

1 Article

2 **Effect of Plyometric Training on Speed and Change
3 of Direction Ability in Elite Field Hockey Players**4 Jasdev Singh ¹, Brendyn B Appleby ^{2,3} and Andrew P Lavender ^{1,*}5 ¹ School of Physiotherapy and Exercise Science, Curtin University, Perth 6102, Australia;
6 jasdev.singh1@graduate.curtin.edu.au7 ² Hockey Australia High Performance Unit, Perth 6102, Australia8 ³ School of Medical and Health Science, Edith Cowan University, Perth, AUSTRALIA

9 * Correspondence: Andrew.Lavender@curtin.edu.au; Tel.: +61-8-9266-3678

11

12 **Abstract:** This study investigated the effects of two plyometric training protocols on sprint and
13 change of direction (COD) performance in elite hockey players. A parallel-group randomized
14 controlled trial design was used and seventeen elite male and female field hockey players were
15 randomly allocated into either low-to-high (L-H, $n = 8$) or high-to-low (H-L, $n = 9$) training groups.
16 Each group performed separate variations of the drop jump exercise twice weekly for six weeks,
17 with an emphasis on either jump height (L-H) or drop height (H-L). Performance variables assessed
18 included sprint times over 10 m and 20 m, as well as 505 time. A two-way repeated measures
19 analysis of variance was performed and Cohen's d effect sizes were calculated. The H-L group
20 displayed significant small ES improvement from baseline to post-training in the 10 m sprint (1.893
21 ± 0.08 s pre vs 1.851 ± 0.06 s post) (ES = -0.44) ($P = <0.05$). Small but not statistically significant
22 differences between groups were observed for 10 m and 20 m sprint performance, and no significant
23 differences were observed within or between groups for 505 time. These findings highlight the
24 difficulty in substantially enhancing speed and COD ability in highly trained athletic populations
25 through the addition of a low volume, short duration plyometric training protocol.26 **Keywords:** change of direction; speed; plyometric; drop jump; eccentric; team sport; hockey

27

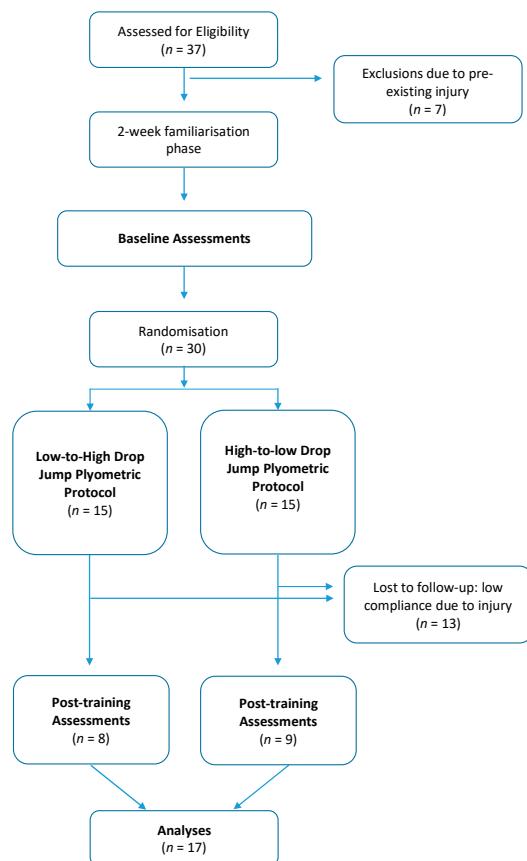
28 **1. Introduction**29 Change of direction (COD) ability refers to an athlete's ability to rapidly decelerate, reverse or
30 change direction of movement, and accelerate again in a new direction [1]. Field hockey (as
31 distinguished from ice hockey, herein referred to simply as hockey) is a sport that requires frequent
32 changes of direction and repeated sprint efforts throughout the duration of a match [2]. Hockey
33 players, as in many other team sports such as soccer, rugby, and Australian Rules football, depend
34 heavily on their speed and COD ability when attempting to evade opposition defenders, closely mark
35 opposition attackers, or gain positional advantage [1-2]. Whilst perceptual abilities such as
36 knowledge of situations and anticipation also contribute to an athlete's overall sport-specific agility,
37 COD is the term used to address the physical aspects of agility, without consideration of the cognitive
38 and decision making factors [3]. Three main phases exist within the performance of a COD task; the
39 braking (eccentric) phase, plant (isometric) phase, and propulsive (concentric) phase [4]. Strength and
40 Conditioning (S&C) practitioners often implement a variety of training methods aimed at developing
41 the key physical qualities that influence speed and COD ability. The ability to produce powerful
42 concentric muscle actions in order to maximize propulsive force is believed to be a key determinant
43 of speed [5-6], whilst COD ability is believed to also be dependent on eccentric and isometric strength
44 of the lower limb muscles, as well as neuromuscular control throughout the various phases of a COD

45 task [4, 7-8].

46 Traditionally, commonly used methods of enhancing these physical qualities include strength
47 and power training exercises such as squats and deadlifts, as well as power cleans and other
48 weightlifting variants [9-10]. Another popular means of improving speed and COD ability is through
49 plyometric training, which refers to a wide range of jumping, hopping, and bounding exercises
50 designed to utilize the elastic nature of the stretch-shortening cycle (SSC) in order to produce greater
51 forces than would normally be produced by concentric-only muscle actions [9, 11]. Previous studies
52 have demonstrated enhancements in speed and COD ability can be achieved through the use of
53 plyometric training methods [9, 12-15], however the majority of this research has focused on the
54 development of concentric power of the lower limbs, and resulting enhancements in performance
55 during the propulsive phase of COD tasks. A relative lack of studies has investigated the most
56 appropriate training methods for the development of the physical qualities that influence
57 performance during the braking and plant phases of COD tasks, despite the established importance
58 of deceleration to overall COD ability [16-17].

