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Abstract: In wireless sensor networks, there is no a central controller to enforce cooperation between 
nodes. Therefore, nodes may generate selfish behavior to conserve their energy resources. In this 
paper, we address the problems of transmission power minimization and energy balance in wireless 
sensor networks using a topology control algorithm. We considered the energy efficiency and 
energy balance of the nodes, and an improved optimization-integrated utility function is designed by 
introducing the Theil index. Based on this, a topological control game model of energy balance is 
established, and it is proved that the topological game model is an ordinal potential game with Pareto 
optimality. Additionally, an energy-balanced topology control game algorithm (EBTG) is proposed to 
construct topologies. The simulation and comparison show that, compared with other topological 
control algorithms based on game theory, the EBTG algorithm can improve energy balance and 
energy efficiency while reducing the transmitting power of nodes, thus prolonging the network 
lifetime.

Keywords: wireless sensor networks; topology control; game theory; energy balanced13

1. Introduction14

WSN (Wireless sensor networks, WSN) usually consist of a large number of sensor nodes. In15

general, sensor nodes operate on batteries and are thus limited in their working lifetime [1]; therefore,16

efficient and balanced energy usage is the key to prolonging the lifetime of a network, which is the17

primary concern of topology control. The goal of topology control is to optimize the transmitting18

power of each node and construct a better topology to improve network performance and prolong19

network lifetime [2].20

At present, in the field of wireless sensor networks, many topological control algorithms, which21

are mainly divided into hierarchical, power control, and game-type topology control algorithms, are22

proposed. For example, a low-power hierarchical WSN topology control algorithm [3], which is a23

multilevel topology control algorithm, is designed; this algorithm extends the network level and24

improves the maintainability of WSN using a combination of the static address and the dynamic25

address. In another paper [4], an energy-efficient hierarchical topology control method is established in26

WSN using time slots, in which a cluster-head selecting approach decreases the difference in the cluster27

size of LEACH and the responsibility mechanism for the active node makes the energy consumption28

uniform in the cluster. In the literature [5], Kubisch et al. implement dynamic power control to set29

the node degree of the upper and lower limits, thus resulting in a lower total energy consumption30

network topology. The power control algorithm proposed in [6] uses a Borel Cayley graph to construct31

a network topology that has a short average link and low energy consumption. The algorithm does32
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not consider the robustness of the network topology and the residual energy of nodes, which affects33

the operation of the network to some extent.34

When the sensor nodes perform data forwarding, the node will show selfish behavior due to35

energy saving considerations, and competition will occur between nodes [7]. On this basis, the game36

theory approach can be introduced into the study of WSN topology control. Game theory provides a37

powerful tool [8] for describing the phenomena competition and individual coping strategies between38

intelligent rational decision-makers, and it has been used in systems concerning action and payoff.39

Komali et al. [9], [10] formulated energy-efficient topology control as a noncooperative potential game,40

which guarantees the existence of at least one Nash equilibrium (NE) and proposes a distributed41

noncooperative game topology control algorithm based on game theory. In [11], a topology control42

algorithm based on a link power consumption game is designed to run the minimum MLPT algorithm43

for the maximum power of the node. To consider network lifetime as well, researchers have proposed44

two game-based topology control algorithms: the virtual game-based energy-balanced algorithm45

(VGEB) [12] and the energy welfare topology control algorithm (EWTC) [13]; these algorithms have46

been developed to improve network lifetime via energy-balanced network topologies. In [14], the47

adaptive cooperative topological control algorithm (CTCA) based on game theory considers the48

smallest potential lifetime and degree as the primary and secondary utility functions, respectively.49

In [15], a topology control algorithm (DEBA) based on the ordinal potential game is proposed by50

designing a payoff function that considers both network connectivity and the energy balance of nodes.51

Although some of the abovementioned algorithms based on game theory can achieve network topology52

control and improve network performance, they cannot guarantee the connectivity and robustness of53

the network. Additionally, the remaining energy, energy balance and energy efficiency of the nodes54

are not fully and accurately considered.55

Based on the above analysis, this paper takes the energy efficiency and energy balance of the56

node as the starting point and considers the influence of the residual energy, the transmitting power57

and the node degree of the node. In addition, by introducing the Theil index to design an improved58

and optimized integrated utility function, an energy-balanced topology control game algorithm59

