1 Article

2 Optimization of Line-Tunneling Type L-Shaped

3 Tunnel Field-Effect-Transistor for Steep

4 Subthreshold Slope

- 5 Faraz Najam 1 and Yun Seop Yu 1,*
 - ¹ Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University
- 7 * Correspondence: ysyu@hknu.ac.kr; Tel.: +81-31-670-5293

Abstract: Recently L-shaped tunneling field-effect-transistor (LTFET) has been introduced to overcome the thermal subthreshold limit of conventional metal-oxide-semiconductor field-effect-transistors (MOSFET). In this work, shortcoming of LTFET was investigated. It was found that corner effect present in LTFET effectively degrades its subthreshold slope. To get rid of corner effect a new type of device with dual material gates is presented. The new device termed as DG-LTFET gets rid of the corner effect and results in a significantly improved subthreshold slope of less than 10 mV/dec, and an improved ON/OFF current ratio over LTFET. In this work DG-LTFET was evaluated for different device parameters, and bench-marked against LTFET. This work presents an optimum configuration of DG-LTFET in terms of device dimensions and doping levels, to get the best subthreshold, ON current and ambipolar performance from the DG-LTFET.

Keywords: Band-to-band tunneling, L-shaped tunnel field-effect-transistor, double-gate tunnel field-effect-transistor, corner-effect.

1. Introduction

Tunnel field-effect-transistors (TFET) are being actively pursued as a potential replacement to conventional complementary metal-oxide-semiconductor (CMOS) technology [1]. TFETs offer sub-thermal subthreshold slope (SS) but suffer from limited ON current *I*_{ON} performance [2]. To overcome the limit, recently different types of line tunneling type TFETs have been introduced including L-shaped TFET [3] (LTFET), U-shaped [4] (UTFET), and Z-shaped [5] TFET (ZTFET). Among them, only LTFET has been experimentally demonstrated [3].

It was found using device simulations that 2-dimenasional (2D) corner effect [6] present in LTFET degrades its subthreshold performance. In order to remove SS degradation due to the kink effect induced by the source corner, the fully depleted rounded corner with gradual doping profile was used [6]. LTFET still achieves sub-thermal SS but as shown in this work there is room for significant improvement in the subthreshold performance of LTFET. To achieve this improvement, a new device based on the original LTFET is introduced in this work. The new device uses a dual-gate (DG) structure, and is termed as DG-LTFET. The two gates (gate1 and gate2) have different workfunctions and different heights. DG-LTFET was thoroughly evaluated for different device parameters including the source region height, gate1 and gate2 heights, gate1 and gate2 workfunctions, channel thickness, and drain doping levels. Optimum dimensions and drain doping level were determined for the DG-LTFET. Section 2 briefly discusses the corner-effect problem of LTFET. Section 3 introduces DG-LTFET, and compares its results with LTFET. Section 4 presents conclusion.

(c) (i)

2. LTFET: Corner Effect

Fig. 1 shows a schematic for LTFET. The p⁺ (10^{20} cm⁻³) doped source region overlaps the gate with the n⁻ (10^{12} cm⁻³) channel sandwiched in between them. This sandwiched channel region is termed as $R_{\text{nonoffset}}$. Also, there is a part of the channel termed as R_{offset} in which there is an offset present between the source and the gate as indicted in Fig. 1. The following parameters were used for all devices considered in this work unless otherwise specified. Source height (H_{s}) = 40 nm, oxide thickness (t_{ox}) = 2 nm, length of $R_{\text{nonoffset}}$ (H_{in}) = 5 nm, channel length (H_{ch}) = 50 nm, height of $H_{\text{nonoffset}}$ 0 nm, height of $H_{\text{nonoffset}}$ 1 nm, dielectric permittivity H_{ox} 2 = 25, metal gate workfunction H_{rk} 1 = 4.72 eV, and drain doping (H_{ol} 1) = H_{ox} 3.