59 Some more recent studies, however, have demonstrated that improvements in muscle power,
60 speed, eccentric and isometric strength, and various COD and jumping performance tests can be
61 achieved through the use of training interventions involving eccentric overload [18-21]. Lockie and
62 colleagues [22] found that emphasizing deceleration during speed and agility training improved
63 unilateral strength, as well as performance in COD tests and 40 m sprint time. It has been suggested
64 that eccentric overload training resulting in enhanced eccentric strength can improve athlete's COD
65 performance during the braking and plant phases, as athlete's who are able to produce greater force
66 eccentrically are able to produce greater decelerations from faster approach velocities [20, 23]. In
67 support of this, de Hoyo and colleagues [24] found that ten weeks of eccentric overload training
68 resulted in improved kinetic parameters including time spent braking, relative peak braking, and
69 relative braking impulse during COD tasks. Further, increased braking impulse may enable more
70 rapid reacceleration during a COD task as a result of the storage and utilization of elastic energy [1].
71 However, Bourgeois and colleagues [18] found that although eccentric-overload training resulted in
72 greater isometric strength and improvements in 180° COD performance, performance in a 45° COD
73 task improved only in athlete's categorized as fast, and worsened in slower athletes. The authors
74 suggested that performance benefits from eccentric overload training may be specific to the COD task
75 (such as the angle of COD and the distance of sprints between changes of direction) and athlete
76 category (such as faster or slower). Nonetheless, the results of these studies are promising with
77 regards to the enhancements in sprint and COD performance that can be achieved through eccentric
78 overload training.

79 The importance of speed and COD ability to team sport athletes is well established [2, 4, 9-10],
80 and as such S&C practitioners are constantly seeking information regarding the most effective
81 training methods for the development of these athletic qualities. Although many training methods
82 have been found to be successful at enhancing sprint and COD performance, there appears to be little
83 agreement regarding which methods of training are optimal. This may be in part because, as
84 mentioned above, enhancements in COD ability may be dependent on the specificity of the training
85 intervention to the specific COD task, as well as the type and level of athlete involved [18]. Plyometric
86 exercises have been found to be beneficial and are commonly implemented in speed and COD
87 training, however the focus of these exercises has primarily been on the development of concentric
88 power and resulting enhancements during the propulsive phase of sprint and COD tasks [9, 12-15].
89 Given the recent interest and promising enhancements observed in sprint and COD performance
90 following training interventions involving eccentric overload, it is possible that plyometric exercises
91 slightly altered to include an accentuated eccentric phase may have a beneficial effect on speed and
92 COD ability. Additionally, very little research has investigated the effects of plyometric training in
93 hockey players specifically, and no studies to date have investigated the effects of plyometric training
94 on speed and COD ability in hockey players at the elite level.


95 The present study aimed to investigate the effects of two plyometric training protocols on speed
96 and COD ability in elite hockey players. Specifically, the authors aimed to examine the effects of a

97 plyometric training protocol performed with an accentuated eccentric portion of the exercise,
 98 compared with a conventional plyometric training protocol, on sprint and 180° COD performance.
 99 We hypothesized that whilst both interventions would enhance sprint performance, the training
 100 group with an accentuated eccentric portion of the exercise would display greater improvements in
 101 COD performance compared with the conventional plyometric training group, due to improved
 102 performance in the braking and plant phases.

103 2. Materials and Methods

104 2.1 Participants

105 Thirty-seven elite athletes from the men's ($n = 16$) and women's ($n = 14$) Hockey Australia High
 106 Performance Program were invited to participate in this study. All national squad field players were
 107 eligible for inclusion except in the case of pre-existing injuries, which resulted in the exclusion of
 108 seven participants prior to baseline. As a result of individual subject modifications due to overall
 109 training load and physical management concerns, a further thirteen participants failed to achieve
 110 minimum compliance of plyometric training set at <70%. [25] (Figure 1). The high rates of drop-out
 111 due to injury during the intervention period were not related to the study protocol itself, but rather
 112 occurred during the performance of additional skills training and games completed as part of the
 113 participant's regular national squad training. Age, height, body mass, and number of international
 114 caps for the final sample (males, $n = 11$; females, $n = 6$) were 23 ± 2.4 yr, 1.76 ± 0.76 m, 73 ± 8.5 kg, and
 115 45 ± 43 (mean \pm SD). All participants received written and verbal information about the interventions
 116 and their role in the study and gave their informed consent for inclusion before they participated in
 117 the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol
 118 was approved by the Curtin University Human Research Ethics Committee (HRE2017-0107).

119

Figure 1. Study design and sample size at various stages of the study.

120 2.2 Procedures

121 A two group, parallel randomized controlled trial design was used for this study. As part of
122 their High Performance Program participants were completing five to six additional training sessions
123 a week throughout the study period, comprising of a combination of skills, conditioning, and
124 strength training. The testing and training procedures involved in this study were integrated into the
125 High Performance Program schedule. All eligible participants who agreed to take part in the study
126 and provided written informed consent were randomized into low-to-high (L-H) or high-to-low (H-
127 L) drop jump training groups. Randomization was generated electronically following the completion
128 of baseline testing.

129 2.3 Assessments

130 All assessments related to the study were conducted at the Western Australian Institute of Sport,
131 Perth, Australia. Baseline and post-training assessments were conducted in the week immediately
132 prior, and the week immediately following the training intervention, respectively. Assessments were
133 scheduled before any training sessions on that day in order to minimize the negative influence of
134 fatigue on performance. Assessments were performed on an indoor synthetic track and involved a
135 20 m sprint (with 0-10 m split) and 505 COD test, which followed previously reported procedures
136 [26]. The test area set-up and positioning of the timing gates (SMARTSPEED Pro, Fusion Sport Pty
137 Ltd, Australia) are illustrated in Figure 2. An adequate warm up was performed by each participant
138 15 minutes prior to performance assessment, consisting of three minutes of jump rope skipping,
139 followed by eight minutes of various lower body dynamic stretches, and finally speed runs at self-
140 determined gradually increasing intensities. Each participant then completed two trials of the 20 m
141 sprint and four trials of the 505 COD test, turning off each leg twice. Sufficient rest of at least three
142 minutes was allowed between trials to minimize the influence of fatigue and ensure each trial was
143 performed at maximum intensity. The order of assessments was randomized across participants and
144 sessions. Measures of time for 0-10 and 0-20 m splits were recorded for the sprint assessment, and
145 505 time was recorded as a measure of COD ability. All times were recorded to the nearest 0.001
146 seconds.

