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Abstract: The spread of viral pathogens both between and within hosts is inherently a spatial
. process. While the spatial aspects of viral spread at the epidemiological level have been increasingly
. well characterized, the spatial aspects of viral spread within infected hosts are still understudied.
s Recent experimental studies, however, have started to shed more light on the mechanisms and
. spatial dynamics of viral spread within hosts. Here, we review these experimental studies as
s well as the limited number of computational modeling efforts that have begun to integrate spatial
+ considerations for understanding within-host viral spread. We limit our review to influenza
»  virus to highlight key mechanisms affecting spatial aspects of viral spread for pathogens of the
s respiratory tract. There is considerable empirical evidence for highly spatial within-host spread of
o  influenza virus, yet few computational modeling studies that shed light on possible factors that
1 structure the dynamics of this spatial spread. In existing modeling studies, there is also a striking
1 absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral
12 populations. To mitigate this, we turn to the extensive ecological and evolutionary literature to
1z provide informed theoretical expectations for what viral and host factors may impact the spatial
s patterns of within-host viral dynamics and for how spatial spread will affect the genetic composition
15 of within-host viral populations. We end by discussing current knowledge gaps related to the
1e  spatial component of within-host influenza virus spread and the potential for within-host spatial
17 considerations to inform the development of disease control strategies.
18
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19

20 1. Introduction

21 More often than not, viral populations are spatially structured. At the between-host level, this
22 spatial structure is evident for endemic pathogens from observed patterns of genetic differences
23 across space, such as those observed for measles virus at large geographic scales [1] and dengue virus
22 even at intracity scales [2]. In the case of epidemic pathogens, both surveillance data and viral genetic
2 data often point to the occurrence of spatial spread, for example, in seasonal epidemics of influenza
26 viruses in the U.S. [3,4]. In recent years, the processes driving these spatial dynamics have been
2z increasingly well characterized, and include mobility patterns [3,5,6] and activity patterns of hosts
2s and vectors [7-9], among other factors. Characterizing these spatial dynamics and understanding the
2 factors driving them are important for anticipating local timing of disease incidence and for guiding
30 more informed control strategies.

a1 At the within-host level, many viral populations also exhibit spatial structure. For chronic viral
sz infections such as cytomegalovirus and SIV/HIV, evidence for this structure comes from genetic
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s compartmentalization [10-14]. In acute or slowly progressing chronic infections, spatial spread
s« has been documented through spatially-explicit ‘surveys’ of viral populations, for example for
ss  influenza [15] and hepatitis C virus [16,17]. The specific processes driving these spatial dynamics
ss have also been increasingly well characterized at the within-host level, through empirical studies
sz focused on elucidating factors that influence viral dissemination and cell/tissue tropism [18-20]. A
ss  better understanding of the spatial patterns of viral spread within infected hosts is important for
30 anticipating the timing of infection in specific tissues and for guiding more informed control strategies
20 at the individual level.

a From an ecological perspective, populations are regulated by what are known as bottom-up
.2 and top-down processes [21]. Bottom-up processes determine the extent of resources available to
«s a population, while top-down processes primarily determine the death rates of individuals in a
4 population. One can also adopt this perspective to examine the ecology of within-host viral infections
«s  through bottom-up processes such as the availability of susceptible target cells and top-down
s processes such as viral clearance by immune cells. For all populations, including viruses, these
«z  bottom-up and top-down processes occur at characteristic spatial scales that determine the spatial
s dynamics of organismal spread and further impact their evolutionary dynamics.

a9 Here, we first review patterns and mechanisms of within-host viral spread from this
so bottom-up/top-down perspective. We then turn to the computational modeling literature to review
s1  insights gained from modeling studies as to how bottom-up and top-down processes, acting at
s2 characteristic spatial scales, can drive patterns of within-host viral spread. We limit our reviews
s of the empirical and modeling studies to human influenza A viruses (IAVs) as a representative and
s« well-studied acute infection of the respiratory tract. For this virus, we surprisingly find only a very
ss limited number of computational studies that explicitly consider the causes and consequences of
se spatial within-host spread. This is worrisome, given the extensive number of studies in the ecological
s and evolutionary literature that underscore the importance of space in regulating the dynamics of
ss populations and in shaping their genetic composition. We thus then turn to this more extensive
so theoretical literature to shed light on what characteristics of viral populations are likely to impact
s patterns of spatial viral spread and the evolutionary consequences of this spread. While much of
e our review focuses on influenza viruses, these theoretical insights should be applicable to other viral
ez systems undergoing spatial within-host spread.

