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1 Abstract: In wireless sensor networks, there is no a central controller to enforce cooperation between
> nodes. Therefore, nodes may generate selfish behavior to conserve their energy resources. In this
s paper, we address the problems of transmission power minimization and energy balance in wireless
« sensor networks using a topology control algorithm. We considered the energy efficiency and
s energy balance of the nodes, and an improved optimization-integrated utility function is designed by
¢ introducing the Theil index. Based on this, a topological control game model of energy balance is
»  established, and it is proved that the topological game model is an ordinal potential game with Pareto
s  optimality. Additionally, an energy-balanced topology control game algorithm (EBTG) is proposed to
s  construct topologies. The simulation and comparison show that, compared with other topological
1o control algorithms based on game theory, the EBTG algorithm can improve energy balance and
u  energy efficiency while reducing the transmitting power of nodes, thus prolonging the network
12 lifetime.

1 Keywords: wireless sensor networks; topology control; game theory; energy balanced

s+ 1. Introduction

"

15 WSN (Wireless sensor networks, WSN) usually consist of a large number of sensor nodes. In
s general, sensor nodes operate on batteries and are thus limited in their working lifetime [1]; therefore,
17 efficient and balanced energy usage is the key to prolonging the lifetime of a network, which is the
1= primary concern of topology control. The goal of topology control is to optimize the transmitting
s power of each node and construct a better topology to improve network performance and prolong
20 network lifetime [2].

2 At present, in the field of wireless sensor networks, many topological control algorithms, which
22 are mainly divided into hierarchical, power control, and game-type topology control algorithms, are
23 proposed. For example, a low-power hierarchical WSN topology control algorithm [3], which is a
2« multilevel topology control algorithm, is designed; this algorithm extends the network level and
2 improves the maintainability of WSN using a combination of the static address and the dynamic
26 address. In another paper [4], an energy-efficient hierarchical topology control method is established in
2z WSN using time slots, in which a cluster-head selecting approach decreases the difference in the cluster
2s  size of LEACH and the responsibility mechanism for the active node makes the energy consumption
20 uniform in the cluster. In the literature [5], Kubisch et al. implement dynamic power control to set
s the node degree of the upper and lower limits, thus resulting in a lower total energy consumption
a1 network topology. The power control algorithm proposed in [6] uses a Borel Cayley graph to construct
2 anetwork topology that has a short average link and low energy consumption. The algorithm does
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ss  not consider the robustness of the network topology and the residual energy of nodes, which affects
sa  the operation of the network to some extent.

35 When the sensor nodes perform data forwarding, the node will show selfish behavior due to
ss energy saving considerations, and competition will occur between nodes [7]. On this basis, the game
sz theory approach can be introduced into the study of WSN topology control. Game theory provides a
ss  powerful tool [8] for describing the phenomena competition and individual coping strategies between
s intelligent rational decision-makers, and it has been used in systems concerning action and payoff.
20 Komali et al. [9], [10] formulated energy-efficient topology control as a noncooperative potential game,
41 which guarantees the existence of at least one Nash equilibrium (NE) and proposes a distributed
2 noncooperative game topology control algorithm based on game theory. In [11], a topology control
a3 algorithm based on a link power consumption game is designed to run the minimum MLPT algorithm
s for the maximum power of the node. To consider network lifetime as well, researchers have proposed
+s  two game-based topology control algorithms: the virtual game-based energy-balanced algorithm
s (VGEB) [12] and the energy welfare topology control algorithm (EWTC) [13]; these algorithms have
sz been developed to improve network lifetime via energy-balanced network topologies. In [14], the
s adaptive cooperative topological control algorithm (CTCA) based on game theory considers the
+ smallest potential lifetime and degree as the primary and secondary utility functions, respectively.
so In [15], a topology control algorithm (DEBA) based on the ordinal potential game is proposed by
51 designing a payoff function that considers both network connectivity and the energy balance of nodes.
s2  Although some of the abovementioned algorithms based on game theory can achieve network topology
ss control and improve network performance, they cannot guarantee the connectivity and robustness of
sa the network. Additionally, the remaining energy, energy balance and energy efficiency of the nodes
ss are not fully and accurately considered.

