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Abstract: Let G[F, Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,
Vk = {v1, v2, · · · , vk} is a subset of the vertex set of F and Hv is a simple graph of order m ≥ 2,
v is a specified vertex of Hv. Also let G[F, Ek, Huv] be the graph with k edge pockets, where F is
a simple graph of order n ≥ 2, Ek = {e1, e2, · · · ek} is a subset of the edge set of F and Huv is a
simple graph of order m ≥ 3, uv is a specified edge of Huv such that Huv − u is isomorphic to
Huv − v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index
of G[F, Vk, Hv] and G[F, Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and
F, Huv, respectively.
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0. Introduction

All graphs considered in this paper are simple and undirected. The resistance distance between
vertices u and v of G was defined by Klein and Randić [1] to be the effective resistance between nodes
u and v as computed with Ohm’s law when all the edges of G are considered to be unit resistors. The
Kirchhoff index K f (G) was defined in [1] as K f (G) = ∑u<v ruv, where ruv(G) denote the resistance
distance between u and v in G. Resistance distance are, in fact, intrinsic to the graph, with some nice
purely mathematical interpretations and other interpretations. The Kirchhoff index was introduced
in chemistry as a better alternative to other parameters used for discriminating different molecules
with similar shapes and structures [1]. The resistance distance and the Kirchhoff index have attracted
extensive attention due to its wide applications in physics, chemistry and others. Up till now, many
results on the resistance distance and the Kirchhoff index are obtained. See ([2], [3], [4], [5]) and the
references therein to know more. However, the resistance distance and Kirchhoff index of the graph
is, in general, a difficult thing from the computational point of view. Therefore, the bigger is the graph,
the more difficult is to compute the resistance distance and Kirchhoff index, so a common strategy is
to consider complex graph as composite graph, and to find relations between the resistance distance
and Kirchhoff indices of the original graphs.

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). Let di be the degree
of vertex i in G and DG = diag(d1, d2, · · · d|V(G)|) the diagonal matrix with all vertex degrees of G
as its diagonal entries. For a graph G, let AG and BG denote the adjacency matrix and vertex-edge
incidence matrix of G, respectively. The matrix LG = DG − AG is called the Laplacian matrix of G,
where DG is the diagonal matrix of vertex degrees of G. We use µ1(G) ≥ u2(G) ≥ · · · ≥ µn(G) = 0
to denote the eigenvalues of LG. For other undefined notations and terminology from graph theory,
the readers may refer to [6] and the references therein ([7]-[10]).

Recently Barik [11] described the Laplacian spectrum of graph with pockets except n + k
Laplacian eigenvalues. Nath and Paul [12] gave the Laplacian spectrum of graph with edge pockets
except n + k Laplacian eigenvalues. Tian [13] gave the spectrum and signless Laplacian spectrum
of graph with pockets and edge pockets except n + k signless Laplacian eigenvalues. This paper
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considers the resistance distance and Kirchhoff index of graphs with pockets and edge pockets of
these two new graph operations below, which come from [11] and [12], respectively.

Definition 1 [11] Let F, Hv be graphs of orders n and m, respectively, where m ≥ 2, v be a
specified vertex of Hv and Vk = {v1, v2, · · · vk} is a subset of the vertex set of F. Let G = G[F, Vk, Hv]

be the graph obtained by taking one copy of F and k vertex disjoint copies of Hv, and then attaching
the i-th copy of Hv to the vertex vi,i = 1, ..., k, at the vertex v of H (identify vi with the vertex v of the
i-th copy). Then the copies of the graph Hv that are attached the vertices vi, i = 1, ..., k, are referred to
as pockets , and G is described as a graph with k pockets.

Definition 2 [12] Let F and Huv be two graphs of orders n and m , respectively, where n ≥ 2,
m ≥ 3, Ek = {e1, e2, · · · ek} is a subset of the edge set of F and Huv has a specified edge uv such
that Huv − u is isomorphic to Huv − v. Assume that Ek denote the subgraph of F induced by Ek. Let
G = G[F, Ek, Huv] be the graph obtained by taking one copy of F and k vertex disjoint copies of Huv,
and then pasting the edge uv in the i-th copy of Huv with the edge ei ∈ Ek, where i = 1, ..., k. Then the
copies of the graph Huv that are pasted to the edges ei, i = 1, ..., k, are called as edge-pockets , and G
is described as a graph with k edge pockets.