es 2. Experimental studies point towards spatial within-host influenza virus spread

6s The within-host spatial dynamics of influenza virus infection have been increasingly well
es characterized over the last decade. Early work relied on immunohistochemistry and in situ
ss hybridization approaches to determine the extent of spatial heterogeneity in viral presence/absence
ez across infected host tissues. For example, by examining lung tissue blocks from several human
es patients who had fatal influenza infections, Guarner and colleagues found evidence for focal
oo influenza infection in the epithelium of large bronchi in a subset of patients [22]. Interestingly, they
7 found that viral antigen was only found within a fraction of the lung tissue blocks they examined,
= thus providing one of the first lines of evidence that influenza infections have a spatial dimension.
72 While this study may have been biased based on the exclusive focus on fatal influenza infections,
73 bronchoscopy of patients with nonfatal influenza infections also indicated that influenza virus spread
=a was highly spatial, with significant variation in the degrees of inflammation and epithelial damage
75 between bronchi within individual hosts [23]. Immunohistochemistry-based analysis of infected
7 ferrets of influenza revealed that different subtypes of influenza virus all exhibited spatial viral
7z spread, with notable differences in the spatial (and temporal) signatures of viral infection across the
7s  subtypes examined [15].

79 Recent advances in the development of recombinant viruses expressing fluorescent reporters
so have greatly advanced our ability to understand the spatial aspects of within-host influenza
a1 dynamics. Manicassamy et al. used a GFP-expressing recombinant virus to examine the localization
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.2 and cellular tropism of the virus in mouse lungs [24]. Imaging of excised lungs four days post
es infection showed focal areas of viral infection (Figure 1A), similar to what was observed in human
es tissue samples. Fukuyama et al. engineered four distinct influenza viruses that stably encode
es different fluorescent reporter proteins [25]. By infecting mice with a mixture of these four ‘Color-flu’
s viruses and tracking them independently, they observed clusters of the same fluorescent color
ez within bronchial epithelial cells at 2 days post-infection. By day five post-infection, infected
ss alveolar cells showed expression of single fluorescent proteins. Both of these observations point
s to local (and possibly occasional long-distance) dispersal of virions. The authors also found that
so approximately 20% of bronchial epithelial cells were infected with more than one Color-flu virus
o1 at day 2 post-infection, suggesting the frequent occurrence of cellular coinfection during influenza
o2 infection. The frequency of coinfection may have significant consequences for the spatial dynamics
o3 of infection (more below).

Figure 1. Experimental findings of within-host influenza virus spread. (a) Influenza virus spread
visualized through bioluminescent imaging. Figure shows fluorescence from excised lungs of infected
mice. Figure reproduced from [24]. (b) The genome and proteins of influenza virus can be transferred
between cells via intercellular pathways called tunneling nanotubes. Figure reproduced from [26].

0s The development of viruses that stably express luciferase has allowed the visualization of
os longitudinal infection dynamics and spatial distribution within live hosts [27-31]. In mice, multiple
o6 studies have demonstrated the existence of clear viral foci in the lungs that spread in spatial extent
oz before recovery from viral infection [27-29]. Subsequent studies have demonstrated the utility of
s these luciferase reporter viruses in tracking the spatio-temporal dynamics of infection in ferrets and
9o in the context of pre-existing immunity [30,31].