147

Figure 2. Structure and dimensions of the sprint and change of direction (COD) tests.

148 2.4 Training Protocol

149 A two-week familiarization phase was included in the training protocol prior to randomization
150 and baseline testing, during which time all participants performed two sets of four reps of each of the
151 L-H and H-L drop jumps twice weekly. Participants also practiced the 505 test once each week during
152 this phase, with the purpose of controlling for the effect of motor learning on improvements in COD
153 and sprint performance [25].

154 A standardized warm up consisting of 15 minutes of aerobic exercise, general mobilization, and
155 ballistic exercises was completed by all participants before each training session throughout the
156 intervention period. The plyometric drop jumps performed by the two training groups are illustrated
157 in Figure 3. The intention was to emphasize drop height in the H-L training group, placing a greater
158 demand on the eccentric portion of the exercise [27-29]. The L-H training group performed
159 conventional drop jumps with an emphasis on vertical jump height. Both training groups completed
160 five sets of four reps of their respective drop jump exercises twice weekly for a duration of six weeks,
161 with 48-72-hour rest periods allowed between training sessions. Due to the high intensity nature of
162 the plyometric exercises performed, and as the exercises were an addition to the athlete's regular
163 training schedule, a relatively low volume protocol was required. In order to achieve overload
164 participants were progressed individually, based on analysis of drop jump execution and technique
165 by accredited S&C coaches (Australian Strength and Conditioning Association, Pro-structure). For
166 the L-H group, drop height was fixed at 30 cm for women and 40 cm for men, based on
167 recommendations of previous research [27-29]. Jump height was progressed by an increase in height
168 of the finishing box. Mean finishing box height for the L-H group progressed from 75 cm in the first
169 week to 90 cm in the final week of the intervention. Conversely, progression for the H-L group
170 involved an increase in drop height, as determined by the height of the starting box, with the finishing
171 box height fixed at 30 cm for women and 40 cm for men. Mean starting box height for the H-L group
172 progressed from 70 cm in the first week to 85 cm in the final week of the intervention. The plyometric
173 protocol was integrated into each athlete's regular strength training program. These programs
174 involved the completion of four to six sets of three to eight repetitions of various lower and upper
175 body resistance training exercises such as squats, deadlifts, step-ups, bench press and pull-ups. All
176 athletes across both groups performed these strength training exercises at the same relative intensities.

177 **Figure 3.** Illustration of the Low-to-High (L-H) drop jump (A), emphasizing jump height, and High-to-
178 Low (H-L) drop jump (B), emphasizing drop height. Boxes were placed 100 cm apart.

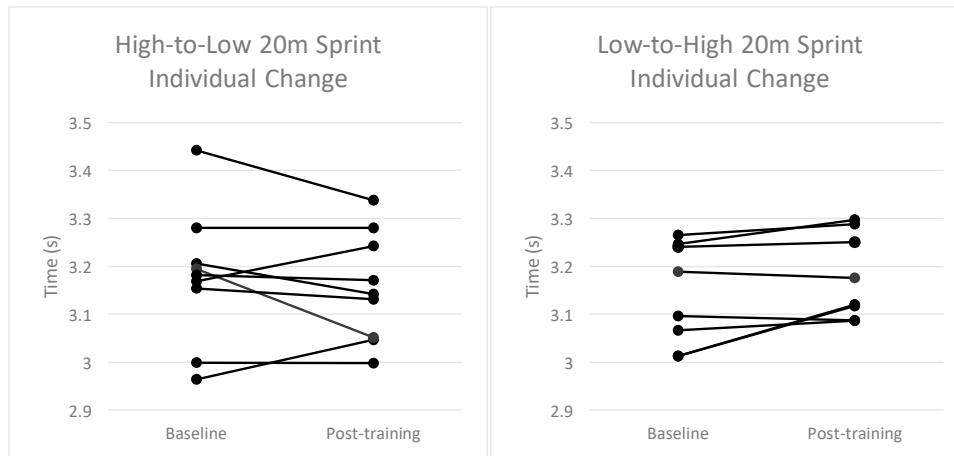
179 2.5 Statistical Analyses

180 Statistical analyses were conducted using IBM Statistics for Windows, version 24.0 (IBM Corp.,
 181 Armonk, N.Y., USA). The best times at baseline and post-training for all assessments (fastest trial on
 182 preferred leg for the 505) were used for analyses. All baseline and post-training data for the 10 m, 20
 183 m, and 505 COD tests were assessed for normality using a Shapiro-Wilk test. A two-way repeated
 184 measures ANOVA was then conducted with one between-subjects factor (group: H-L vs. L-H) and
 185 one within-subjects factor (time: baseline vs post-training). Where a significant *F*-value occurred for
 186 effects of group, time, or the group-time interaction, Fisher's Least Significant Difference (LSD) post
 187 hoc procedures were performed. The level of significance was set to $P < 0.05$ and all values are
 188 reported as mean \pm standard deviation. Additionally, Cohen's *d* effect sizes (ES) were determined
 189 using a custom spreadsheet [30] and are expressed with 90% confidence limits. For comparison of
 190 group means, outcomes were adjusted to the fastest baseline value. Where the confidence interval
 191 overlapped thresholds for substantial positive and negative values, the effect was deemed unclear
 192 [31]. The effect was otherwise clear and reported as the magnitude of the observed value. Threshold
 193 values for assessing magnitudes of ES were 0.20, 0.60, 1.2, and 2.0 for small, moderate, large, and very
 194 large, respectively [31].