56 Based on the above analysis, this paper takes the energy efficiency and energy balance of the
sz node as the starting point and considers the influence of the residual energy, the transmitting power
ss and the node degree of the node. In addition, by introducing the Theil index to design an improved
so and optimized integrated utility function, an energy-balanced topology control game algorithm
so (EBTG) is proposed. The network topology constructed by this algorithm can efficiently guarantee the
e1 connectivity and robustness of the network and balance the energy between nodes, which effectively
ez prolongs the network lifetime.

63 The rest of the paper is organized as follows. Section 2 overviews critical concepts of the network
e« model and the theory of potential games as applicable to our problem. Section 3 presents the topology
es control game model and provides the game formulation and theoretic analysis. From this model, in
es Section 4, an energy-balanced topology control algorithm, in which each sensor adaptively adjusts its
ez transmit power according to the residual energy, is proposed. Section 5 validates our EBTG algorithm
es via simulation. Finally, Section 6 concludes this paper.

6o 2. Preliminaries

70 In this section, we present a brief overview of some fundamental concepts related to the network
7 model, the ordinal potential game theory and the Theil index.

72 2.1. Network model

7 WSN are usually abstracted G = (N, L, P) as according to graph theory. Let G = (N, L, P) be an
za undirected graph, where N denotes the set of nodes, L is a set of two-node communication links in
7 node set N at time f, and P represents the transmit power set of n nodes.

76 It is assumed that all nodes are randomly deployed in the plane monitoring area and that their
%% can be different. When the transmit power p; € [0, p/"*™*

7e sufficiently large, the signal received by node j is higher than the receiving threshold p so that node j
7o can respond.

77  maximum transmit power p | of node i is
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80 Because most routing and channel studies use bidirectional links, it is assumed that the links in
a1 the network topology are bidirectional. When all nodes use their maximum power to communicate,
o2 the formed network topology is denoted by G,x. In this design, G« is the connected network.

es  2.2. Ordinal potential game theory

The ordinal potential game is a kind of strategy game. The strategy game I' consists of N players,
the possible strategy S of the players, and consequences u of the strategy. The following definition is
given for the strategy game:

I'=(N,S, {ui}) )

s« Three definitions are as follows. First, (1) N = {1,2,3, - - -, n} represents the set of players, and # is the
es number of players in the game. Then, (2) S represents the policy space, and S is the Cartesian product of
ss the set of policies S;(i € N), where S; = {sj1,sj2, - - , Six } represents an optional set of policies for node
sz 1, which is usually abbreviated as S; = {s1,5,- - -, s¢}. In general, we use s = (s;,s_;) € S to describe
ss astrategy combination, s; to represent the strategy choice of node i, and s_; to represent the other node
s strategy choices except node i. Finally, (3) u represents the utility function u = {ul, Uy, -+, un}, where
o 1; denotes the maximum utility function that node i can achieve in the policy combination (s;,s_;).

oo Definition 1. In a strategy game I = (N,S,{u;}), the strategy s} of any game player i is the best
o2 strategy response to the strategy combination of s* ; the remaining game participants. Then, there must

s beu;{si, .-, st 55} >u {si‘, ey, s;‘j, cee 5 }, where s;; indicates that the j-th strategy of game player
oa iisvalid for any s;; € S; then, {sy,--- s} is called the "Nash Equilibrium (NE) [16]" of the game.

95 A game may possess a large amount of NEs or none at all, but some types of games have been
o6 proved to have at least one Nash equilibrium, such as the ordinal potential game used in this paper,
oz which has been proved to be a Nash equilibrium and may not be unique in the literature [17].

Definition 2. A strategic game I = (N, S, {u;}) is an ordinal potential game if there exists a function V such
that Vi € N,Vs_; € S_; and for Va;, b; € S

14 (ai,s_i) -V (bi/S—i) >0< U; (ﬂi,S_i) — U; (bi/ S_l') >0 (2)

s The function V is called the ordinal potential function of the strategy game I'. Then, the strategy combination s*
oo for the maximum value of the ordinal potential function V is the NE of the game [17].