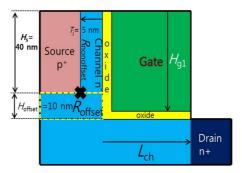
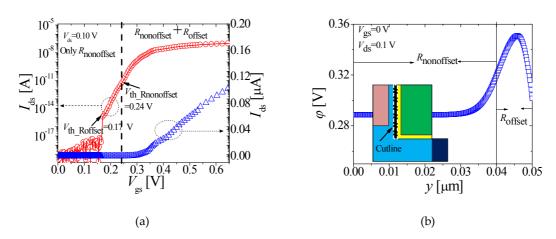
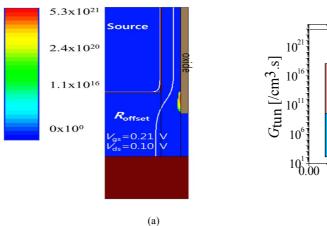
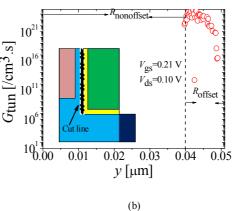



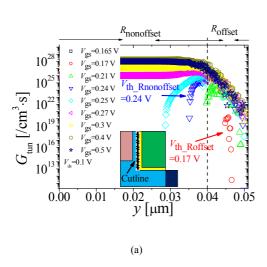
Figure 1. Schematic of LTFET.

Sentaurus technology-computer-aided-design tool (TCAD) was used as the simulator [7]. The following models were used in the simulation: dynamic nonlocal band-to-band-tunneling (BTBT) model, fermi statistics, and constant mobility model. Dynamic nonlocal BTBT model calculates BTBT in both lateral and 1-dimensional (1D) directions. Crystal orientation is assumed to be <100> in all devices. A constant electron effective tunneling mass of 0.19 m_0 was used in all simulations [8]. All simulation were done at drain source bias $V_{\rm ds} = 0.1$ V unless otherwise specified.




Figure 2. (a). I_{ds} - V_{gs} transfer characteristics of LTFET. Indicated are $V_{th_Rnonoffset}$ = 0.24 V, and $V_{th_Roffset}$ = 0.17 V. (b) Potential along the cutline shown in the inset at V_{gs} = 0 V. Potential is higher in R_{offset} .

For analysis to follow, drain-source current (I_{ds}) versus gate-source bias (V_{gs}) characteristics of the LTFET are shown in Fig. 2(a). There is a direct overlap between gate and source in $R_{nonoffset}$, and the electric field in $R_{nonoffset}$ is in 1D direction. However, in R_{offset} , electric field from the gate converges around the sharp source corner marked by an \mathbf{X} in Fig. 1. This increases the potential in R_{offset} as compared to $R_{nonoffset}$ for any given bias (until potential saturates due to electron inversion). Fig. 2(b) shows the surface potential at $V_{gs} = 0$ V. It can be seen that because the electric field


converges around the sharp source corner [6], the potential in R_{offset} has increased. Since the potential is higher in R_{offset} as compared to $R_{\text{nonoffset}}$, the threshold voltage for BTBT in R_{offset} ($V_{\text{th_Ronoffset}}$) is lower than the threshold voltage for BTBT in $R_{\text{nonoffset}}$ ($V_{\text{th_Ronoffset}}$).

Figs. 3(a) and (b) show the tunneling rate (G_{tun}) contour plot and G_{tun} , respectively at $V_{gs} = 0.21$ V which is the bias needed to generate $I_{ds} = 10^{-13}$ A (from Fig. 2(a)). It is obvious from Fig. 3 that the BTBT only takes place in R_{offset} whereas $R_{nonoffset}$ is completely switched off. Fig. 4(a) shows G_{tun} at several V_{gs} values. From Fig. 4(a) $V_{th_Ronoffset}$ and $V_{th_Ronoffset}$ can be found to be around $V_{gs} = 0.17$ and 0.24 V, respectively. Fig. 4(b) shows G_{tun} contour plot at $V_{gs} = V_{th_Ronoffset} = 0.24$ V. It can be noticed from Fig. 4(a) that G_{tun} in $R_{nonoffset}$ just after it turns on, is always higher and has much larger BTBT area (in y direction) as compared to R_{offset} . Thus whenever $R_{nonoffset}$ turns on, it dominates over R_{offset} . The reason why G_{tun} is higher in $R_{nonoffset}$ is simply because the BTBT paths in $R_{nonoffset}$ are laterally oriented or 2D from source to the surface in R_{offset} , whereas the BTBT paths in $R_{nonoffset}$ are 1D. The 2D BTBT paths being naturally longer than the 1D paths result in lower G_{tun} in R_{offset} .