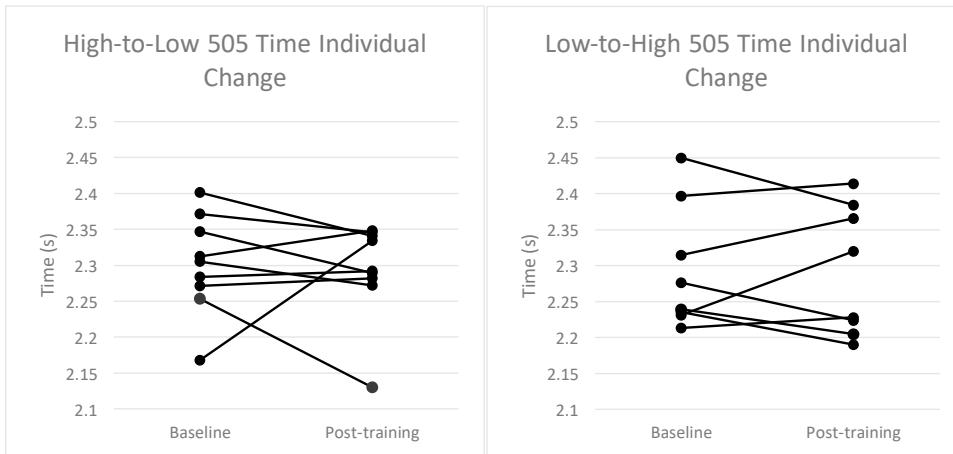
195 3. Results


196 The changes in group means for the H-L and L-H groups from baseline to post-training and ES's
 197 for each performance variable assessed are displayed in Table 1. A small significant within-subjects
 198 effect for the group-time interaction was found in 10 m sprint time ($F_{1,7} = 7.1$, $P < 0.05$) from baseline
 199 to post-training in the H-L group (Table 1). Small but not statistically significant differences were
 200 observed between groups for 10 m and 20 m sprint times (ES = 0.57 and 0.40, respectively). No
 201 statistically significant differences were observed within or between groups for 505 time. Figures 4-6
 202 illustrate the individual changes in performance from baseline to post-training for each performance
 203 variable.

204


205 **Table 1.** Changes in performance from baseline to post-training for each group.

Performance Measure	High-to-Low (<i>n</i> = 9)			Low-to-High (<i>n</i> = 8)		
	Baseline	Post-training		Baseline	Post-training	
		Mean \pm SD	Mean \pm SD		Mean \pm SD	Mean \pm SD
10 m Sprint (s)	1.893 \pm 0.08	1.851 \pm 0.06 *	−0.44 (−0.75, −0.13)	1.868 \pm 0.06	1.870 \pm 0.04	0.05 (−0.37, 0.47)
20 m Sprint (s)	3.177 \pm 0.14	3.155 \pm 0.15	−0.07 (−0.37, 0.23)	3.141 \pm 0.11	3.178 \pm 0.09	0.34 (0.07, 0.61)
505 Time (s)	2.301 \pm 0.07	2.293 \pm 0.07	0.06 (−0.53, 0.65)	2.295 \pm 0.09	2.291 \pm 0.09	−0.03 (−0.43, 0.37)


206 * Significantly different from baseline, $P < 0.05$.

207 **Figure 4.** Individual changes in performance in the 10 m sprint from baseline to post-training for each group.

208 **Figure 5.** Individual changes in performance in the 20 m sprint from baseline to post-training for each group.

209 **Figure 6.** Individual changes in performance in the 505 test from baseline to post-training for each group.

210

211 4. Discussion

212 The aim of the present study was to examine the effects of two plyometric training protocols,
213 performed in either a conventional manner or with an accentuated eccentric phase of the exercise, on
214 measures of sprint and COD performance in elite hockey players. A small but statistically significant
215 improvement in 10 m sprint performance was observed in the H-L group following the training
216 intervention. While this result is interesting, the results should be interpreted with some caution.
217 Since the number of participants in the study is low, a large difference by one participant may have
218 a profound effect on the overall group score. It is important to note that the slowest participant in the
219 H-L group improved the most while the two fastest in the L-H group got slower as did a third
220 participant. The difference in times are approximately 50 to 100 milliseconds, so these are very small
221 changes and we should be careful when drawing conclusions from these result. No other significant
222 improvements in performance were observed for either group. A small though not statistically
223 significant difference between groups was observed for 10 m and 20 m sprint performance. These
224 findings highlight the difficulty in practical interventions designed to substantially enhance speed
225 and COD ability in highly trained athletic populations through the addition of a low volume, short
226 duration plyometric training protocol.

227 One limitation of the present study is the relatively small final sample, as this reduces the
228 statistical power and ultimately limits the strength with which conclusions can be drawn based on
229 the results. The power calculation that was done prior to beginning the study revealed that twelve
230 subjects for each group would be sufficient to provide statistical power based on previous studies
231 [12, 15, 18, 22, 32-35]. Thirty athletes were initially recruited, however thirteen failed to complete the
232 intervention. As this study was conducted to investigate hockey players specifically at the elite level,
233 there was no opportunity to recruit additional participants in order to increase the sample size. It
234 may have been useful to include some assessments of strength or analyses of kinetic and kinematic
235 variables during the assessment of sprint and COD tasks in order to gain a greater understanding of
236 adaptations to the training protocols and the mechanisms underlying any observed changes in
237 performance. Nonetheless, some conjecture regarding these adaptations and mechanisms can be
238 made based on the synthesis of these findings with previous research, and provides direction for
239 future studies. To the best of the authors' knowledge, no previous studies have examined the effects
240 of a plyometric training intervention involving drop jumps performed in the manner of the H-L
241 group in this study, with a greatly accentuated eccentric component. This is also one of very few
242 studies that have investigated the effects of plyometric training in elite hockey players, and included
243 both male and female athletes. Further, we believe the findings of this study are of strong practical
244 relevance given the integration of the training protocol with the regular training program of the men's
245 and women's national teams. These findings should, however, be interpreted with consideration of
246 the specific population involved, and care should be taken when generalizing the results to athletic
247 populations of different training status or sports with physical requirements that are different from
248 hockey.