1o 2.3. Theil index

The Theil index [18] is a statistic primarily used to measure economic inequality and other
economic phenomena. It was proposed by econometrician Henri Theil at Erasmus University in
Rotterdam. This index measures income inequality through the concept of entropy in information
theory [19]. When the concept of the entropy index in information theory is used to measure the
income gap, the income gap can be interpreted as the amount of information contained in the message
that converts the population share into the income share. The Theil index T is defined as:

N o ,
T= L _.InZ (3)
z':zl (Z]Nl x; x)

11 where x; is a characteristic of agent i, X represents average income, and N is the population. The range
102 Of the Theil index is [0, 00). The larger the value, the more obvious the difference from the average.
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13 3. Topology control game model
104 In this section, a topology control game model is first constructed. Then, it is proved that the
15 game model belongs to the ordinal potential game and the NE is Pareto optimal.
we 3.1, Utility function
107 The use environment of wireless sensor networks is relatively complex, and it is difficult to

1e  quantify the benefits of nodes. The existing topology control algorithm based on the ordinal potential
100 game [15] does not adequately consider node revenue, and the utility function cannot accurately reflect
10 the competition between nodes and the balance of energy consumption.
1 This paper uses a power control model based on the utility function [17]. To maximize utility
12 function, each participant adjusts power in a selfish manner, which is typical for noncooperative power
us  control games. In addition, to better balance the load between nodes, energy efficiency is improved. In
ua  this paper, the Theil index is introduced in the design of the utility function. In addition, the method of
us measuring income inequality in the field of social science is used to measure the imbalance of energy
us consumption between nodes in wireless sensor networks by using the node and its surplus energy as
uz analogues for the group members and their income. Thus, a more accurate node utility function is
us  Obtained to describe the competitive relationship between nodes.
Consider a multihop network constituting independent and selfish nodes that adapt the transmit
power levels according to their connectivity and energy consumption preferences. By considering the
energy efficiency and energy balance, a specific utility function for node i(Vi € N) is given by:

1 E, (i
i (pi,p-i) = fp; (APIW ~kppit 7 1) NG _(l)Er(i) + HE;(pi) 4)

where, for node i, initial energy, residual energy, current transmitting power and maximum
transmitting power are Eo(i), E; (i), p; and p}"®, p_; represents the transmit power of the remaining
n-1 nodes except node i. In addition, we define a link state variable f,, (f,, > 0). If the network is
connected, then f,, = 1; otherwise, fy, = 0. Topology control aims to prolong the network lifetime
by reducing the node power without destroying the overall network connectivity and robustness.
By adding parameter f), (f,, > 0), it is ensured that the network remains connected after repeated

iterations of the game. The k, represents the degree of node i when the transmitting power is p;; A and

m .
u are the weight factors of the utility function and all are positive numbers. E;(p;) = = ¥ W(]g(])
j=1 ’

(node j means that node i is a single hop neighbor node at power p;, where m represents the number of
one-hop neighbor nodes of node i) in equation 4 indicates that more calls to the remaining high-energy
nodes participate in the communication link to ensure load balancing [11]. To better balance the load
between nodes and improve energy efficiency, the method of measuring income inequality in the field
of social science is used to measure the imbalance of energy consumption between nodes in wireless
sensor networks using the node and its residual energy as an analogue for group members and their
income; the Theil index T is defined as

110 The utility function satisfies the properties described in [20]. With the utility function defined, a
120 game is played with all sensors picking their powers.
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11 3.2. Model proof

122 We show that the game I' = (N, S, {u;}) with the utility function of each sensor given by (4) is an
123 ordinal potential game; then, the existence of NEs are guaranteed.

