; Hayes, M. J. Understanding the complex impacts of drought: a key to
402 enhancing drought mitigation and preparedness. *Water Resources Management*, 2007, 21, 763–774.
403 DOI: 10.1007/s11269-006-9076-5.

404 33. Sivapalan, M. From engineering hydrology to Earth system science: milestones in the transformation
405 of hydrologic science. *Hydrology and Earth System Sciences*, 2018, 22, 1665–1693. DOI:
406 10.5194/hess-22-1665-2018.

407 34. Singer, J.; Pham, H.T.; Hoang, H. Broadening stakeholder participation to improve outcomes for
408 dam-forced resettlement in Vietnam. *Water Resources and Rural Development*, 2014, 4, 85–103. DOI:
409 10.1016/j.wrr.2014.07.001.