Note that if a copy of Hv is attached to every vertex of F, each at the vertex v of Hv, that is, if G
has n pockets, then the graph G = G[F, Vk, Hv] is nothing but the corona F ◦ H. If a copy of Huv is
pasted to every edge of F, each at the edge uv of Huv, that is, if G has m edge-pockets, then the graph
G = G[F, Ek, Huv] is nothing but the edge corona F � H, where H = Huv − {u, v}.

Bu et al. investigated resistance distance in subdivision-vertex join and subdivision-edge join
of graphs [14]. Liu et al. [15] gave the resistance distance and Kirchhoff index of R-vertex join and
R-edge join of two graphs. Motivated by the results, in this paper we obtain formulas for resistance
distances and Kirchhoff index G = G[F, Vk, Hv] and G = G[F, Ek, Huv] in terms of the resistance
distance and Kirchhoff index of F, Hv and F, Huv.

1. Preliminaries

The {1}-inverse of M is a matrix X such that MXM = M. If M is singular, then it has infinite
{1}-inverse [17]. For a square matrix M, the group inverse of M, denoted by M#, is the unique
matrix X such that MXM = M, XMX = X and MX = XM. It is known that M# exists if and only
if rank(M) = rank(M2) ([17],[18]). If M is real symmetric, then M# exists and M# is a symmetric
{1}-inverse of M. Actually, M# is equal to the Moore-Penrose inverse of M since M is symmetric [18].

It is known that resistance distances in a connected graph G can be obtained from any {1}-
inverse of G ([6], [16]). We use M(1) to denote any {1}-inverse of a matrix M, and let (M)uv denote
the (u, v)- entry of M.

Lemma 1.1 ([6],[18]) Let G be a connected graph. Then

ruv(G) = (L(1)
G )uu + (L(1)

G )vv − (L(1)
G )uv − (L(1)

G )vu = (L#
G)uu + (L#

G)vv − 2(L#
G)uv.

Let 1n denote the column vector of dimension n with all the entries equal one. We will often use
1 to denote all-ones column vector if the dimension can be read from the context.

Lemma 1.2 ([14]) For any graph, we have L#
G1 = 0.

Lemma 1.3 ([19]) Let

M =

(
A B
C D

)
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be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

=

(
(A− BD−1C)−1 −A−1BS−1

−S−1CA−1 S−1

)
,

where S = D− CA−1B.
Lemma 1.4 ([20]) Let G be a connected graph on n vertices. Then

K f (G) = ntr(L(1)
G )− 1T L(1)

G 1 = ntr(L#
G).

Lemma 1.5 ([21]) Let

L =

(
A B
BT D

)
be the Laplacian matrix of a connected graph. If D is nonsingular, then

X =

(
H# −H#BD−1

−D−1BT H# D−1 + D−1BT H#BD−1

)

is a symmetric {1}-inverse of L, where H = A− BD−1BT .

2. The resistance distance and Kirchhoff index of G[F, Vk, Hv]

In this section, we focus on determing the resistance distance and Kirchhoff index of G[F, Vk, Hv]

in terms of the resistance distance and Kirchhoff index of F, Hv.
Theorem 2.1 Let F, Hv be graphs of orders n and m, respectively, where m ≥ 2, v be a specified

vertex of Hv and Vk = {v1, v2, · · · vk} is a subset of the vertex set of F. Let G = G[F, Vk, Hv] be the
graph as defined in Definition 1. Then G = G[F, Vk, Hv] have the resistance distance and Kirchhoff
index as follows:

(i) For any i, j ∈ V(F), we have

rij(G[F, Vk, Hv]) = (L#(F))ii + (L#(F))jj − 2(L#(F))ij.

(ii) For any i, j ∈ V(H), we have

rij(G[F, Vk, Hv]) = ((L(H) + Im−1)
−1)ii + (L(H) + Im−1)

−1)jj − 2(L(H) + Im−1)
−1)ij.

(iii) For any i ∈ V(G), j ∈ V(H), we have

rij(G[F, Vk, Hv]) = (L#(F))ii + ((L(H) + Im−1)
−1 ⊗ Ik)jj − 2L#(F)ij.