Theorem 1. The game T = (N, S,{u;}) is an ordinal potential game. The ordinal potential function is given

by: )
Vpip-i) =Y, {fpi (AP;'WX —kppit+ T—1H> * Eo(il)sr—(li)ffr(i) N yEi(pi)} ©

iEN

Proof. We apply the asserted ordinal potential game in (4). First, we have:

Au; = ui(pi, p—i) — ui(qi, p—i)

max 1 max 1
= fo; (Api —kp.pi + T+1> + uEi(pi) — fg, <Api —kp.qi + T—i-l) — ME;(q;) ®)

= (fo: = fa) ()\Iﬁmx + Tlﬂ) + fokaqi — fpikpipi + 1 (W* Ei(%’))

Similarly:
AV =V(pi,p—i) — V(qi,p-i)

1
= Z [fpi ()‘p:‘mx - kPiPi + T+1 + VEi(Pi))]

iEN

max 1
- [fqi (APi — kp,gi + T+1 + VEi(‘ii)ﬂ @)

iEN

= (fo. = fa) <)LP?W + T1+1> + fokaiqi — fpikpipi + 1 (W - Ei(qz’))
+ ) Z ) {)‘ (flﬂj _f'/]/) p]max +VW}
JEN,j#i

Thus, we have:

av=aui+ Y [M(fiy— f) o+ nE Ry ®)
JEN,j#i

For node i, because is monotonic and A ( frj — qu> p}”‘”‘ + ME;(p;) > 0, it follows from (6) that:

>0 if pi>qi and fp, > fg,
Au; = <0 if pi<gq; and fp < fq,
>0 if pi>q; and fp = fg,
<0 lf pi > qi and fPi = f‘%‘

)

122 Therefore, sgn(Au;) = sgn(AV), the function V(p;, p_;) is the ordinal potential function of the strategy
125 game, and the strategy game I' = (N, S, {u;}) is the ordinal game. [

126 Theorem 2. The NE of the topology game model established in this paper is Pareto optimal [16] if the network
122 Guax 1S connected.

122 Proof. Due to the limited number of nodes, a node has a limited number of optional power
120 concentration elements. According to [17], the finite ordinal potential game must converge to the NE.
130 According to the definition of the network model and the description of the utility function, a node
131 maximizes the utility function by adjusting its own policy choice. The concrete manifestation is that
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132 the node continuously reduces the transmitting power and prolongs the survival time until the power
133 of all nodes no longer changes; that is, the NE state is reached.

134 When a NE point is reached, if a node reduces its power, network connectivity will be destroyed.
135 As a result, the remaining nodes must increase their power, thus resulting in lower utility function
136 values of other nodes and disruption of the NE. Therefore, according to the Pareto optimal definition,
137 it can be concluded that the NE of the topological control game is Pareto optimal. [

138 4. Energy-balanced topology control game algorithm

130 In this section, we propose an energy-balanced topology control algorithm in which each sensor
190 adaptively adjusts its transmit power according to the residual energy.
141 Nodes in EBTG initiate with the maximum power network G,y and then try to update this

12 topology iteratively according to their increasing unwillingness. EBTG consists of three phases: the
13 initialization phase (topological establishment phase), the adaptation phase (power adjustment phase),
1as and the topology maintenance phase.

s 4.1. Initialization phase

146 Every node in topology control game algorithms that makes a topological decision needs to collect
1z some network information. In EBTG, the information required by node i in the topology construction
s process is the local topology G;, which is an induced subgraph of Gy4x. Every vertex of the directed
1s0  graph corresponds to a node in WSN.

150 To obtain this decision information, node i initializes its transmit power with maximum power
11 Pmax and discovers its neighbor nodes by broadcasting the "Hello" Message and collecting the responses
152 provided by the receivers at p;r. The message contains information such as node ID and remaining
153 energy. By receiving and returning the message, a series of information, such as ID, transmit power
1« and residual energy of its neighbor nodes, is learned and the maximum reachable neighbor set Ny (i)
15 of node i and its maximum uplink set Ly,x (i) is determined. By establishing these sets, the largest
156 global network topology view G,y can be learned, thereby establishing a basis for subsequent routing
157 decisions.

e 4.2. Adaptation phase

159 Node i in the adaptation phase determines its transmit power according to its current residual
10 energy E, (i), the current transmitting power and the topology-related information collected during
161 the initialization phase. The procedure of power adaptation is shown in Algorithm 1.
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Algorithm 1 EBTG Power Adaptation
initialization