Figure 3. (a) G_{tun} contour plot at $V_{\text{gs}} = 0.21$ V, which is the bias needed to generate $I_{\text{ds}} = 10^{-13}$ A and (b) G_{tun} extracted from Fig. 3(a).

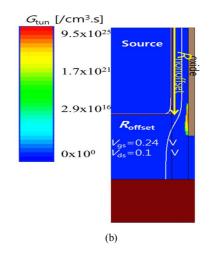
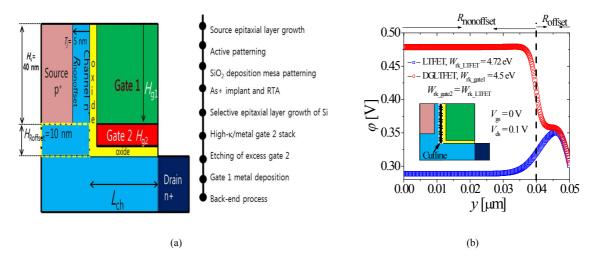


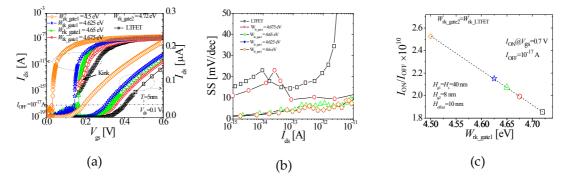
Figure 4. (a) G_{tun} at different V_{gs} . Indicated in Fig. 4(a) are $V_{\text{th_Rnonoffset}} = 0.24 \text{ V}$, and $V_{\text{th_Roffset}} = 0.17 \text{ V}$ and (b) G_{tun} contour plot at $V_{\text{gs}} = V_{\text{th_Rnonoverlap}} = 0.24 \text{ V}$. In Fig. 4(b), yellow arrow indicates the height of $R_{\text{nonoffset}}$.

From Fig. 4(a), it can be observed that for a large part of the subthreshold region ($V_{\rm gs}$ < 0.24 V) only $R_{\rm offset}$ with the longer 2D BTBT paths and lower $G_{\rm tun}$ is contributing to the BTBT current and the more efficient $R_{\rm nonoffset}$ makes no contribution to the current. In other words, LTFET underperforms in the subthreshold region. If $R_{\rm nonoffset}$ could be forced to turn on at a lower bias than $R_{\rm offset}$ that is the

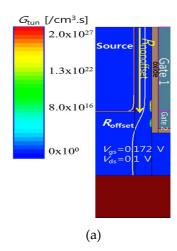

condition $V_{\text{th_Rnonoffset}} < V_{\text{th_Roffset}}$, $R_{\text{nonoffset}}$ will turn on in the subthreshold region, and with the condition, G_{tun} in $R_{\text{nonoffset}} > G_{\text{tun}}$ in R_{offset} , demonstrated in Fig. 4(a), a significant improvement in SS could be expected.

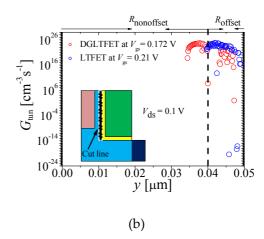
3. DG-LTFET

3.1. DG-LTFET: Basic Device Physics


In order to achieve the condition $V_{\text{th_Rnonoffset}} < V_{\text{th_Rnoffset}}$, DG-LTFET is presented in Fig. 5(a). DG-LTFET uses dual material gates denoted by gate1 and gate2, each with a different workfunction $(W_{\text{rk_gate1/2}})$ and height $(H_{\text{g1/2}})$. $H_{\text{g1}} = H_{\text{nonoffset}} = H_{\text{s}} = 40$ nm, $H_{\text{offset}} = 10$ nm, $H_{\text{g2}} = H_{\text{nonoffset}} - H_{\text{g1}} + (H_{\text{offset}} - t_{\text{ox}}) = 8$ nm, and $T_{\text{j}} = 5$ nm. $W_{\text{rk_gate1}}$ is always lower than $W_{\text{rk_gate2}}$. $W_{\text{rk_gate2}}$ is fixed at $W_{\text{rk_LTFET}} = 4.72$ eV for all DG-LTFET considered in this work. DGLTFET process-flow is indicated in Fig. 5(a). The process-flow is based on LTFET process-flow [3]. DGLTFET process-flow follows LTFET process-flow until the metal-organic chemical vapor deposition of gate 2 (similar to gate deposition in LTFET). After this two additional steps are required. The device is masked to protect the gate oxide and channel areas, and gate 2 is selectively etched according to desired height. Metal of Gate 1 is then deposited in the recess created by gate 2-etching. Similar dual-material gate structures have been extensively reported in the literature including [9-11].