100 Altogether, there is an increasing body of experimental work in systems ranging from mice to
11 humans that indicates that influenza infections are highly spatially structured. Along with this, recent
102 studies are also providing a better understanding of the specific mechanisms that may be responsible
103 for the establishment of this spatial structure. One clear factor is the spatial heterogeneity of cells with
10a  certain receptor distributions that mediate efficient viral attachment and therewith modulate cellular
105 tropism. To elaborate, IAV primarily binds host cells through interactions with the galactose-sialic
16 acid (SA) linkages present on the termini of complex glycan structures. The SA structures used by
w0z influenza viruses are structurally diverse, but are typically classified as either 42,3 or 22,6 based on
18 the orientation of the bond between the galactose and sialic acid moieties [32]. The specificity of
10 HA for 2,3 or a2,6 linkages is thought be a key determinant of species and cellular tropism, with
1o avian strains primarily binding 2,3, and human strains binding 42,6 [32]. Multiple studies have
11 demonstrated a correlation between the presence of a2,6 linked SA receptors on the cell surface
12 and virion binding and infection in human airway and nasal epithelial cultures, as well as within
us  sections of human respiratory tissue [20,33-36]. Consistent with this, deep sequencing different
ua  anatomical sub-compartments within the ferret respiratory tract revealed clear compartmentalization
us of viral variants based on the distribution of receptor structures [37]. Importantly, the ubiquity of


http://dx.doi.org/10.20944/preprints201810.0232.v1
http://dx.doi.org/10.3390/v10110627

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2018 d0i:10.20944/preprints201810.0232.v1

4 of 20

us  SA receptors throughout the mammalian respiratory tract lumen may limit the spatial spread of
ur virions. Release and efficient spread of newly produced virions depends upon the ability of the
us viral neuraminidase protein (NA) to efficiently cleave SA receptors from the surface of the infected
ue  cell [38,39]. In addition, the airway lumen contains an abundance of heavily sialylated host factors
120 such as pentraxins and mucins that can bind virions and restrict their free diffusion [40,41]. Thus,
121 both cellular and cell-free SA may act to restrict or structure the spatial spread of the virus by limiting
122 free diffusion. This effect may be counteracted to varying degrees by the activity of the viral NA,
122 which can differ between different viral strains [42].

124 Recent studies have suggested that influenza virus may also be able to spread spatially via an
125 entirely separate mechanism that does not depend on diffusion of extracellular virions. Specifically,
126 Roberts et al. showed that viral proteins can spread between adjacent cells via intercellular
12z actin pathways (“tunneling nanotubes”) without going through the standard budding and release
126 process [43]. These proteins include the viral replicase machinery (nucleoprotein and polymerase
120 proteins), as well as NS1. Subsequently, Kumar and colleagues showed that the genomes of influenza
130 viruses can also spread between cells via these nanotubes (Figure 1B) [26].

131 Thus, influenza viruses may use at least two modes of transmission between cells: (1) the
132 textbook process of extracellular spread by virions, and (2) the intercellular spread of viral genomes
133 and proteins between neighboring cells. Infection therefore likely occurs at two characteristic spatial
13a  scales: a scale with the possibility of long-distance dispersal (with cell-free virions having a small
135 possibility to infect cells at appreciable distances from the cells from which they budded) and a scale
136 that involves highly localized spread (with intercellular pathways having the ability to form only
13z between adjacent target cells). To our knowledge, the actual distances traveled by cell-free virions
13s  have not been measured experimentally, but given the spread of cell-free virions between hosts, it
130 is likely that cell-free virions also have some degree of long-distance dispersal capabilities within a
120 host. The relative importance of these two modes of spread may differ between infected hosts. For
11 example, hosts with pre-existing anti-influenza immunity may clear cell-free virions more rapidly
12 than naive hosts, resulting in a more dominant role for intercellular viral spread in these individuals.
143 These two modes of viral spread can be considered bottom-up processes in that they impact
s the rate of viral spread via access to the resources necessary for replication. The spatial aspects of
s top-down processes that control viral spread, such as the activities of immune cells and cytokines in
s nNeutralizing virions, clearing infected cells, and rendering cells refractory to infection, have not been
17 extensively studied to our knowledge. Questions that need to be addressed are thus how locally
s the immune system acts and the degree of spatial heterogeneity in the immune response across
140 the respiratory tract. Further empirical work is needed to understand the potential for top-down
10 regulation of viruses. However, because the respiratory tract is not a highly immune-privileged
11 site, and numerous soluble components of the anti-viral immune response such as antibodies and
152 interferon are thought to act at the tissue-wide or systemic level, we expect the spatial dynamics of
13 influenza virus spread to be regulated more strongly by the bottom-up process of local target cell
1s¢  availability than by the top-down process of immune-mediated viral clearance.