249 Whilst little research has investigated the effects of drop jumps performed in the manner of the
250 H-L group, much more research has involved conventional style drop jumps such as those performed
251 by the L-H group, and found mostly positive effects on measures of lower limb muscular power and
252 linear sprint performance [12, 15, 34, 36-37]. It has previously been posited that the rate of progress
253 in strength and power development diminishes with increased strength levels and resistance training
254 experience, and as a result a limited scope exists for gains in muscular strength and power and their
255 related performance variables in elite athletes or athletes with greater resistance-training experience
256 [38-39]. Additionally, strength and power related training performed concurrently with high
257 volumes of running can significantly decrease gains in lower body strength and power related
258 measures [40]. Ronnestad and colleagues [35] found that the addition of a specific plyometric training
259 program in professional soccer players who were already performing high volumes of strength and
260 sport-specific training during their preseason preparation phase produced no further improvements
261 in strength and power-related measures. It is therefore possible that the high training experience of
262 the elite population of athletes used in this study, together with the high volumes of additional

263 strength, conditioning, and sport-specific training concurrently performed throughout the
264 intervention period, contributed to the general lack of significant improvements observed.
265 Furthermore, due to the integration of the training intervention into an ongoing high performance
266 training program, and the intensive nature of the drop jumps performed, this intervention was of
267 relatively low volume and short duration, which may have also contributed to the lack of significant
268 improvements in performance. Future research in elite field sport athletes may involve higher
269 volumes of plyometric training than utilized in the current study, however, risk of overload injury in
270 athletes with an already high training load may be a concern. However, constraints on program
271 duration and available training volume in team sport athletes are common in real world scenarios,
272 and as such these findings are of practical relevance. Practitioners should be aware of the seemingly
273 limited scope for substantial improvement in sprint and COD performance in highly trained athletic
274 populations, in order to set appropriate short-term physical performance goals. Available duration
275 and training volume, as well as the type and volumes of additional training concurrently being
276 performed, are possible constraints that should be taken into consideration.

277 Given the limited scope for improvement among highly trained athletes, the large volumes of
278 additional training concurrently being performed, and the relatively low volume and short duration
279 of the intervention discussed above, the significant enhancement in 10 m sprint performance
280 observed in the H-L group provides promise for this type of training as a means of enhancing short
281 distance sprint performance, and warrants further investigation. Previous biomechanical analyses
282 have demonstrated that incremental increases in drop height during drop jump performance are
283 associated with increased vertical ground reaction force, ground contact time, braking and total
284 impulse, and greater activation of the rectus femoris muscle, which acts eccentrically to decelerate
285 the body upon landing [27-29]. The H-L drop jump training protocol implemented in the present
286 study was designed based on these previous findings, such that the H-L training group would
287 experience greater loading during the eccentric portion of the exercise compared with the L-H group.
288 Recent studies have demonstrated that eccentric overload and eccentrically-accentuated training can
289 enhance muscle strength, power, and SSC function, resulting in improved sprint and COD
290 performance [18-19, 21, 41-42]. In their systematic review of the chronic adaptations to eccentric
291 training, Douglas and colleagues [41] highlighted the growing body of evidence in support of
292 eccentric training as a means of inducing a novel adaptive signal for neuromuscular adaptations that
293 can improve athletic qualities such as those mentioned above, including strength, power, and SSC
294 performance. The review explored the mechanisms likely underlying the observed improvements in
295 muscle power and SSC performance, including an increased ability to rapidly recruit large motor
296 units, enhanced eccentric force control and coordination during the eccentric phase within SSC tasks,
297 and increases in tendon stiffness and cross-sectional area, which influence the storage and return of
298 elastic strain energy. Whilst the research surrounding eccentrically-biased training has primarily
299 revolved around strength training methods so far, the findings of the current study warrants further
300 investigation into the use of eccentrically-accentuated plyometric exercises for the enhancement of
301 athletic qualities. It is possible that plyometric exercises performed with an accentuated eccentric
302 phase can provide a novel stimulus and induce similar adaptations to those seen in the eccentrically-
303 accentuated strength training protocols outlined above.

304 Despite the observed improvements in 10 m sprint performance for the H-L group, non-
305 significant and unclear results were observed in COD performance for both groups, as assessed by
306 the 505 test. It was hypothesized that the H-L group would significantly improve their performance
307 during the 180° COD task, and improve to a greater extent than the L-H group. This hypothesis was
308 based on previous literature, which indicates that eccentrically-accentuated training can enhance
309 athlete's ability to produce and control force eccentrically, allowing for greater decelerations from
310 faster approach velocities during COD tasks involving a large braking component [20, 23-24].
311 Additionally, the greater braking impulses produced by athlete's with superior eccentric strength
312 capacities may also allow for more rapid reacceleration during a COD task as a result of the storage
313 and utilization of elastic energy [1, 24]. However, the results of the present study revealed that the
314 plyometric interventions used were inadequate to produce significant improvements in COD ability