Lower W_{rk_gate1} results in an increased flatband voltage (V_{fb}) [12] in $R_{nonoffset}$ as compared to R_{offset} . Fig. 5(b) shows V_{fb} of DG-LTFET (red symbols) with W_{rk_gate1} = 4.5 eV and W_{rk_gate2} = W_{rk_LTFET} . Also V_{fb} of LTFET (blue symbols) is shown for reference. Expectedly DG-LTFET potential increases in $R_{nonoffset}$. The potential does not change abruptly from gate1 to gate2 because of the presence of 2D effects around the source corner. Electric field from bottom of gate2 converges around the source corner. Around the middle of R_{offset} , equilibrium is established between the two gates and DG-LTFET potential overlaps LTFET potential since W_{rk_gate2} = W_{rk_LTFET} . With $W_{rk_gate1} < W_{rk_gate2}$, the increased potential in $R_{nonoffset}$ reduces $V_{th_Ronoffset}$. If $W_{rk_gate1/2}$ are appropriately tuned with $W_{rk_gate1} < W_{rk_gate2}$, the condition $V_{th_Ronoffset} < V_{th_Roffset} = 0.17$ V could be achieved. Because W_{rk_gate2} = W_{rk_LTFET} = 4.72 eV, $V_{th_Roffset}$ (in DG-LTFET) is equal to $V_{th_Roffset}$ (in LTFET).




Figure 5. (a) Schematic of DG-LTFET with process-flow indicated alongside and (b) V_{fb} of DG-LTFET (red symbols) compared with that of LTFET (blue symbols). In DG-LTFET, $W_{\text{rk_gate1}} = 4.5$ eV and $W_{\text{rk_gate2}} = W_{\text{rk_LTFET}} = 4.72$ eV were used.

Figs. 6(a), (b), and (c) show I_{ds} - V_{gs} characteristics at different W_{rk_gate1} , SS, and I_{ON}/I_{OFF} of DG-LTFET with constant $W_{rk_gate2} = W_{rk_LTFET} = 4.72$ eV for all DG-LTFET, respectively. Also the I_{ds} - V_{gs} characteristics of LTFET (black squares) are shown for reference. I_{ON} is extracted at $V_{gs} = 0.7$ V, and I_{OFF} is defined as $I_{ds} = 10^{-17}$ A. With $W_{rk_gate1} = 4.675$ eV (red circles), the $V_{th_Rnonoffset}$ is reduced to 0.189 V. Compared with LTFET, $R_{nonoffset}$ now turns on earlier in the subthreshold region, along with R_{offset} . Since BTBT is more efficient in $R_{nonoffset}$ (Fig. 4(a)) as compared to R_{offset} , I_{ds} increases more rapidly within the subthreshold region. Hence, just at the transition point, where $R_{nonoffset}$ turns on ($V_{gs} \sim 0.189$) a kink appears in the I_{ds} - V_{gs} curve. With $W_{rk_gate1} = 4.65$ eV (green triangles), $V_{th_Rnonoffset}$ is reduced to $V_{gs} = 0.167$ V and the condition $V_{th_Rnonoffset} < V_{th_Roffset}$ is achieved and DG-LTFET exhibits a remarkable SS with values less than 10 mV/dec as seen in Fig. 6(b). With $W_{rk_gate1} = 4.625$ eV (blue stars), $V_{th_Rnonoffset}$ reduces further to 0.1448 V which is $V_{th_Roffset}$. If $V_{th_Rnonoffset} < V_{th_Roffset}$ is established than any increase in $V_{th_Roffset} - V_{th_Rnonoffset}$ simply shifts the I_{ds} - V_{gs} to the left without any change in SS as shown by the blue stars ($W_{rk_gate1} = 4.625$ eV) and orange diamonds ($W_{rk_gate1} = 4.5$ eV) in Figs. 6(a) and (b), respectively. An improvement of ~16 % is observed in I_{ON}/I_{OFF} of DG-LTFET (with $W_{rk_gate1} = 4.625$ eV) over LTFET.