155 In sum, the experimental findings we reviewed here indicate that human influenza viruses
156 exhibit strong patterns of within-host spatial spread, driven predominantly by local movement of
157 cell-free virions and the intercellular spread of viral genomes and proteins. In the next section, we
158 review computational models that address the role that certain viral and host factors may play in
1ss  shaping the spatial aspect of within-host influenza virus spread.

10 3. Computational models of spatial within-host influenza virus spread

161 The overwhelming majority of computational within-host influenza models do not incorporate
162 a spatial aspect to viral spread. Despite this, they have provided insights into the processes
163 regulating within-host virus dynamics. These dynamics are typically characterized by exponential
16 growth in viral load until approximately 2-3 days post-infection, with peak viral titers measured at
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16s  approximately 10° TCID50/mL [44]. Virus generally becomes undetectable within 5-6 days following
s infection [45] . The decline in viral load is often biphasic, with an initial rapid decline, followed by a
167 longer, slower decline in viral load [46,47]. Figure 2A shows these characteristic viral load dynamics
16 in a human subject experimentally infected with the HIN1 influenza A subtype.

169 Several non-spatial models have been able to reproduce these characteristic infection dynamics.
170 The most basic versions of these models consider only target cells and virus, yet can reproduce
i1 the exponential growth of the viral population within a host, followed by an exponential viral
12 decline once target cells have been depleted (Figure 2A) [44]. These models, however, fail to
s reproduce observed biphasic viral declines. More complex models have incorporated the host
17a  response, typically by considering the role of interferon and cells of the innate and adaptive immune
175 response [46—49]. These models have been able to reproduce many (and in some cases, all observed)
e patterns of viral growth and decline without unrealistic target cell depletion. The importance of the
17z host immune response in regulating within-host influenza dynamics, identified by these non-spatial
17e  models, lay the groundwork for more complex models that explicitly account for spatial structure.
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Figure 2. (a) Fit of a non-spatial, target-cell limited within-host influenza model to viral load data
from a human subject experimentally infected with influenza A subtype HIN1. The data are shown as
black points. The black lines show model fits of viral load data. The blue lines show model-predicted
declines in the number of target cells. Solid lines show the fits of the basic model; dashed lines
show the fits of a more complex model with an eclipse phase before infected cells produce virus.
Figure is reproduced from [44]. (b) Cellular automata model of within-host influenza infection
under assumptions of local cell regeneration and localized recruitment of immune cells. Simulations
reproduce the appearance of infected foci. Figure reproduced from [50].

179 Incorporating spatial structure into within-host disease models can have important
10 consequences. Most notably, parameter estimates inferred for spatial within-host models are often
11 biologically more reasonable than those inferred for non-spatial models. This has been shown for
12 models of influenza virus [51], as well for models of other pathogens [52]. This finding indicates that
13 spatial aspects of viral spread might inappropriately bias inferred parameter values of non-spatial
1a models. Spatial models also lead to qualitative predictions of viral dynamics that may be more
s biologically reasonable [53]. For example, under certain parameter regimes, one might expect a
16 viral infection to become chronic or for viral load to equilibrate steadily; spatial models for chronic
17 infections have been able to better reproduce these types of dynamics than non-spatial models, which
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1. have a greater tendency for viral infections to be stochastically cleared or to exhibit dampening
180 oscillatory dynamics [53].

100 For influenza virus, several spatially explicit within-host models have been developed in the last
11 10-15 years [54-56]. These models all allow virus to spread locally from infected cells to nearby
102 susceptible cells. In some of these models, other processes, such as host cell regeneration and
103 immune cell recruitment, are also spatially structured. The most common approach to explicitly
10 model spatial aspects of within-host influenza virus spread has been through the implementation of
15 agent-based models. These generally consist of a 2-dimensional grid of cells and a defined set of
106 rules that determine viral kinetics and cell death kinetics, among other kinetics such as those of the
107 host immune response. Beauchemin and colleagues showed that an agent-based model of this sort
1e  could successfully reproduce certain features of acute influenza infections, including the timing of
100 peak viral load and the 5-7 day duration of infection [54] . However, in their simulations, the number
20 Of infected cells appears to grow linearly until viral load peaks; this stands in contrast to observed
201 patterns of exponential viral growth over the first few days of influenza infection. More work needs to
202 be done to determine whether and under what scenarios one would expect exponential viral growth
=203 in spatially structured influenza infections.