315 of highly trained athletes despite the improvements in short distance sprint performance for the H-L
316 group, indicating that an alternative stimulus may be required for COD enhancement. It has been
317 suggested that the effectiveness of plyometric training for improving COD ability may be dependent
318 on the manner in which they are performed, with regards to force-vector specificity [32-33, 43-46].
319 Differences between plyometric training performed unilaterally compared to bilaterally have also
320 been observed [19, 47]. Brughelli and colleagues [10] noted traditional strength and power training
321 exercises performed in a bilateral vertical manner have often failed to elicit improvements in COD
322 performance, and exercises that more closely mimic the demands of COD tasks, including unilateral
323 and bilateral horizontal and lateral jump training, more often report COD improvements. Some
324 investigations into force-vector specificity and comparisons of unilateral and bilateral exercises
325 within eccentric-overload training have also been conducted, with unilateral multidirectional
326 exercises producing more robust adaptations in COD performance, and bilateral vertical exercises
327 displaying more robust adaptations in vertical jump, and sometimes linear sprint, performance [19,
328 47]. Dello Iacono and colleagues [43] compared the effects of vertical and horizontal single-leg drop
329 jump training in elite handball players and found stark differences in favor of the horizontal drop
330 jump training group with regards to sprint and COD performance. It is therefore possible given the
331 highly trained nature of the subjects that drop jumps performed in the present study may have been
332 more suitable for enhancements in COD ability if they were performed in a unilateral
333 multidirectional, rather than bilateral vertical, manner. Future research will be required to investigate
334 the effects of eccentrically-accentuated plyometric exercises performed in a unilateral
335 multidirectional manner, although the highly demanding nature of this type of exercise should be
336 considered.

337 It should be noted that although the L-H group demonstrated no significant improvements in
338 any performance variables based on analysis of group means, further analysis of individual
339 responses reveals that two participants from this group responded poorly to the intervention and
340 displayed a notably worsened performance in post-training sprint assessments (Figures 4-6). It is
341 estimated that with the exclusion of these two participants, comparable effects in sprint performance
342 would likely have been observed between the groups following each training intervention. Although
343 the exclusion of these data from the analysis is not statistically warranted, the effect of individual
344 responses on overall group means in a relatively small sample should be considered when
345 interpreting the results, and in particular when comparing the training protocols. This demonstrates
346 the need for individualization of imposed training demands to elicit favorable adaptation in highly
347 trained participants. As noted above, several previous studies have demonstrated drop jump training
348 performed in the conventional manner can improve muscular power and sprint performance, and
349 the weight of current literature still supports the use of conventional drop jumps as an effective
350 method of training for power, speed, and perhaps COD [12, 15, 34, 36-37].

351 5. Conclusions

352 This investigation aimed to compare the effects of two plyometric training protocols, involving
353 either conventional drop jumps (L-H) or drop jumps performed with an accentuated eccentric phase
354 (H-L), on sprint and COD performance in elite hockey players. Although the H-L training group
355 significantly improved 10 m sprint time following the intervention, it is difficult to be sure that the
356 intervention is truly responsible for this result. It is important to recognise that these are elite athletes
357 and the duration of the test is very short and could be affected by variables including central and
358 peripheral fatigue. This intervention was an addition to regular training and no statistically
359 significant improvements were observed for any other performance variables. However, since speed
360 and COD ability are integral to overall performance in sports such as hockey that require repeated
361 rapid accelerations, decelerations, and changes of direction, the optimal methods and parameters of
362 training for the enhancement of these athletic qualities are of constant interest to S&C practitioners.
363 The findings highlight the practical difficulty in substantially enhancing speed and COD
364 performance in highly trained elite athletes, particularly when the intervention is an additional to
365 large volumes of training being concurrently performed. However, the results also indicate promise

366 for the use of eccentrically-accentuated plyometric training as a means of inducing novel stimuli for
367 the enhancement of short distance sprint performance. It appears that whilst the drop jumps
368 performed by the H-L group in this study were suitable to elicit some improvements in short distance
369 sprint performance, enhancements in COD performance may require an alternative stimulus. Future
370 research may wish to investigate the effects of eccentrically-accentuated plyometric training
371 performed unilaterally and horizontally, rather than bilaterally and vertically. Additionally, the
372 inclusion of strength assessments and analyses of kinetic and kinematic variables in training studies
373 involving plyometric exercises performed with an accentuated eccentric phase would provide greater
374 insight into the responses and adaptations following this type of training. Finally, it should be noted
375 that, as discussed above, the weight of current literature still supports the use of drop jumps
376 performed in the conventional manner as an effective means of enhancing muscular strength and
377 power, and related performance variables such as speed. The findings of this investigation present
378 drop jumps performed in the manner of the H-L group as an alternative or additional approach to
379 plyometric training.

380 **Author Contributions:** Jasdev Singh was involved with study design, data collection, data analysis, data
381 interpretation, and manuscript writing. Andrew Lavender was involved with study design, data interpretation,
382 and manuscript writing. Brendyn Appleby was involved with study design, data collection, data interpretation
383 and manuscript writing.

384 **Funding:** This research received no external funding

385 **Acknowledgments:** The authors would like to thank Hockey Australia and the athletes of the men's and
386 women's national hockey teams for their collaboration and participation in the study. The authors would also
387 like to thank the Western Australian Institute of Sport for allowing the use of their facilities.

388 **Conflicts of Interest:** The authors declare no conflict of interest.