(EBTG) is proposed. The network topology constructed by this algorithm can efficiently guarantee the60

connectivity and robustness of the network and balance the energy between nodes, which effectively61

prolongs the network lifetime.62

The rest of the paper is organized as follows. Section 2 overviews critical concepts of the network63

model and the theory of potential games as applicable to our problem. Section 3 presents the topology64

control game model and provides the game formulation and theoretic analysis. From this model, in65

Section 4, an energy-balanced topology control algorithm, in which each sensor adaptively adjusts its66

transmit power according to the residual energy, is proposed. Section 5 validates our EBTG algorithm67

via simulation. Finally, Section 6 concludes this paper.68

2. Preliminaries69

In this section, we present a brief overview of some fundamental concepts related to the network70

model, the ordinal potential game theory and the Theil index.71

2.1. Network model72

WSN are usually abstracted G = (N, L, P) as according to graph theory. Let G = (N, L, P) be an73

undirected graph, where N denotes the set of nodes, L is a set of two-node communication links in74

node set N at time t, and P represents the transmit power set of n nodes.75

It is assumed that all nodes are randomly deployed in the plane monitoring area and that their76

maximum transmit power pmax
i can be different. When the transmit power pi ∈ [0, pmax

i ] of node i is77

sufficiently large, the signal received by node j is higher than the receiving threshold p so that node j78

can respond.79
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Because most routing and channel studies use bidirectional links, it is assumed that the links in80

the network topology are bidirectional. When all nodes use their maximum power to communicate,81

the formed network topology is denoted by Gmax. In this design, Gmax is the connected network.82

2.2. Ordinal potential game theory83

The ordinal potential game is a kind of strategy game. The strategy game Γ consists of N players,
the possible strategy S of the players, and consequences u of the strategy. The following definition is
given for the strategy game:

Γ = 〈N, S, {ui}〉 (1)

Three definitions are as follows. First, (1) N = {1, 2, 3, · · · , n} represents the set of players, and n is the84

number of players in the game. Then, (2) S represents the policy space, and S is the Cartesian product of85

the set of policies Si(i ∈ N), where Si = {si1, si2, · · · , sik} represents an optional set of policies for node86

i, which is usually abbreviated as Si = {s1, s2, · · · , sk}. In general, we use s = (si, s−i) ∈ S to describe87

a strategy combination, si to represent the strategy choice of node i, and s−i to represent the other node88

strategy choices except node i. Finally, (3) u represents the utility function u = {u1, u2, · · · , un}, where89

ui denotes the maximum utility function that node i can achieve in the policy combination (si, s−i).90

Definition 1. In a strategy game Γ = 〈N, S, {ui}〉, the strategy s∗i of any game player i is the best91

strategy response to the strategy combination of s∗−i the remaining game participants. Then, there must92

be ui
{

s∗1 , · · · , s∗i , · · · , s∗n
}
≥ ui

{
s∗1 , · · · , s∗ij, · · · , s∗n

}
, where sij indicates that the j-th strategy of game player93

i is valid for any sij ∈ S; then,
{

s∗1 , · · · , s∗n
}

is called the "Nash Equilibrium (NE) [16]" of the game.94

A game may possess a large amount of NEs or none at all, but some types of games have been95

proved to have at least one Nash equilibrium, such as the ordinal potential game used in this paper,96

which has been proved to be a Nash equilibrium and may not be unique in the literature [17].97

Definition 2. A strategic game Γ = 〈N, S, {ui}〉 is an ordinal potential game if there exists a function V such
that ∀i ∈ N, ∀s−i ∈ S−i and for ∀ai, bi ∈ S

V (ai, s−i)−V (bi, s−i) > 0⇔ ui (ai, s−i)− ui (bi, s−i) > 0 (2)

The function V is called the ordinal potential function of the strategy game Γ. Then, the strategy combination s∗98

for the maximum value of the ordinal potential function V is the NE of the game [17].99