Figure 6. (a). I_{ds} - V_{gs} characteristics of DG-LTFET with different W_{rk_gate1} and fixed W_{rk_gate2} = W_{rk_LTFET} . Also shown is I_{ds} - V_{gs} characteristics of LTFET (black squares). (b) SS extracted from I_{ds} - V_{gs} characteristics in Fig. 8(a). Red circles: W_{rk_gate1} = 4.675 eV, Green triangles: W_{rk_gate1} = 4.65 eV, Blue stars: W_{rk_gate1} = 4.625 eV, Orange diamonds: W_{rk_gate1} = 4.5 eV.

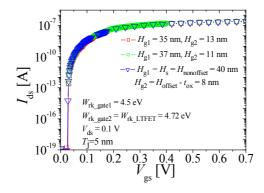
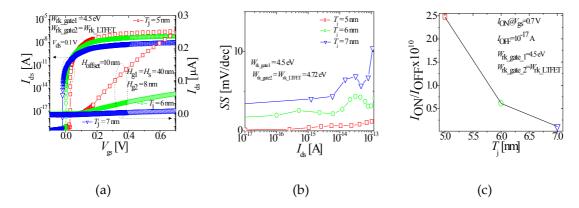
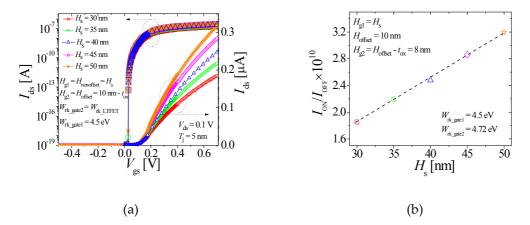

Figure 7. (a) G_{tun} contour plot of DG-LTFET with $W_{\text{rk_gate1}} = 4.65$ eV at $V_{\text{gs}} = 0.172$ V, which is needed to generate $I_{\text{ds}} = 10^{-13}$ A and (b) G_{tun} extracted from Fig. 7(a) (red symbols). Also G_{tun} (blue symbols) of LTFET at a V_{gs} bias needed to generate $I_{\text{ds}} = 10^{-13}$ A are shown for reference. In Fig. 7(a), yellow arrow indicates the height of $R_{\text{nonoffset}}$.

Fig. 7(a) shows G_{tun} contour plot of DG-LTFET at a V_{gs} (= 0.172 V) bias needed to achieve an equivalent I_{ds} of 10^{-13} A in DG-LTFET with W_{rk_gate1} = 4.65 eV. Fig. 7(b) shows contour plot extracted from Fig. 7(a). For reference Fig. 7(b) also shows G_{tun} needed to generate an equivalent amount of I_{ds} in LTFET (at a V_{gs} bias of 0.21 V, Fig. 3(b)). As can be seen in Fig. 7(b), LTFET needs contribution only from R_{offset} , but to generate the same amount of I_{ds} , DG-LTFET depends heavily on $R_{nonoffset}$ with some contribution from R_{offset} . Because G_{tun} in $R_{nonoffset}$ is more efficient (Fig. 4(a)), as the V_{gs} bias increases, G_{tun} increases exponentially in a much larger area in $R_{nonoffset}$ which results in the DG-LTFET exhibiting a much steeper subthreshold swing, while the LTFET continues to depend only on the inefficient BTBT in R_{offset} until around $V_{th_Rnonoffset}$ = 0.24 V.

3.2. Device Optimization

To optimize device performance, impact of variations in key parameters including $H_{g1/2}$, H_s/T_j , and N_d was investigated. To investigate the impact of $H_{g1/2}$ values, $I_{ds}-V_{gs}$ characteristics for DG-LTFET at different H_{g1} and $H_{g2} = H_{nonoffset} - H_{g1} + (H_{offset} - t_{ox})$ with fixed $W_{rk_gate1} = 4.5$ eV and $W_{rk_gate2} = W_{rk_LTFET}$, $H_s = H_{nonoffset} = 40$ nm, $H_{offset} = 10$ nm, and $T_j = 5$ nm is presented in Fig. 8. It can be seen that I_{ds} is independent of $H_{g1/2}$.