389 **References**

- 390 1. Spiteri, T.; Cochrane, J. L.; Hart, N. H.; Haff, G. G.; Nimphius, S., Effect of strength on plant foot kinetics
391 and kinematics during a change of direction task. *European Journal of Sport Science* **2013**, *13* (6), 646-652.
- 392 2. Spencer, M.; Lawrence, S.; Rechichi, C.; Bishop, D.; Dawson, B.; Goodman, C., Time-motion analysis of elite
393 field hockey, with special reference to repeated-sprint activity. *Journal of sports sciences* **2004**, *22* (9), 843-850.
- 394 3. Sheppard, J. M.; Dawes, J. J.; Jeffreys, I.; Spiteri, T.; Nimphius, S., Broadening the View of Agility: A
395 Scientific Review of the Literature. *Journal of Australian Strength and Conditioning* **2014**, *22* (3), 6-25.
- 396 4. Spiteri, T.; Newton, R. U.; Binetti, M.; Hart, N. H.; Sheppard, J. M.; Nimphius, S., Mechanical Determinants
397 of Faster Change of Direction and Agility Performance in Female Basketball Athletes. *Journal of Strength and
398 Conditioning Research* **2015**, *29* (8), 2205-2214.
- 399 5. Buchheit, M.; Samozino, P.; Glynn, J. A.; Michael, B. S.; Al Haddad, H.; Mendez-Villanueva, A.; Morin, J.
400 B., Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players.
401 *Journal of Sports Sciences* **2014**, *32* (20), 1906-1913.
- 402 6. Hunter, J. P.; Marshall, R. N.; McNair, P. J., Relationships between ground reaction force impulse and
403 kinematics of sprint-running acceleration. *Journal of applied biomechanics* **2005**, *21* (1), 31-43.
- 404 7. Jones, P.; Bampouras, T. M.; Marrin, K., An investigation into the physical determinants of change of
405 direction speed. *Journal of Sports Medicine and Physical Fitness* **2009**, *49* (1), 97-104.
- 406 8. Naylor, J.; Greig, M., A hierarchical model of factors influencing a battery of agility tests. *Journal of Sports
407 Medicine and Physical Fitness* **2015**, *55* (11), 1329-1335.
- 408 9. Asadi, A.; Arazi, H.; Young, W. B.; Sáez de Villarreal, E., The Effects of Plyometric Training on Change-of-
409 Direction Ability: A Meta-Analysis. *International journal of sports physiology and performance* **2016**, *11* (5), 563.
- 410 10. Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A., Understanding Change of Direction Ability in Sport: A
411 Review of Resistance Training Studies. *Sports Medicine* **2008**, *38* (12), 1045-63.

412 11. Flanagan, E. P.; Comyns, T. M., The use of contact time and the reactive strength index to optimize fast
413 stretch-shortening cycle training. *Strength & Conditioning Journal* **2008**, *30* (5), 32-38.

414 12. Chelly, M. S.; Ghenem, M. A.; Abid, K.; Hermassi, S.; Tabka, Z.; Shephard, R. J., Effects of in-season short-
415 term plyometric training program on leg power, jump-and sprint performance of soccer players. *The Journal of
416 Strength & Conditioning Research* **2010**, *24* (10), 2670-2676.

417 13. Fernandez-Fernandez, J.; Villarreal, E. S. D.; Sanz-Rivas, D.; Moya, M., The Effects of 8-Week Plyometric
418 Training on Physical Performance in Young Tennis Players. *Pediatric Exercise Science* **2016**, *28* (1), 77-86.

419 14. Miller, M. G.; Herniman, J. J.; Ricard, M. D.; Cheatham, C. C.; Michael, T. J., The effects of a 6-week
420 plyometric training program on agility. *Journal of sports science and medicine* **2006**, *5* (3), 459-465.

421 15. Vaczi, M.; Tollar, J.; Meszler, B.; Juhasz, I.; Karsai, I., Short-Term High Intensity Plyometric Training
422 Program Improve Strength, Power and Agility in Male Soccer Players. *Journal of Human Kinetics* **2013**, *36* (1), 17-
423 26.

424 16. Hewit, J.; Cronin, J.; Button, C.; Hume, P., Understanding deceleration in sport. *Strength & Conditioning
425 Journal* **2011**, *33* (1), 47-52.

426 17. Kovacs, M. S.; Roetert, E. P.; Ellenbecker, T. S., Efficient Deceleration: The Forgotten Factor in Tennis-
427 Specific Training. *Strength and Conditioning Journal* **2008**, *30* (6), 58-69.

428 18. Bourgeois, F. A.; Gamble, P.; Gill, N. D.; McGuigan, M. R., Effects of a Six-Week Strength Training
429 Programme on Change of Direction Performance in Youth Team Sport Athletes. *Sports* **2017**, *5* (4), 83.

430 19. Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A. V.; Arjol-Serrano, J. L.;
431 Moras, G.; Mendez-Villanueva, A., Eccentric-Overload Training in Team-Sport Functional Performance:
432 Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements. *International journal of sports
433 physiology and performance* **2017**, *12* (7), 951-958.

434 20. Jones, P. A.; Thomas, C.; Dos'Santos, T.; McMahon, J. J.; Graham-Smith, P., The role of eccentric strength in
435 180 turns in female soccer players. *Sports* **2017**, *5* (2), 42.

436 21. Maroto-Izquierdo, S.; García-López, D.; de Paz, J. A., Functional and Muscle-Size Effects of Flywheel
437 Resistance Training with Eccentric-Overload in Professional Handball Players. *Journal of Human Kinetics* **2017**,
438 60, 133-143.

439 22. Lockie, R. G.; Schultz, A. B.; Callaghan, S. J.; Jeffriess, M. D., The Effects of Traditional and Enforced
440 Stopping Speed and Agility Training on Multidirectional Speed and Athletic Function. *Journal of Strength and
441 Conditioning Research* **2014**, *28* (6), 1538-1551.

442 23. Dos'Santos, T.; Thomas, C.; Jones, P. A.; Comfort, P., Mechanical determinants of faster change of direction
443 speed performance in male athletes. *The Journal of Strength & Conditioning Research* **2017**, *31* (3), 696-705.

444 24. de Hoyo, M.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Del Ojo, J. J.;
445 Gonzalo-Skok, O., Effects of 10-week eccentric overload training on kinetic parameters during change of
446 direction in football players. *Journal of sports sciences* **2016**, *34* (14), 1380-1387.

447 25. Liew, B. X.; Morris, S.; Keogh, J. W.; Appleby, B.; Netto, K., Effects of two neuromuscular training programs
448 on running biomechanics with load carriage: a study protocol for a randomised controlled trial. *BMC
449 musculoskeletal disorders* **2016**, *17* (1), 445.