2.3. Theil index100

The Theil index [18] is a statistic primarily used to measure economic inequality and other
economic phenomena. It was proposed by econometrician Henri Theil at Erasmus University in
Rotterdam. This index measures income inequality through the concept of entropy in information
theory [19]. When the concept of the entropy index in information theory is used to measure the
income gap, the income gap can be interpreted as the amount of information contained in the message
that converts the population share into the income share. The Theil index T is defined as:

T =
N

∑
i=1

(
xi

∑N
j=1 xj

· ln xi
x

)
(3)

where xi is a characteristic of agent i, x represents average income, and N is the population. The range101

of the Theil index is [0, ∞). The larger the value, the more obvious the difference from the average.102
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3. Topology control game model103

In this section, a topology control game model is first constructed. Then, it is proved that the104

game model belongs to the ordinal potential game and the NE is Pareto optimal.105

3.1. Utility function106

The use environment of wireless sensor networks is relatively complex, and it is difficult to107

quantify the benefits of nodes. The existing topology control algorithm based on the ordinal potential108

game [15] does not adequately consider node revenue, and the utility function cannot accurately reflect109

the competition between nodes and the balance of energy consumption.110

This paper uses a power control model based on the utility function [17]. To maximize utility111

function, each participant adjusts power in a selfish manner, which is typical for noncooperative power112

control games. In addition, to better balance the load between nodes, energy efficiency is improved. In113

this paper, the Theil index is introduced in the design of the utility function. In addition, the method of114

measuring income inequality in the field of social science is used to measure the imbalance of energy115

consumption between nodes in wireless sensor networks by using the node and its surplus energy as116

analogues for the group members and their income. Thus, a more accurate node utility function is117

obtained to describe the competitive relationship between nodes.118

Consider a multihop network constituting independent and selfish nodes that adapt the transmit
power levels according to their connectivity and energy consumption preferences. By considering the
energy efficiency and energy balance, a specific utility function for node i(∀i ∈ N) is given by:

ui (pi, p−i) = fpi

(
λpmax

i − kpi pi +
1

T + 1

)
+

Er(i)
E0(i)− Er(i)

+ µEi(pi) (4)

where, for node i, initial energy, residual energy, current transmitting power and maximum
transmitting power are E0(i), Er(i), pi and pmax

i , p−i represents the transmit power of the remaining
n-1 nodes except node i. In addition, we define a link state variable fpi

(
fpi ≥ 0

)
. If the network is

connected, then fpi = 1; otherwise, fpi = 0. Topology control aims to prolong the network lifetime
by reducing the node power without destroying the overall network connectivity and robustness.
By adding parameter fpi

(
fpi ≥ 0

)
, it is ensured that the network remains connected after repeated

iterations of the game. The kpi represents the degree of node i when the transmitting power is pi; λ and

µ are the weight factors of the utility function and all are positive numbers. Ei(pi) =
1
m

m
∑

j=1

Er(j)
E0(j)−Er(j)

(node j means that node i is a single hop neighbor node at power pi, where m represents the number of
one-hop neighbor nodes of node i) in equation 4 indicates that more calls to the remaining high-energy
nodes participate in the communication link to ensure load balancing [11]. To better balance the load
between nodes and improve energy efficiency, the method of measuring income inequality in the field
of social science is used to measure the imbalance of energy consumption between nodes in wireless
sensor networks using the node and its residual energy as an analogue for group members and their
income; the Theil index T is defined as

T =
n

∑
i=1

 Er(i)
n
∑

j=1
Er(j)

· ln Er(i)
Er

 .