7 of 10


Figure 8. I_{ds} - V_{gs} characteristics for several $H_{g1/2}$ s with $W_{rk_gate1/2}$ = 4.5 eV and W_{rk_gate2} = W_{rk_LTFET} . Red squares, green circles, and blue triangles: H_{g1} = 35, 37, and 40 nm, respectively.

Next, to investigate the effect of T_j on device performance, I_{ds} - V_{gs} characteristics, SS, and I_{ON}/I_{OFF} of DG-LTFET are presented for different T_j with fixed W_{rk_gate1} = 4.5 eV and W_{rk_gate2} = W_{rk_LTFET} , H_{g1} = $H_{nonoffset}$ = 40 nm, H_{offset} = 10 nm. and H_{g2} = $H_{nonoffset}$ - H_{g1} + (H_{offset} - H_{g1}) = 8 nm in Fig. 9(a), (b) and (c), respectively. It was found that the increasing T_j results in a degradation of I_{ON}/I_{OFF} ratio. It is simply because of the increase in BTBT path length with the increase in T_j . T_j of 5 nm was found to be optimum in this work as any further reduction will bring significant quantum confinement effect into play which is well known to degrade device performance [4-5], [13-15].

Next, the impact of varying H_s is investigated. I_{ds} - V_{gs} characteristics of DG-LTFET for several H_s with fixed W_{rk_gate1} = 4.5 eV and W_{rk_gate2} = W_{rk_LTFET} , H_{g1} = H_s = $H_{nonoffset}$, H_{g2} = $H_{nonoffset}$ - H_{g1} + (H_{offset} - H_{g1} + (H_{offset} - H_{g1} + (H_{offset} - H_{g1} + (H_{g1} = H_{g1} + H_{g2} = H_{g1} + (H_{g2} + H_{g1} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g2} + H_{g1} + (H_{g1} + H_{g2} + H_{g1} + H_{g1} + H_{g1} + H_{g2} + H_{g1} + H_{g1} + H_{g2} + H_{g1} + H_{g1} + H_{g2} + H_{g1} +

Figure 9. I_{ds} - V_{gs} characteristics of DG-LTFET with different T_j and fixed W_{rk_gate1} = 4.5 eV, W_{rk_gate2} = W_{rk_LTFET} and H_{g1} = H_s = $H_{nonoffset}$ = 40 nm, H_{g2} = H_{offset} (10 nm) - t_{ox} = 8 nm. (b) SS of I_{ds} - V_{gs} shown in Fig. 8(a). (c) I_{ON}/I_{OFF} ratio of I_{ds} - V_{gs} characteristics shown in Fig. 8(a). Red squares, green circles, and blue triangles: T_j = 5, 6 and 7 nm, respectively.

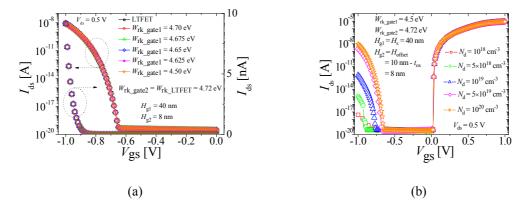


Figure 10. $I_{ds-}V_{gs}$ characteristics of DG-LTFET with different H_s , fixed $W_{rk_gate1} = 4.5$ eV, $W_{rk_gate2} = W_{rk_LTFET}$, and $H_{g1} = H_s = H_{nonoffset}$, $H_{g2} = H_{offset}$ (= 10 nm) - $t_{ox} = 8$ nm. (b) I_{ON}/I_{OFF} ratio of $I_{ds-}V_{gs}$ characteristics shown in Fig. 10(a). Red squares, green circles, blue triangles, magenta diamonds, and orange stars: $H_s = 30$, 35, 40, 45, and 50 nm, respectively.