(iv)

K f (G[F, Vk, Hv]) = (n + k(m− 1))

(
1
n

K f (F) + k
m−1

∑
i=1

1
µi(H) + 1

+tr

1m−1 ⊗
(

0T

Ik

)T
 L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))
−1T

(
1T

m−1 ⊗
(

0T

Ik

))
L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))
1− k(m− 1).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2018                   doi:10.20944/preprints201810.0241.v1

http://dx.doi.org/10.20944/preprints201810.0241.v1


4 of 9

Proof Since v is of degree m − 1, Hv can be written as Hv = {v} ∨ H, where H is the graph
obtained from Hv, after deleting the vertex v and the edges incident to it, the Laplacian matrix of
G = G[F, Vk, Hv] can be written as

L(G) =


L(F) +

(
0 0T

0 (m− 1)Ik

)
−1T

m−1 ⊗
(

0T

Ik

)

−1m−1 ⊗
(

0T

Ik

)T

(L(H) + Im−1)⊗ Ik

 .

By Lemma 1.5, we have

H = L(F) +

(
0 0T

0 (m− 1)Ik

)
−
(
−1T

m−1 ⊗
(

0T

Ik

))
((L(H) + Im−1)⊗ Ik)

−1−1m−1 ⊗
(

0T

Ik

)T


= L(F) +

(
0 0T

0 (m− 1)Ik

)
− (1T

m−1(L(H) + I)−11m−1)⊗
(

0 0T

0 Ik

)

= L(F) +

(
0 0T

0 (m− 1)Ik

)
−
(

0 0T

0 (m− 1)Ik

)
= L(F),

so H# = L#(F).
According to Lemma 1.5, we calculate −H#BD−1 and −D−1BT H#.

−H#BD−1 = −L#(F)

(
−1T

m−1 ⊗
(

0T

Ik

)) (
(L(H) + Im−1)⊗ Ik)

−1)
= L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))

and

−D−1BT H# = −
(
(L(H) + Im−1)⊗ Ik)

−1)−1m−1 ⊗
(

0T

Ik

)T
 L#(F)

=
(

1m−1 ⊗
(

0 Ik

))
L#(F).

We are ready to compute the D−1BT H#BD−1.

D−1BT H#BD−1 =
(
(L(H) + Im−1)

−1 ⊗ Ik)
)−1m−1 ⊗

(
0T

−Ik

)T
 L#(F)

(
−1T

m−1 ⊗
(

0T

−Ik

)) (
(L(H) + Im−1)

−1 ⊗ Ik)
)

=

1m−1 ⊗
(

0T

Ik

)T
 L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))
.
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Let P = (L(H) + Im−1) ⊗ Ik, M =

1m−1 ⊗
(

0T

Ik

)T
 L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))
. Based on

Lemma 1.5, the following matrix

N =

 L#(F) L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))
(

1m−1 ⊗
(

0 Ik

))
L#(F) P−1 + M

 (1)

is a symmetric {1}-inverse of G = G[F, Vk, Hv].
For any i, j ∈ V(F), by Lemma 1.1 and the Equation (1), we have

rij(G[F, Vk, Hv]) = (L#(F))ii + (L#(F))jj − 2(L#(F))ij,

as stated in (i).
For any i, j ∈ V(H), by Lemma 1.1 and the Equation (1), we have

rij(G[F, Vk, Hv]) = ((L(H) + Im−1)
−1 ⊗ Ik)ii + ((L(H) + Im−1)

−1 ⊗ Ik)

−2((L(H) + Im−1)
−1 ⊗ Ik)ij,

as stated in (ii).
For any i ∈ V(F), j ∈ V(H), by Lemma 1.1 and the Equation (1), we have

rij(G[F, Vk, Hv]) = (L#(F))ii + ((L(H) + Im−1)
−1 ⊗ Ik)jj − 2L#(F)ij,

as stated in (iii).
By Lemma 1.4, we have

K f (G[F, Vk, Hv]) = (n + k(m− 1))tr(N)− 1T N1

= (n + k(m− 1))
[
tr(L#(F)) + tr((L(H) + Im−1)

−1 ⊗ Ik)+

+tr

1m−1 ⊗
(

0T

Ik

)T
 L#(F)

(
1T

m−1 ⊗
(

0T

Ik

))− 1T N1.