The utility function satisfies the properties described in [20]. With the utility function defined, a119

game is played with all sensors picking their powers.120
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3.2. Model proof121

We show that the game Γ = 〈N, S, {ui}〉 with the utility function of each sensor given by (4) is an122

ordinal potential game; then, the existence of NEs are guaranteed.123

Theorem 1. The game Γ = 〈N, S, {ui}〉 is an ordinal potential game. The ordinal potential function is given
by:

V(pi, p−i) = ∑
i∈N

{
fpi

(
λpmax

i − kpi pi +
1

T + 1

)
+

Er(i)
E0(i)− Er(i)

+ µEi(pi)

}
(5)

Proof. We apply the asserted ordinal potential game in (4). First, we have:

∆ui = ui(pi, p−i)− ui(qi, p−i)

= fpi

(
λpmax

i − kpi pi +
1

T + 1

)
+ µEi(pi)− fqi

(
λpmax

i − kpi qi +
1

T + 1

)
− µEi(qi)

=
(

fpi − fqi

) (
λpmax

i +
1

T + 1

)
+ fqi kqi qi − fpi kpi pi + µ

(
Ei(pi)− Ei(qi)

) (6)

Similarly:

∆V = V(pi, p−i)−V(qi, p−i)

= ∑
i∈N

[
fpi

(
λpmax

i − kpi pi +
1

T + 1
+ µEi(pi)

)]
− ∑

i∈N

[
fqi

(
λpmax

i − kpi qi +
1

T + 1
+ µEi(qi)

)]
=
(

fpi − fqi

) (
λpmax

i +
1

T + 1

)
+ fqi kqi qi − fpi kpi pi + µ

(
Ei(pi)− Ei(qi)

)
+ ∑

j∈N,j 6=i

[
λ
(

fpj − fqj

)
pmax

j + µEj(pj)
]

(7)

Thus, we have:
∆V = ∆ui + ∑

j∈N,j 6=i

[
λ
(

fpj − fqj

)
pmax

j + µEj(pj)
]

(8)

For node i, because is monotonic and λ
(

fpj − fqj

)
pmax

j + µEj(pj) ≥ 0, it follows from (6) that:

∆ui =


≥ 0 i f pi > qi and fpi > fqi

≤ 0 i f pi < qi and fpi < fqi

> 0 i f pi > qi and fpi = fqi

< 0 i f pi > qi and fpi = fqi

(9)

Therefore, sgn(∆ui) = sgn(∆V), the function V(pi, p−i) is the ordinal potential function of the strategy124

game, and the strategy game Γ = 〈N, S, {ui}〉 is the ordinal game.125

Theorem 2. The NE of the topology game model established in this paper is Pareto optimal [16] if the network126

Gmax is connected.127

Proof. Due to the limited number of nodes, a node has a limited number of optional power128

concentration elements. According to [17], the finite ordinal potential game must converge to the NE.129

According to the definition of the network model and the description of the utility function, a node130

maximizes the utility function by adjusting its own policy choice. The concrete manifestation is that131
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the node continuously reduces the transmitting power and prolongs the survival time until the power132

of all nodes no longer changes; that is, the NE state is reached.133

When a NE point is reached, if a node reduces its power, network connectivity will be destroyed.134

As a result, the remaining nodes must increase their power, thus resulting in lower utility function135

values of other nodes and disruption of the NE. Therefore, according to the Pareto optimal definition,136

it can be concluded that the NE of the topological control game is Pareto optimal.137

4. Energy-balanced topology control game algorithm138

In this section, we propose an energy-balanced topology control algorithm in which each sensor139

adaptively adjusts its transmit power according to the residual energy.140

Nodes in EBTG initiate with the maximum power network Gmax and then try to update this141

topology iteratively according to their increasing unwillingness. EBTG consists of three phases: the142

initialization phase (topological establishment phase), the adaptation phase (power adjustment phase),143

and the topology maintenance phase.144

4.1. Initialization phase145

Every node in topology control game algorithms that makes a topological decision needs to collect146

some network information. In EBTG, the information required by node i in the topology construction147

process is the local topology Gi, which is an induced subgraph of Gmax. Every vertex of the directed148

graph corresponds to a node in WSN.149

To obtain this decision information, node i initializes its transmit power with maximum power150

pmax and discovers its neighbor nodes by broadcasting the "Hello" Message and collecting the responses151

provided by the receivers at pmax. The message contains information such as node ID and remaining152

energy. By receiving and returning the message, a series of information, such as ID, transmit power153

and residual energy of its neighbor nodes, is learned and the maximum reachable neighbor set Nmax(i)154

of node i and its maximum uplink set Lmax(i) is determined. By establishing these sets, the largest155

global network topology view Gmax can be learned, thereby establishing a basis for subsequent routing156

decisions.157

4.2. Adaptation phase158

Node i in the adaptation phase determines its transmit power according to its current residual159

energy Er(i), the current transmitting power and the topology-related information collected during160

the initialization phase. The procedure of power adaptation is shown in Algorithm 1.161
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Algorithm 1 EBTG Power Adaptation
initialization