1: node i broadcasts "hello" message at p{"**

2: determine the neighbor set Ny, (7)

3: Determine the optional power set P; for node i, descending sort
4

: Broadcast optional power set P;
Power adjustment

1. Py = {p1,p2 -, px}, descending sort

2: while p; is not NE

3: fori=1,i<N,i++

4: choose power according to p; = arg max u;(p;, p—;)
5 if uf (pf, p—i) = ui (pi, p—i) ner

6: if p; is NE

7: pi = p;, update p;

8 end if

9: end if
10: end for
11: broadcast a "hello" message including the new power setting p; at p/**
12: end while

162 This paper adjusts the network topology structure through the power control method, sets the
163 transmission power of the node as the optimal transmission power, and thus obtains the optimized
1es  Network topological structure.

165 In the power adaptation phase, we first need to sort the node’s strategy set P; = {p1, p2, - - , Px }
16 in descending order. The minimum available transmit power p%”i” of node i can be calculated using
167 the free-space model proposed in [21]. Pseudocode is shown in Algorithm 1.

168 The power adjustment sequence of the EBTG algorithm is based on the node ID, as shown in
1o Fig. 1, the transmit power of one node is adjusted for each round, and the remaining power of
170 the node is unchanged. To ensure convergence to the NE, this algorithm uses the better response
i strategy update scheme proved in [17], which converges to the NE in the finite ordinal potential game.
12 Given the power p_; of other participants, the optimal response of node i is ; (p_;) = min (p/"**, p}),

s which has p} = argmaxu;(p;, p—;). During the game, when the node selects a power lower than the
pichi

174 current transmit power for communication, it is observed whether the corresponding integrated utility

175 function value increases. If it is larger, it indicates that the lower power is more suitable for use as the

e transmit power; otherwise, the node keeps current transmit power unchanged.
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Figure 1. Flowchart of Power Adaptation
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When the power of the node is changed, the communication radius, the neighboring node and
its related links will change, which leads to the change of the network topology. As shown in Fig.
2, when the transmit power of node i increases, node j will be included in its communication range;
then, the nearest neighbor node of node i is changed from the original node k to the current node ;.
Therefore, node j can reduce its transmit power appropriately under the precondition of guaranteeing

full network connectivity.

4.3. Topology maintenance phase

| T time coverage

1

Figure 2. Diagram of Power Adaptation

As time flows, the energy consumption of the nodes may become more unbalanced. Therefore,
energy consumption between nodes will become unbalanced. In consideration of node failure or
death, network topology maintenance must be performed dynamically. For the topology maintenance
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17 phase, we designed an event-triggered approach that adaptively regenerates a more balanced network
s topology.

189 The power game process can be implemented by comparing the residual energy of nodes with
100 the energy threshold or by setting the period to balance the load of nodes and prolong the network
101 lifetime. Pseudocode is shown in Algorithm 2.

Algorithm 2 EBTG Topology Maintenance

initialization
: Receiving neighbor information
: if t > T(T is the set time threshold)

1
2
3: Replay the game of power adaptation
4: end if

102 Theorem 3. If the Gax is a connected network, the EBTG algorithm converges to the NE state that can
103 maintain the connectivity of network Guy.

Proof. Itis known from Theorem 1 that the topological control game model constructed in this paper
is an ordinal potential game. In the EBTG algorithm proposed in this paper, the node increases its
benefit function value by adjusting the choice of strategy (i.e., reducing the power value of the node)
until the selection strategies of all nodes are not changed. Obviously, this state is a NE. It is assumed
that the node i obtains greater benefits in the power p; < p;, and the network is disconnected when
the power p_; of the other nodes is unchanged; therefore:

EV ] T, max * Er ] T (%)
ui (pi,p—i) = Eo(z)—(l)Er(z) +uEi(pi) > Ap{"™ —kp,pi + Eo(z)—(l;;,(z) + uEi(p;) (10)

In addition, then:

HEi(pi) > Api™ — kp,pi + nEi(p}) (11)
104 Obviously, equation (10) is not tenable, thus obtaining the connected network at each round of
15 the game execution of the EBTG algorithm. [