Note that the eigenvalues of (L(H) + I) are µ1(H) + 1, µ2(H) + 1, ..., µm−1(H) + 1. Then

tr((L(H) + Im−1)
−1 ⊗ Ik) = k

m−1

∑
i=1

1
µi(H) + 1

. (2)

Note that the eigenvalues of (L(H) + I) are µ1(H) + 1, µ2(H) + 1, ..., µm−1(H) + 1. Then

tr((L(H) + Im−1)
−1 ⊗ Ik) = k

m−1

∑
i=1

1
µi(H) + 1

. (3)

Let P = (L(H) + Im−1)⊗ Ik, then

1T P−11 =
(

1T
m−1 1T

m−1 · · · 1T
m−1

)
P−1 0 0 ... 0

0 P−1 0 ... 0
0 0 ... ... 0
0 0 0 ... P−1




1m−1

1m−1

· · ·
1m−1


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= k1T
m−1(L(H) + Im−1)

−11m−1 = k(m− 1), (4)

Plugging (2) and (3) into K f (G[F, Vk, Hv]), we obtain the required result in (iv).

3. Resistance distance and Kirchhoff index of G[F, Ek, Huv]

In this section, we focus on determing the resistance distance and Kirchhoff index of G[F, Ek, Huv]

in terms of the resistance distance and Kirchhoff index of F, Huv.
Theorem 3.1 Let F and Huv be two graphs of orders n and m , respectively, where n ≥ 2, m ≥ 3,

Ek = {e1, e2, · · · ek} is a subset of the edge set of F and Huv has a specified edge uv such that Huv − u
is isomorphic to Huv − v. Let Fs be an r-regular subgraph of F induced by Ek in Definition 2. Also let
G = G[F, Ek, Huv] and |Ek| = k. Then G = G[F, Ek, Huv] have the resistance distance and Kirchhoff
index as follows:

(i) For any i, j ∈ V(F), we have

rij(G[F, Ek, Huv]) =

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ii

+

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

jj

−2

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ij

.

(ii) For any i, j ∈ V(H), we have

rij(G[F, Ek, Huv]) = ((L(H) + 2Im−2)
−1 ⊗ Ik)ii + ((L(H) + 2Im−2)

−1 ⊗ Ik)jj

−2
(
(L(H) + 2Im−2)

−1 ⊗ Ik

)
ij

.

(iii) For any i ∈ V(G), j ∈ V(H), we have

rij(G[F, Ek, Huv]) =

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ii

+ (L(H) + 2Im−2)
−1 ⊗ Ik)jj

−2

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ij

.

(iv) K f (G[F, Ek, Huv])

= (n + k(m− 2))

(
tr(L(F) +

(
m−2

2 L(Fs) 0
0 0

)
)# + k

m−2

∑
i=1

1
µi(H) + 2

+
1
4

tr

(1m−2 ⊗
(
−RT(Fs) 0

))(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#(
1T

m−2 ⊗
(
−R(Fs)

0

))
−1T

(
1m−2 ⊗

(
RT(Fs) 0

))(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#(
1T

m−2 ⊗
(

R(Fs)

0

))
1− k

2
(m− 2).

Proof Let FS be an r-regular subgraph of F on the first p vertices, then the Laplacian matrix of
G = G[F, Ek, Huv] can be written as

L(G) =

 L(F) + r(m− 2)

(
Ip 0
0 0

)
1T

m−2 ⊗
(
−R(Fs)

0

)
1m−2 ⊗

(
−RT(Fs) 0

)
(L(H) + 2Im−2)⊗ Ik

 .
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By Lemma 1.5, we have

H = L(F) + r(m− 2)

(
Ip 0
0 0

)
−
(

1T
m−2 ⊗

(
−R(Fs)

0

))
((L(H) + 2Im−2)⊗ Ik)

−1(
1m−2 ⊗

(
−RT(Fs) 0

))
= L(F) +

(
r(m− 2)Ip 0

0 0

)
−
(
1T

m−2(L(H) + 2Im−2)
−11m−2

)
⊗
(

R(Fs)R(Fs)T 0
0 0

)

= L(F) + r(m− 2)

(
Ip 0
0 0

)
− m−2

2

(
R(Fs)R(Fs)T 0

0 0

)

= L(F) + r(m− 2)

(
Ip 0
0 0

)
− m−2

2

(
rIp + A(Fs) 0

0 0

)

= L(F) +

(
m−2

2 L(Fs) 0
0 0

)
,

so

H# =

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

.