208 In a second study, Beauchemin considered the dynamical effect of factors occurring at different
20 spatial scales [50]. Specifically, this study considered the regeneration dynamics of epithelial cells
206 to occur either globally or locally. Which of these assumptions was adopted clearly would affect
207 Tesource availability for the virus, and thereby shed light on the importance of this bottom-up
208 process’s spatial scale in shaping the spatial distribution of the viral population. The study further
200 considered the recruitment dynamics of immune cells to occur either at random or preferentially
210 at infection sites. Considering these alternative assumptions allowed Beauchemin to evaluate the
2 importance of spatial scale in the immune response’s top-down control of the viral population.
212 Finally, this study considered different possible dispersal distances for the virus. Overall, the study
213 found that local cell regeneration and short viral dispersal distances reproduced observed empirical
za  patterns, including foci of infected cells, better than other combinations (Figure 2B). Whether
x5 recruitment of immune cells was at random or localized at infected sites did not have an appreciable
ze  effect as long as cell regeneration was localized. Better experimental data are still needed to quantify
z7  cellular regeneration, and whether it should be expected to impact influenza virus dynamics over a
zne  5-6 day period.

210 Following this work, Levin et al. assessed in more detail the importance of the host immune
220 response in regulating spatial within-host influenza virus spread [57]. In this study, the authors
2z showed that T-cells were unable to control the spread of influenza viruses with high replication rates.
222 This inability of the host immune response to control the viral infection was due to delays in T-cell
223 migration to the infection site. The results of this spatial model sheds light on how the localized
224 interaction between the immune system and the virus could result in some viral strains, but not
225 others, being able to evade top-down control by the host immune response.

226 Despite the increase in their use, agent-based models are still computationally intensive and
22z frequently do not allow for effective interfacing with data or analytical insight. Fortunately, several
226 alternative approaches exist for modeling spatial aspects of within-host viral spread that do not rely
220 On agent-based model simulations. One such approach is to compartmentalize the respiratory tract
230 into several distinct “patches’, with low levels of viral transmission between one another. Within
21 a patch, virus is assumed to have equal access to all cells and is similarly targeted equally by all
232 host immune responses. A study by Reperant et al. provides an example of this type of approach,
233 in which viral dynamics are considered across three tissue compartments: the trachea/bronchi,
23s  the bronchioles, and the alveoli [58]. These compartments captured spatial heterogeneity in host
235 cell types across tissues by differing in their initial number of susceptible target cells, in their
236 viral clearance rates, and in their immunoglobulin distributions. By simulating this multi-patch
23z compartmental model for a number of different influenza A subtypes, the authors found that these
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23s  tissue differences lead to strain-specific variation in viral localization along the respiratory tract, and
230 therewith differences in the onward transmission potential of different influenza subtypes. A second
2e0 alternative approach makes use of partial differential equations (PDEs), which can deterministically
22 simulate the dynamics of a viral population over both space and time. With PDEs, certain processes
2a2  can occur locally while others can occur over more extensive spatial scales. For within-host influenza
2a3  dynamics, for example, virus production, infection and death of cells, and immune activation can all
2as  oOccur locally, while viruses, cytokines, and certain cells can diffuse or migrate over more extensive
25 Tanges across space.

246 A third alternative approach to agent-based models is to consider space implicitly, rather than
2az  explicitly. This can be done by including saturating (instead of mass-action) terms in non-spatial
245 mathematical within-host models [49]. While mass-action terms are often used in within-host models
a0 to describe virus infection of target cells, using a saturating term (such as a Michaelis-Menton term) to
=0 describe the infection process would allow for deviation from a well-mixed assumption. The rationale
=1 for using such a term is that when a virus is produced from infected cells, it cannot reach all target cells
=2 in a host. Instead, there are only a small number of target cells that are available to the virus to infect.
23 Thus, the rate at which susceptible cells become infected can rapidly saturate even while many target
2ss  cells remain susceptible. A final approach for modeling space implicitly is to allow for overdispersion
=5 of virus among target cells, by assuming, for example, a negative binomial distribution for viral
=6 particles across host cells rather than a Poisson distribution [59]. With overdispersion, a small number
=7 of target cells are infected with a large number of virions, while a large number of target cells might
ze  still be uninfected. Overdispersion can thus capture expected viral distribution patterns under the
20 assumption of spatial viral spread.