1: node i broadcasts "hello" message at pmax
i

2: determine the neighbor set Nmax(i)
3: Determine the optional power set Pi for node i, descending sort
4: Broadcast optional power set Pi

Power adjustment

1: Pi = {p1, p2, · · · , pk}, descending sort
2: while pi is not NE
3: for i = 1, i ≤ N, i ++
4: choose power according to p∗i = arg max

pi∈Pi

ui(pi, p−i)

5: if u∗i
(

p∗i , p−i
)
≥ ui (pi, p−i)

6: if pi is NE
7: pi = p∗i , update pi
8: end if
9: end if

10: end for
11: broadcast a "hello" message including the new power setting pi at pmax

i
12: end while

This paper adjusts the network topology structure through the power control method, sets the162

transmission power of the node as the optimal transmission power, and thus obtains the optimized163

network topological structure.164

In the power adaptation phase, we first need to sort the node’s strategy set Pi = {p1, p2, · · · , pk}165

in descending order. The minimum available transmit power pmin
i of node i can be calculated using166

the free-space model proposed in [21]. Pseudocode is shown in Algorithm 1.167

The power adjustment sequence of the EBTG algorithm is based on the node ID, as shown in168

Fig. 1, the transmit power of one node is adjusted for each round, and the remaining power of169

the node is unchanged. To ensure convergence to the NE, this algorithm uses the better response170

strategy update scheme proved in [17], which converges to the NE in the finite ordinal potential game.171

Given the power p−i of other participants, the optimal response of node i is ri (p−i) = min
(

pmax
i , p∗i

)
,172

which has p∗i = arg max
pi∈Pi

ui(pi, p−i). During the game, when the node selects a power lower than the173

current transmit power for communication, it is observed whether the corresponding integrated utility174

function value increases. If it is larger, it indicates that the lower power is more suitable for use as the175

transmit power; otherwise, the node keeps current transmit power unchanged.176
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Figure 1. Flowchart of Power Adaptation

When the power of the node is changed, the communication radius, the neighboring node and177

its related links will change, which leads to the change of the network topology. As shown in Fig.178

2, when the transmit power of node i increases, node j will be included in its communication range;179

then, the nearest neighbor node of node i is changed from the original node k to the current node j.180

Therefore, node j can reduce its transmit power appropriately under the precondition of guaranteeing181

full network connectivity.182

i

k

j

T time coverage

T+1 time coverage

Figure 2. Diagram of Power Adaptation

4.3. Topology maintenance phase183

As time flows, the energy consumption of the nodes may become more unbalanced. Therefore,184

energy consumption between nodes will become unbalanced. In consideration of node failure or185

death, network topology maintenance must be performed dynamically. For the topology maintenance186

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 October 2018                   doi:10.20944/preprints201810.0259.v1

Peer-reviewed version available at Sensors 2018, 18, 4454; doi:10.3390/s18124454

http://dx.doi.org/10.20944/preprints201810.0259.v1
http://dx.doi.org/10.3390/s18124454


9 of 15

phase, we designed an event-triggered approach that adaptively regenerates a more balanced network187

topology.188

The power game process can be implemented by comparing the residual energy of nodes with189

the energy threshold or by setting the period to balance the load of nodes and prolong the network190

lifetime. Pseudocode is shown in Algorithm 2.191

Algorithm 2 EBTG Topology Maintenance
initialization

1: Receiving neighbor information
2: if t ≥ T(T is the set time threshold)
3: Replay the game of power adaptation
4: end if