According to Lemma 1.5, we calculate −H#BD−1 and −D−1BT H#.

−H#BD−1 = −H#

(
1T

m−2 ⊗
(
−R(Fs)

0

)) (
(L(H) + 2Im−2)⊗ Ik)

−1)
= −H# (1T

m−2(L(H) + 2Im−2)
−1)⊗( −R(Fs)

0

)

= 1
2 H#

(
1T

m−2 ⊗
(

R(Fs)

0

))

and
−D−1BT H# = − ((L(H) + 2Im−2)⊗ Ik)

−1
(

1m−2 ⊗
(
−RT(Fs) 0

))
H#

= 1
2

(
1m−2 ⊗

(
RT(Fs) 0

))
H#.

We are ready to compute the D−1BT H#BD−1.

D−1BT H#BD−1 = − 1
2 1m−2 ⊗

(
RT(Fs) 0

)
H# (1T

m−2(L(H) + 2Im−2)
−1)⊗( −R(Fs)

0

)

= 1
4

(
1m−2 ⊗

(
−RT(Fs) 0

))
H#

(
1T

m−2 ⊗
(
−R(Fs)

0

))
.

Let P = (L(H) + 2Im−2)⊗ Ik, Q =

(
1T

m−2 ⊗
(

R(Fs)

0

))
. Based on Lemma 1.5, the following

matrix

N =


(

L(F) +

(
m−2

2 L(Fs) 0
0 0

))#
1
2

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

Q

1
2 QT

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

P−1 + 1
4 QT

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

Q

 (5)

is a symmetric {1}-inverse of G[F, Ek, Huv].
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For any i, j ∈ V(F), by Lemma 1.1 and the Equation (4), we have

rij(G[F, Ek, Huv]) =

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ii

+

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

jj

−2

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ij

,

as stated in (i).
For any i, j ∈ V(H), by Lemma 1.1 and the Equation (4), we have

rij(G[F, Ek, Huv]) =
(
(L(H) + 2Im−2)

−1 ⊗ Ik

)
ii
+
(
(L(H) + 2Im−2)

−1 ⊗ Ik

)
jj

−2
(
(L(H) + 2Im−2)

−1 ⊗ Ik

)
ij

,

as stated in (ii).
For any i ∈ V(F), j ∈ (H), we have

rij(G[F, Ek, Huv]) =

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ii

+ (L(H) + 2Im−2)
−1 ⊗ Ik)jj

−2

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

ij

,

as stated in (iii).
By Lemma 1.4, we have
K f (G[F, Ek, Huv])

= (n + k(m− 2))tr(N)− 1T N1

= (n + k(m− 2))

tr

(
L(F) +

(
m−2

2 L(Fs) 0
0 0

))#

+ tr
(
(L(H) + 2Im−2)

−1 ⊗ Ik

)

+
1
4

tr
(
(1m−2 ⊗

(
−RT(Fs) 0

))
H#

(
1T

m−2 ⊗
(
−R(Fs)

0

))]
− 1T N1.

Note that the eigenvalues of (L(H) + 2Im−2)⊗ Ik are µ1(H) + 2, µ2(H) + 2, ..., µm−1(H) + 2. Then

tr ((L(H) + 2Im−2)⊗ Ik) = k
m−2

∑
i=1

1
µi(H) + 2

. (6)

Let P = (L(H) + 2Im−2)⊗ Ik, then

1T P−11 =
(

1T
m−2 1T

m−1 · · · 1T
m−2

)
P−1 0 0 ... 0

0 P−1 0 ... 0
0 0 ... ... 0
0 0 0 ... P−1




1m−2

1m−2

· · ·
1m−2



= k1T
m−2(L(H) + 2Im−2)

−11m−2 =
k
2
(m− 2). (7)

Plugging (5) and (6) into K f (G[F, Ek, Huv]), we obtain the required result in (iv).
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