Finally, ambipolar current of DG-LTFET is discussed. Ambipolar Ids of TFET depends on

drain-channel junction. In DG-LTFET, drain-channel junction is controlled by gate2 with $W_{rk_gate2} = W_{rk_LTFET}$. With the same workfunction, the electrostatics of drain-channel junction in DG-LTFET is exactly the same as that in LTFET. Fig. 11(a) shows ambipolar I_{ds} of DG-LTFET compared with LTFET. Any change in W_{rk_gate1} in DG-LTFET does not affect the drain-channel junction. Same argument applies for any other design parameter variation in DG-LTFET including H_s , $H_{g1/2}$, T_j , that is, as long as electrostatics of drain-channel junction remains unaffected, DG-LTFET will exhibit equivalent ambipolar I_{ds} as LTFET. Further, impact of N_d on ambipolar I_{ds} was considered. Different N_d values were considered for a DG-LTFET with $W_{rk_gate1} = 4.5$ eV and $W_{rk_gate2} = W_{rk_LTFET}$, $H_{g1} = H_{nonoffset} = 40$ nm, $H_{g2} = H_{offset} - t_{ox} = 8$ nm, and $T_j = 5$ nm and the results are shown in Fig. 11(b).

 $H_{\text{nonoffset}} = 40 \text{ nm}$, $H_{\text{g2}} = H_{\text{offset}} - t_{\text{ox}} = 8 \text{ nm}$, and $T_{\text{j}} = 5 \text{ nm}$ and the results are shown in Fig. 11(b). Drain doping level of 10^{18} cm^{-3} was found to suppress ambipolar I_{ds} appreciably without affecting the I_{ON} .

Figure 11. (a) I_{ds} - V_{gs} characteristics of DG-LTFET at V_{ds} = 0.5 V with different W_{rk_gate1} and W_{rk_gate2} = W_{rk_LTFET} , H_{g1} = H_{offset} = 10 nm, H_{g2} = 8 nm, T_j = 5 nm and N_d = 10²⁰ cm⁻³. Red circles, green triangles, blue diamonds, magenta stars, and orange right triangles: W_{rk_gate1} = 4.7, 4.675, 4.65, 4.625, and 4.5 eV. (b) DG-LTFET I_{ds} with different N_d . N_d = 10¹⁸ cm⁻³ demonstrates almost negligible ambipolar I_{ds} . Red squares, green circles, blue triangles, magenta diamonds, and orange stars: N_d = 10¹⁸, 5×10¹⁸, 10¹⁹, 5×10¹⁹, and 10²⁰ cm⁻³.

5. Conclusions

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Device physics of LTFET were investigated. It was found that a large part of subthreshold region is dominated by the parasitic, lateral, and 2D BTBT from source to Roffset with lower Gtun. The more efficient 1D BTBT from source to $R_{\text{nonoffset}}$, which has higher G_{tun} , takes place at a higher bias in the subthreshold region because of Vth_Rnonoffset > Vth_Roffset. The device does not utilize its channel fully during the subthreshold region due to $V_{\text{th_Rononfiset}} > V_{\text{th_Roffset}}$. A new type of device based on LTFET was introduced in this work. The device uses a dual gate-stacked structure which workfunction of upper gate W_{rk_gate1} is below that of lower gate W_{rk_gate2}. This makes the potential in R_{nonoffset} increase and thus $V_{\text{th_Rnonoffset}}$ reduce. DG-LTFET reverses the threshold condition of LTFET, which it lowers $V_{\text{th_Rnonoffset}}$ (< $V_{\text{th_Roffset}}$). $R_{\text{nonoffset}}$ with higher G_{tun} turns on earlier than R_{offset} in the subthreshold region of DG-LTFET and the device exhibits SS of less than 10 mV/dec. It was found that Wrk_gate1 in DG-LTFET needs to be sufficiently less than W_{rk_gate2} to achieve the sub 10 mv/dec SS. It was found that I_{ds} and SS are independent of $H_{g1/2}$. DG-LTFET was further evaluated for different device dimensions including T_i and H_{s_r} while maintaining the electric field vector distribution equivalent. I_{ds} decreases with an increase in T_1 and scales with H_s . N_d value of 10^{18} cm⁻³ was found to appreciably reduce ambipolar Ids. With the results presented in this work DG-LTFET could be considered as a viable potential replacement to conventional MOSFET.