260 While spatial within-host models have helped us understand how influenza virus infections
201 spread within a host, the current literature has not addressed many open questions that seem
22 particularly important in the context of spatial viral spread. One question is how the eclipse phase
263 Of infected cells impacts viral population growth and spatial spread dynamics. A second question is
2es  how cellular coinfection impacts the rate of viral spread. In a spatially structured infection, we expect
2es  substantially more cellular coinfection than in a non-spatial setting, where virus is spread more evenly
206 OVer an entire population of cells. As such, the effect that cellular coinfection has on the rate of viral
267 production will be critical to determining how quickly the viral population will spatially expand.
2ee  Higher levels of cellular coinfection in a spatially structured setting will also impact viral reassortment
260 rates [60], and thereby also impact the adaptive potential of influenza viruses. Intriguingly, these
20 questions, among others, have already been addressed, albeit not in the specific context of within-host
a1 viral dynamics. Indeed, there is a rich ecological literature that can be mined to inform us of answers
22 to these questions, provided that we make effective analogies between processes identified in this
213 literature and those acting on within-host viral populations.

2ra 4. Ecological factors driving patterns of spatial spread

275 One of the most straightforward questions we can ask about within-host disease spread is
=z how fast it will progress. On this question, the ecological literature has shown that spatially
277 unstructured populations grow faster than their spatially structured counterparts when starting from
27 small population sizes [61,62]. When population sizes are small, spatially unstructured populations
2re  are expected to grow exponentially, whereas spatially structured populations are expected to grow
200 slower than exponentially (that is, sub-exponentially). This reduced growth rate is due to the lower
21 relative availability of resources in spatially structured populations: resources are scarce in the centers
22 of expanding populations, and resources are only abundant for those individuals at the very front of
23 the expanding population wave. In the context of within-host viral spread, this means that infections
2es that are highly spatially structured have constrained growth rates relative to those infections that are
2es more spatially unstructured. This expectation is consistent with Beauchemin’s finding that a decrease
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2e6  in the rate of influenza virus diffusion reduces the growth rate of the virus and its overall population
2s7  size [50].

208 While spatial structure is known to slow overall population growth, the ecological literature
200 has also delved more specifically into what factors impact the rate of spatial population spread. In
200 general, a population expanding outward from its point of origin is theoretically expected to spread
201 as a “traveling wave”, that is, at a constant rate and with a wavefront shape that is maintained
202 over time [63,64]. This traveling wave dynamic is expected when a population is expanding in a
203 single dimension along a line (Figure 3A) or in 2-dimensional space (Figure 3B), the latter of which
20s  would be more relevant for the within-host spread of influenza virus populations. If a population is
205 expanding in a single dimension, the amount of occupied area is expected to grow linearly in time
206 [64]. Alternatively, if a population is expanding in two dimensions, the square root of occupied area
207 is expected to grow linearly in time [64] (Figure 3C).
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Figure 3. Patterns and dynamics of spatial spread from the ecological literature. (a) Populations
expand as a “traveling wave” in a single spatial dimension. (b) Populations expand as a “traveling
wave” in two-dimensional space. Figures (a) and (b) reproduced from [63]. (c¢) When populations
expand in two spatial dimensions, the square root of the area that is inhabited is expected to
grow linearly in time. Figure reproduced from [64]. (d) Types of density-dependence. Negative
density-dependence occurs when per capita growth rates decrease with increases in local population
densities. Allee effects occurs when per capita growth rates first increase, and then decrease, with
increases in local population densities. Figure reproduced from [65].