16 5. Simulation results analysis

197 In this section, computer simulations are provided to illustrate the proposed algorithms. This
108 paper uses MATLAB R2016a as a simulation tool to simulate the EBTG algorithm. In addition, a
100 comparison with the DIA [10], MLPT [11] and DEBA [15] algorithms is conducted with regard to node
200 degree, node transmit power, node hop number and node residual energy. The experiment assumes
201 that all nodes are randomly deployed and cannot be moved, and each sensor sends a packet to other
202 SENsors per second, i.e., each sensor transmits n-1 packets per second, the packet size is 1024 bytes,
203 and the transmission rate is 106 bits/s. The remaining emulation parameters are shown in Table 1:

Table 1. Experimental parameter

Parameter name Parameter size
Monitoring area 150m x 150m
Communication radius 50m
Node initial energy 50]
Wavelength A 0.1224m
Receiving threshold 7 x 10~ 0w
Transmit antenna gain G; 1
Receive antenna gain G, 1

System loss L 1
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204 First, weight factor A and y in the utility function must be determined; the experiment randomly
205 distributes 50 nodes in the target region, as shown in Fig. 3.
206 For y = 1, the influence of A on the network topology performance is considered in terms of the

207 average transmit power, the average node degree between nodes, the average residual energy of the
208 adjacent node and the average hop number of the shortest path between nodes.

200 Fig. 3(a) indicates that the average transmit power of the node decreases as A increases. Fig. 3(b)
20 indicates that the residual energy of the neighboring node decreases as A increases. Fig. 3(c) indicates
2 that the average node degree of the network decreases as A increases, but tends to stabilize after
22 A > 2. Fig. 3(d) indicates that the average hop number of the shortest path between nodes increases
213 as A increases. The changes after A > 2 also tended to stabilize. From the general theory of network
z1e topology, it can be seen that the topology of the network is perfect when the transmit power of the
x5 nodes is low, while there is a moderate node degree and average hop number. By comprehensively
zus  considering node computing power and network performance [22], this paper sets A =4 and p = 1.

0.05

=4
o
i
&
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o o
@ o
o B

The average transmit power of the node (w)
o
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o
I~}
a
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(@) (b)

-8 )\=0.2
38| —0—)-06
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. . . . . . . . | . . . . . . . . |
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Experiment number Experiment number

(© (d)

Figure 3. The impact of A on network performance

217 Fig. 4 shows the network topology diagram of the four algorithms, i.e., DIA, MLPT, DEBA and
2s - EBTG. It can be seen that the network topology built by the DIA algorithm has a large load and low
210 residual energy (the nodes are marked out). The DEBA algorithm has a higher node degree and more
220 redundant nodes, which lead to faster energy consumption. Compared to the other two algorithms,
2z the MLPT and EBTG algorithms have lower node degrees and fewer redundant nodes. The general
222 theory of network topology shows that the EBTG algorithm has moderate nodes and redundant nodes;
22s  therefore, its network connectivity and robustness are better than those of the other three algorithms,
22« which can efficiently balance the load between nodes to prolong network lifetime.
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(c) DEBA algorithm (d) EBTG algorithm
Figure 4. Network topology comparison chart

225 To make a clearer comparison of the four algorithms, this paper conducted 8 groups of
226 experiments. The specific experimental parameters are set as shown in Table 1, where the number
22z of nodes participating in the experiment is increased from 30 to 100 and the algorithm is compared
222 by calculating the node transmit power of the four algorithms, the hops of the shortest link between
220 nodes and the average value of the four parameters of the node degree.