Author Contributions: Conceptualization, N.F., and Y.S.Y.; methodology, N.F, and Y.S.Y.; investigation, N.F., and Y.S.Y.; data curation, N.F.; writing—original draft preparation, N.F.; writing—review and editing, N.F., and Y.S.Y.; supervision, Y.S.Y.; project administration, Y.S. Y.; funding acquisition, Y.S.Y.

Funding: This research was funded by Ministry of Trade, Industry & Energy (MOTIE), project number 10054888 and Korea Semiconductor Research Consortium (KSRC) support program for the development of future semiconductor devices.

Acknowledgments: This work was supported by IDEC (EDA tool).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

205 References

- 206 1. Avci, U. E.; Morris, D. H. Tunnel field-effect transistors. *IEEE J. Electron Devices Soc.* 2015, 3, 88-95, doi: 10.1109/JEDS.2015.2390591.
- 208 2. Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy efficient electronic switches. *Nature* **2011**, 479, 329-337, doi: 10.1038/nature10679.
- 3. Kim, S. W.; Kim, J. H.; Liu, T. K.; Choi, W. Y.; Park, B. Demonstration of L-shaped tunnel field-effect transistors. *IEEE Trans. Electron Devices* **2016**, 63, 1774-1778, doi: 10.1109/TED.2015.2472496.
- 4. Yang, Z. Tunnel field-effect transistor with an L-shaped gate. *IEEE Electron Device Lett.***2016**, 4, 839-842, doi: 10.1109/LED.2016.2574821.
- 5. Imenabadi, R. M.; Saremi, M.; Vandenberghe, W. G. A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. *IEEE. Trans. Electron Devices* **2017**, 64, 4752-4758, doi: 10.1109/TED.2017.2755507.
- 6. Kim, S. W.; Choi, W. Y.; Sun, M. C.; Park, B. G. Investigation on the corner effect of L-shaped tunneling field-effect transistors and their fabrication method. *J. Nanosci. Nanotechnol.* **2016**, 9, 6376-6381, doi: 10.1166/jnn.2013.7609.
- 7. Sentaurus User Manual, version L-2016.03, Mar. 2016.
- 8. Kao, K. H.; Verhulst, A. S.; Vandenberghe, W. G.; Soree, B.; Groeseneken, G.; Meyer, K. D. Direct and indirect band-to-band-tunneling in germanium-based TFETs. *IEEE Trans. Electron Devices* **2012**, 59, 292-301, doi: 10.1109/TED.2011.2175228.
- 9. Saxena, R. S.; Kumar, M. J. Dual-material gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs. *IEEE. Trans. Electron Devices* **2009**, 56, 517-522, doi: 10.1109/TED.2008.2011723.
- Long, W.; Ou, H.; Kuo, J-M.; Chin, K. K. Dual-material gate (DMG) Field Effect Transistor. *IEEE. Trans. Electron Devices* 1999, 46, 865-870, doi: 10.1109/16.760391.
- 229 11. Polishchuk, I.; Ranade, P.; King, T-J.; Hu, C. Dual work function metal gate CMOS technology using metal interdiffusion. . *IEEE Electron Device Lett.* 2001,9, 444-446, doi: 10.1109/55.944334.
- 231 12. Sze S.M.; Kwok, K. Ng. *Physics of Semiconductor Devices*, 3rd ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2006; ISBN: 9780471143239.
- 233 13. Walke, A. M.; Verhulst, A. S.; Vandooren, A.; Verreck, D.; Simeon, E.; Rao. V. R.; Groeseneken, G.; 234 Collaert, N.; Thean, A. V. Y. Part I: Impact of field-induced quantum confinement on subthreshold swing behavior of line TFETs. *IEEE Trans. Electron Devices* 2013, 60, 4057-4064, doi: 10.1109/TED.2013.2287259.
- 236 14. Padilla, J. L.; Gamiz, F.; Godoy, A. A simple approach to quantum confinement in tunneling field-effect transistors. *IEEE Electron Device Lett.* **2012**, 33, 1342-1344, doi: 10.1109/LED.2012.2207876.
- 238 15. Padilla, J. L.; Alper, C.; Gamiz, F.; Ionescu, A. M. Assessment of field-induced quantum confinement in heterogate germanium electron-hole bilayer tunnel-field transistor. *Applied Physics Letters* **2014**, 105, 082108-1 082108-4, doi.org/10.1063/1.4894088.