208 One important factor that affects the velocity of the traveling wave is the type of
200 “density-dependence” that the population is subject to, where density-dependence refers to the
s00  relationship between local population density and individual (per capita) growth rates. Populations
o1 are said to undergo density-independent growth when an individual’s growth rate is not influenced
s02 by local population density. Negative density-dependence is said to occur when an individual’s
;03 growth rate decreases with increases in local population density, such that the maximum per capita
s0e  growth rate occurs at small population sizes (Figure 3D). Positive density-dependence is said to occur
ss when an individual’s growth rate increases with increases in local population density. Systems can
s0s  be subject to multiple forms of density-dependence. For example, in populations with an Allee effect,
sz there is a transition from positive to negative density-dependence with increases in local population
s0s density (Figure 3D). In populations that are strictly subject to negative density-dependence, the
00 (asymptotic) velocity of the traveling wave is given by \/4f‘(1)D, where D is the dispersal rate,
s10 measured in units of dispersal distance?/time, and f‘(u) is the individual growth rate at low
su  population density [63]. In populations with an Allee effect, the (asymptotic) velocity of the traveling
sz wave is lower than in similar populations without an Allee effect [66-68]. Thus, the type of
a3 density-dependence a population experiences will impact the velocity of its spatial spread.
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314 While a spatially-expanding population is generally expected to exhibit traveling wave
a5 dynamics, it may initially exhibit transient dynamics that differ from its asymptotic, long-term
ais  behavior. In many cases , these transient dynamics are expected to have a slower velocity than
a1z those of the asymptotic traveling wave [63,69,70], with the rate of spread expected to accelerate
a1 once the local population has reached a threshold density [71]. This expected increase in the rate of
a0 spatial population spread is an important theoretical finding that, if ignored, could lead to dramatic
s20 underestimation of the rate at which a population will ultimately spread and the total distance that it
sz will ultimately travel. In the case of an Allee effect, some population expansions may even fail due to
sz local populations failing to exceed certain threshold densities [68].

323 Unfortunately, little is known about density-dependence in viral populations specifically. Within
s2  a host, the characterization of density-dependence in a viral population would require determining
s how the number of viral progeny from a given intracellular viral particle depends on the multiplicity
226 Of infection of the cell the viral particle resides in. For some viral pathogens, host cell machinery
;27 may be the primary limiting factor. In this case, the population would be strictly subject to negative
:2s  density-dependence. In influenza, there is some indication that an Allee effect may be at play. This
;20 expectation derives from a study that showed that over 90% of the time, singularly infected cells
s30  fail to produce viral progeny [72]. This failure to produce viral progeny stems from the failure of
s one or more of influenza’s eight gene segments to be delivered to the nucleus. The existence of
32 these “semi-infectious particles” [73] that can produce viral progeny through complementation can
a3 therefore be thought of as bringing about positive density-dependence at low cellular multiplicities
:3¢  of infection (MOIs). With host cell machinery ultimately limiting viral production at high cellular
a5 MOIs, IAV growth may therefore be characterized by an Allee effect. As such, we may expect some
:3s  infections to fail due to threshold population sizes not being reached, and we may expect the rate of
37 viral spread to be slower for strains of IAV that have higher proportions of semi-infectious particles.
338 A second ecological factor that is known to impact the rate of spatial population spread is the
339 frequency of long-distance dispersal events [74-76]. The primary ecological effect of long-distance
a0 dispersal events is an increase in the rate at which populations expand spatially [77]. This increase
s in the rate of spatial spread further leads to an overall increase in population growth rates because
sz dispersed individuals have access to more resources than they would otherwise have had. In a study
sa3  that compared two different modes of range expansion (exclusively short-range diffusion versus a
:as  combination of short-range diffusion and long-distance dispersal), populations were found to invade
w5 more quickly when long-distance dispersal occurred, even if these events occurred only rarely [75].
sas  Increases in the rate of spatial population spread with higher frequencies of long-distance dispersal
sz events is consistent with the findings that asymptotic velocity of a traveling wave increases with the
sae  dispersal rate D (see equation above).