Theorem 3. If the Gmax is a connected network, the EBTG algorithm converges to the NE state that can192

maintain the connectivity of network Gmax.193

Proof. It is known from Theorem 1 that the topological control game model constructed in this paper
is an ordinal potential game. In the EBTG algorithm proposed in this paper, the node increases its
benefit function value by adjusting the choice of strategy (i.e., reducing the power value of the node)
until the selection strategies of all nodes are not changed. Obviously, this state is a NE. It is assumed
that the node i obtains greater benefits in the power pi < p∗i , and the network is disconnected when
the power p−i of the other nodes is unchanged; therefore:

ui (pi, p−i) =
Er(i)

E0(i)− Er(i)
+ µEi(pi) > λpmax

i − kpi p
∗
i +

Er(i)
E0(i)− Er(i)

+ µEi(p∗i ) (10)

In addition, then:
µEi(pi) > λpmax

i − kpi p
∗
i + µEi(p∗i ) (11)

Obviously, equation (10) is not tenable, thus obtaining the connected network at each round of194

the game execution of the EBTG algorithm.195

5. Simulation results analysis196

In this section, computer simulations are provided to illustrate the proposed algorithms. This197

paper uses MATLAB R2016a as a simulation tool to simulate the EBTG algorithm. In addition, a198

comparison with the DIA [10], MLPT [11] and DEBA [15] algorithms is conducted with regard to node199

degree, node transmit power, node hop number and node residual energy. The experiment assumes200

that all nodes are randomly deployed and cannot be moved, and each sensor sends a packet to other201

sensors per second, i.e., each sensor transmits n-1 packets per second, the packet size is 1024 bytes,202

and the transmission rate is 106 bits/s. The remaining emulation parameters are shown in Table 1:203

Table 1. Experimental parameter

Parameter name Parameter size

Monitoring area 150m× 150m
Communication radius 50m

Node initial energy 50J
Wavelength λ 0.1224m

Receiving threshold 7× 10−10w
Transmit antenna gain Gt 1
Receive antenna gain Gr 1

System loss L 1
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First, weight factor λ and µ in the utility function must be determined; the experiment randomly204

distributes 50 nodes in the target region, as shown in Fig. 3.205

For µ = 1, the influence of λ on the network topology performance is considered in terms of the206

average transmit power, the average node degree between nodes, the average residual energy of the207

adjacent node and the average hop number of the shortest path between nodes.208

Fig. 3(a) indicates that the average transmit power of the node decreases as λ increases. Fig. 3(b)209

indicates that the residual energy of the neighboring node decreases as λ increases. Fig. 3(c) indicates210

that the average node degree of the network decreases as λ increases, but tends to stabilize after211

λ ≥ 2. Fig. 3(d) indicates that the average hop number of the shortest path between nodes increases212

as λ increases. The changes after λ ≥ 2 also tended to stabilize. From the general theory of network213

topology, it can be seen that the topology of the network is perfect when the transmit power of the214

nodes is low, while there is a moderate node degree and average hop number. By comprehensively215

considering node computing power and network performance [22], this paper sets λ = 4 and µ = 1.216
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Figure 3. The impact of λ on network performance

Fig. 4 shows the network topology diagram of the four algorithms, i.e., DIA, MLPT, DEBA and217

EBTG. It can be seen that the network topology built by the DIA algorithm has a large load and low218

residual energy (the nodes are marked out). The DEBA algorithm has a higher node degree and more219

redundant nodes, which lead to faster energy consumption. Compared to the other two algorithms,220

the MLPT and EBTG algorithms have lower node degrees and fewer redundant nodes. The general221

theory of network topology shows that the EBTG algorithm has moderate nodes and redundant nodes;222

therefore, its network connectivity and robustness are better than those of the other three algorithms,223

which can efficiently balance the load between nodes to prolong network lifetime.224
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(a) DIA algorithm
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(b) MLPT algorithm
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(c) DEBA algorithm
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Figure 4. Network topology comparison chart

To make a clearer comparison of the four algorithms, this paper conducted 8 groups of225

experiments. The specific experimental parameters are set as shown in Table 1, where the number226

of nodes participating in the experiment is increased from 30 to 100 and the algorithm is compared227

by calculating the node transmit power of the four algorithms, the hops of the shortest link between228

nodes and the average value of the four parameters of the node degree.229

Fig. 5 is a comparison diagram of the transmission power between nodes. It can be observed230

from the figure that the transmission power of a node decreases as the number of nodes increases. The231