230 Fig. 5 is a comparison diagram of the transmission power between nodes. It can be observed
21 from the figure that the transmission power of a node decreases as the number of nodes increases. The
232 EBTG algorithm’s node average transmit power is lower than the DIA, MLPT and DEBA algorithms,
233 which can ensure that the EBTG algorithm can establish network topology connections with lower
23 power, which is conducive to extending the network lifetime.
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Figure 5. Node average transmit power
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235 Fig. 6 shows the hop count comparison of the shortest link between nodes. The average hop count
236 of the EBTG algorithm is higher than that of the MLPT algorithm, but it is still lower than the DIA and
23z DEBA algorithms. The MLPT algorithm has higher node transmit power and greater communication
238 coverage, and so its average link hop count is lower. Since the EBTG algorithm operates at lower power
239 and the communication radius is smaller, the average hop count of the link increases. However, the
2e0 EBTG algorithm still obtains fewer link hops than the DIA and DEBA algorithms when the transmit
21 power is lower than the DIA algorithm.

=)
1

=©—DIA
—&— MLPT L®

141 —#— DEBA
—A—EBTG

Average number of hops for the shortest link

30 40 50 60 70 80 90 100
Number of nodes

Figure 6. Average number of hops for the shortest link

242 Fig. 7 shows a comparison of node degrees for the four algorithms. Because nodes with more
2a3  energy remaining in the EBTG algorithm are more active in node communication, to obtain a more
2es  balanced load to prolong the life cycle of the network, the node degree is higher than that of the
2es  DIA algorithm but lower than that of the DEBA and MLPT algorithms. The moderate node degree
2e6  of the EBTG algorithm does occupy too much of the energy resources and obtains relatively good
2a7  connectivity and robustness, while having fewer redundant nodes can achieve better energy efficiency,
2 improve channel multiplexing and reduce interference.

Average node degree

30 40 50 60 70 80 90 100
Number of nodes

Figure 7. Average node degree

249 Fig. 8 compares the standard deviations of the node residual energy. It can be seen that the
20 variance of the EBTG algorithm changes slowly. In the network topology constructed by the DIA,
21 MLPT, and DEBA algorithms, the load of some nodes is too high, which affects the network lifetime. If
22 these heavily loaded nodes die prematurely, they will also have a greater impact on the connectivity and
23 robustness of the network. The DIA algorithm overemphasizes that reducing the node transmit power
s makes the network energy consumption uneven; the MLPT algorithm does not consider the node’s
=5 residual energy, resulting in poor performance of its energy balance; the DEBA algorithm focuses on
=6 energy balance while ignoring the energy efficiency, which leads to the growth of the residual energy
=7 standard deviation; the rising trend of the EBTG algorithm is the most gradual. The EBTG algorithm
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2se  not only considers the remaining energy of the node but also transfers the data forwarding task to
20 nodes with more residual energy, effectively balancing the load of the entire network and improving
20 energy efficiency.
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Figure 8. Standard deviation of node residual energy

261 Fig. 9 is a network lifetime comparison chart. Because topology control is mainly concerned with
22 energy, prolonging the network life cycle is an important index for evaluating the topology control
263 algorithm. The graph shows that the network lifetime of the EBTG algorithm is the longest because
2es the EBTG algorithm reduces the transmit power of the node, expertly balances the load between nodes
2es and improves the energy efficiency; therefore, its network lifetime is much higher than that of the
26s networks constructed using the DIA, MLPT and DEBA algorithms.

x10*

Network Lifetime (s)
n w S~ (5] o

J [] I
DIA
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Algorithm type

Figure 9. Network lifetime

267z 6. Conclusions

268 Sensors in wireless sensor networks have been restricted to local communications and make
260 topological decisions selfishly, and the unbalanced energy consumption between nodes is likely to
270 shorten the network lifetime.

am Based on the theory of potential games and the Theil index, this paper designs an optimized
22 utility function that considers the residual energy of nodes, the transmitting power of nodes and the
23 connectivity of the network. On this basis, a topological game model is constructed. Additionally, it
27a  is proved that a Pareto-optimal NE exists in this model. Thus, an energy-balanced WSN distributed
25 topology game algorithm called EBTG is proposed. From the simulation results, it can be concluded
zre  that the EBTG algorithm can effectively reduce the power of the transmitting node, balance the load
2z between nodes, improve the energy efficiency of the network and prolong the network lifetime to
27e  ensure network connectivity and robustness. In our future work, we will study the operation of
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270 this algorithm in the real-world wireless communication environment to improve the reliability and
20 stability of the algorithm.
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