450 26. Nimphius, S.; Callaghan, S. J.; Spiteri, T.; Lockie, R. G., Change of Direction Deficit: A More Isolated
451 Measure of Change of Direction Performance Than Total 505 Time. *Journal of Strength and Conditioning Research*
452 **2016**, *30* (11), 3024-3032.

453 27. Peng, H.-T., Changes in biomechanical properties during drop jumps of incremental height. *The Journal of
454 Strength & Conditioning Research* **2011**, *25* (9), 2510-2518.

455 28. Peng, H.-T.; Kerozek, T. W.; Song, C.-Y., Quadricep and hamstring activation during drop jumps with
456 changes in drop height. *Physical Therapy in Sport* 2011, 12 (3), 127-132.

457 29. Wallace, B. J.; Kerozek, T. W.; White, J. M.; Kline, D. E.; Wright, G. A.; Peng, H.-T.; Huang, C.-F.,
458 Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. *The Journal of Strength
459 & Conditioning Research* 2010, 24 (1), 207-212.

460 30. Batterham, A. M.; Cox, A. J., Spreadsheets for analysis of controlled trials, with adjustment for a subject
461 characteristic. *Sportscience* 2006, 10, 46-51.

462 31. Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J., Progressive statistics for studies in sports medicine and
463 exercise science. *Medicine+ Science in Sports+ Exercise* 2009, 41 (1), 3.

464 32. Manouras, N.; Papanikolaou, Z.; Karatrantou, K.; Kouvarakis, P.; Gerodimos, V., The efficacy of vertical vs.
465 horizontal plyometric training on speed, jumping performance and agility in soccer players. *International Journal
466 of Sports Science & Coaching* 2016, 11 (5), 702-709.

467 33. McCormick, B. T.; Hannon, J. C.; Newton, M.; Shultz, B.; Detling, N.; Young, W. B., The effects of frontal-
468 and sagittal-plane plyometrics on change-of-direction speed and power in adolescent female basketball players.
469 *International journal of sports physiology and performance* 2016, 11 (1), 102-107.

470 34. Mirzaei, B.; Norasteh, A. A.; de Villarreal, E. S.; Asadi, A., EFFECTS OF SIX WEEKS OF DEPTH JUMP VS.
471 COUNTERMOVEMENT JUMP TRAINING ON SAND ON MUSCLE SORENESS AND PERFORMANCE.
472 *Kinesiology* 2014, 46 (1).

473 35. Ronnestad, B. R.; Kvamme, N. H.; Sunde, A.; Raastad, T., Short-term effects of strength and plyometric
474 training on sprint and jump performance in professional soccer players. *The Journal of Strength & Conditioning
475 Research* 2008, 22 (3), 773-780.

476 36. Arazi, H.; Mohammadi, M.; Asadi, A., Muscular adaptations to depth jump plyometric training:
477 Comparison of sand vs. land surface. *Interventional Medicine and Applied Science* 2014, 6 (3), 125-130.

478 37. Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C. M.; Martínez, C.; Álvarez, C.;
479 Caniuqueo, A.; Cadore, E. L.; Izquierdo, M., Effect of vertical, horizontal, and combined plyometric training on
480 explosive, balance, and endurance performance of young soccer players. *The Journal of Strength & Conditioning
481 Research* 2015, 29 (7), 1784-1795.

482 38. Appleby, B.; Newton, R. U.; Cormie, P., Changes in Strength over a 2-Year Period in Professional Rugby
483 Union Players. *The Journal of Strength and Conditioning Research* 2012, 26 (9), 2538-2546.

484 39. Baker, D. G.; Newton, R. U., Adaptations in upper-body maximal strength and power output resulting
485 from long-term resistance training in experienced strength-power athletes. *Journal of Strength and Conditioning
486 Research* 2006, 20 (3), 541.

487 40. Wilson, J. M.; Marin, P. J.; Rhea, M. R.; Wilson, S. M.; Loenneke, J. P.; Anderson, J. C., Concurrent training:
488 a meta-analysis examining interference of aerobic and resistance exercises. *The Journal of Strength & Conditioning
489 Research* 2012, 26 (8), 2293-2307.

490 41. Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M., Chronic adaptations to eccentric training: a systematic
491 review. *Sports Medicine* 2017, 47 (5), 917-941.

492 42. Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J. L.; Tesch, P., Enhancing change-of-direction speed in
493 soccer players by functional inertial eccentric overload and vibration training. *International journal of sports
494 physiology and performance* 2016, 11 (1), 66-73.

495 43. Dello Iacono, A.; Martone, D.; Milic, M.; Padulo, J., Vertical-vs. horizontal-oriented drop jump training:
496 chronic effects on explosive performances of elite handball players. *Journal of Strength and Conditioning Research
497 2017*, 31 (4), 921-931.

498 44. King, J. A.; Cipriani, D. J., Comparing preseason frontal and sagittal plane plyometric programs on vertical
499 jump height in high-school basketball players. *The Journal of Strength & Conditioning Research* **2010**, *24* (8), 2109-
500 2114.

501 45. Loturco, I.; Pereira, L. A.; Kobal, R.; Zanetti, V.; Kitamura, K.; Abad, C. C. C.; Nakamura, F. Y., Transference
502 effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. *Journal of*
503 *sports sciences* **2015**, *33* (20), 2182-2191.

504 46. Singh, D.; Singh, S., Effects of vertical and horizontal plyometric exercises on running speed. *Human*
505 *movement* **2013**, *14* (2), 144-147.

506 47. Núñez, F. J.; Santalla, A.; Carrasquila, I.; Asian, J. A.; Reina, J. I.; Suarez-Arromes, L. J., The effects of
507 unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and
508 its determinants, in team sport players. *PLoS one* **2018**, *13* (3), e0193841.