EBTG algorithm’s node average transmit power is lower than the DIA, MLPT and DEBA algorithms,232

which can ensure that the EBTG algorithm can establish network topology connections with lower233

power, which is conducive to extending the network lifetime.234
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Figure 5. Node average transmit power
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Fig. 6 shows the hop count comparison of the shortest link between nodes. The average hop count235

of the EBTG algorithm is higher than that of the MLPT algorithm, but it is still lower than the DIA and236

DEBA algorithms. The MLPT algorithm has higher node transmit power and greater communication237

coverage, and so its average link hop count is lower. Since the EBTG algorithm operates at lower power238

and the communication radius is smaller, the average hop count of the link increases. However, the239

EBTG algorithm still obtains fewer link hops than the DIA and DEBA algorithms when the transmit240

power is lower than the DIA algorithm.241
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Figure 6. Average number of hops for the shortest link

Fig. 7 shows a comparison of node degrees for the four algorithms. Because nodes with more242

energy remaining in the EBTG algorithm are more active in node communication, to obtain a more243

balanced load to prolong the life cycle of the network, the node degree is higher than that of the244

DIA algorithm but lower than that of the DEBA and MLPT algorithms. The moderate node degree245

of the EBTG algorithm does occupy too much of the energy resources and obtains relatively good246

connectivity and robustness, while having fewer redundant nodes can achieve better energy efficiency,247

improve channel multiplexing and reduce interference.248
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Figure 7. Average node degree

Fig. 8 compares the standard deviations of the node residual energy. It can be seen that the249

variance of the EBTG algorithm changes slowly. In the network topology constructed by the DIA,250

MLPT, and DEBA algorithms, the load of some nodes is too high, which affects the network lifetime. If251

these heavily loaded nodes die prematurely, they will also have a greater impact on the connectivity and252

robustness of the network. The DIA algorithm overemphasizes that reducing the node transmit power253

makes the network energy consumption uneven; the MLPT algorithm does not consider the node’s254

residual energy, resulting in poor performance of its energy balance; the DEBA algorithm focuses on255

energy balance while ignoring the energy efficiency, which leads to the growth of the residual energy256

standard deviation; the rising trend of the EBTG algorithm is the most gradual. The EBTG algorithm257
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not only considers the remaining energy of the node but also transfers the data forwarding task to258

nodes with more residual energy, effectively balancing the load of the entire network and improving259

energy efficiency.260
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Figure 8. Standard deviation of node residual energy

Fig. 9 is a network lifetime comparison chart. Because topology control is mainly concerned with261

energy, prolonging the network life cycle is an important index for evaluating the topology control262

algorithm. The graph shows that the network lifetime of the EBTG algorithm is the longest because263

the EBTG algorithm reduces the transmit power of the node, expertly balances the load between nodes264

and improves the energy efficiency; therefore, its network lifetime is much higher than that of the265

networks constructed using the DIA, MLPT and DEBA algorithms.266
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Figure 9. Network lifetime

6. Conclusions267

Sensors in wireless sensor networks have been restricted to local communications and make268

topological decisions selfishly, and the unbalanced energy consumption between nodes is likely to269

shorten the network lifetime.270

Based on the theory of potential games and the Theil index, this paper designs an optimized271

utility function that considers the residual energy of nodes, the transmitting power of nodes and the272

connectivity of the network. On this basis, a topological game model is constructed. Additionally, it273

is proved that a Pareto-optimal NE exists in this model. Thus, an energy-balanced WSN distributed274

topology game algorithm called EBTG is proposed. From the simulation results, it can be concluded275

that the EBTG algorithm can effectively reduce the power of the transmitting node, balance the load276

between nodes, improve the energy efficiency of the network and prolong the network lifetime to277

ensure network connectivity and robustness. In our future work, we will study the operation of278
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this algorithm in the real-world wireless communication environment to improve the reliability and279

stability of the algorithm.280
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