340 Given the importance of long-distance dispersal events on the dynamics of spatially structured
;50 populations, knowledge of how frequently virions disperse at these long distances within infected
51 hosts appears critical. To the best of our knowledge, the frequencies of these events have not
2 been quantified, either in vivo or in vitro. Clearly, transmission of influenza particles between hosts
;53 constitutes a long-distance dispersal event. While we know that influenza virions generally infect
;s nearby cells, and can even be transmitted between cells directly via intercellular actin pathways, the
s extent to which virions travel long distances within a host is unknown. Intriguingly, the observed
6 exponential growth of the viral population for the first 2-3 days following infection may be an
ss7  indication that long-distance within-host dispersal occurs; in its absence, we would expect a pattern of
e subexponential viral growth. As mentioned above, long-distance dispersal mitigates to some extent
0 the growth-slowing depletion of local resource (target cells, in the case of viruses), and thereby brings
0 the rate of viral population growth closer to an exponential form. The frequency of long-distance
se1  viral dispersal in IAV infections should be investigated further, given the evidence in the ecological
se2  literature for the strong influence that dispersal rates have on rates of population spread.
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363 Spatial heterogeneity is a third key factor that can impact the rate of spatial population spread.
e Spatially heterogeneous environments might be caused by irregularities in the landscape such as
ses unevenly distributed resources or barrier zones. While we normally expect populations to expand
ses through space as a traveling wave, there is evidence that spatial heterogeneity can result in much
sz more complex patterns. For example, Keeling and colleagues showed that heterogeneity across the
ses landscape in resource distribution and quality helped to explain why a disease outbreak traveled
se0 irregularly and was difficult to predict [77]. Another important example can be found in a study by
s Sharov and Liebhold, who used empirical data and a spatially heterogeneous model to show that a
sn single “barrier zone” could greatly reduce that rate of population spread [78]. Similar results have
sz been found in other studies on the importance of barrier zones, which can serve to reduce the rate of
373 spatial expansion or even halt it entirely [79].

374 These effects of spatial heterogeneity are an important consideration for within-host viral spread.
a5 We know that flu infections occur in a spatially heterogeneous environment. Across the length of the
s7e  respiratory tract, the ‘landscape’ is heterogeneous in terms of cell densities and receptor structures.
sz Progressing from the upper to the lower respiratory tract, we see an increase in the number of
e 02,3 SA binding receptors relative to «2,6 receptors, meaning there are fewer appropriate target
sro  cells for human influenza viruses to bind to [80,81]. This change in resource distribution could
se0  affect the pattern and rate of viral spread, helping to explain why many human influenza infections
se1  are confined to the upper respiratory tract. Furthermore, we can expect that within-host patterns
;2 of immune response would also add heterogeneity to the environment, in the form of interferon
;a3 diffusing as it is released from infected cells and immune cells moving through the system. This is
;ea  an active area of study, and recent advances in within-host imaging techniques will no doubt greatly
ses  advance our understanding of within-host spatial heterogeneity and its effects on viral spread.

386 Finally, the presence of other species can strongly affect the ability of a species to invade.
sz Competitors can act to reduce the availability of resources or alter the environment in other ways
;e that make it more difficult for a species to disperse and survive. Unsurprisingly, most models
se0  suggest that the presence of a competitor will act to slow down the rate of spatial spread [82]. The
0 competitor can still have this effect even if it is less fit than the focal species. This is especially
sa1  true if the competitor is already established in the new location before the focal species arrives [76],
sz but this is not a requirement. Similarly, predators can also slow down the rate at which a species
303 can invade a new territory, and, depending on their distribution in the landscape and their time of
:s release, they may even make it such that the invasion dynamics of the prey species can no longer be
ses characterized by a traveling wave [63]. In the context of influenza, while the virus may not explicitly
a6 be subject to interspecific interactions, we could perhaps think of components of the immune response
307 as either competitors or predators. In particular, exposure to interferon-a is known to make cells
ss refractory to viral infection, thereby reducing the number of susceptible target cells available to a
300 virus. Interferon-a could therefore potentially be considered as an asymmetrical competitor of IAV
a0 within a host. The depletion of susceptible target cells by interferon-a« would act to slow down
a1 the rate of viral spread within a host. The cellular and humoral immune responses of hosts could
sz instead be thought of predators of the within-host IAV population, by neutralizing free virus or
a0s  killing infected cells. Viruses infecting hosts with pre-existing immunity would thereby experience
w0 top-down, predator-like control from the immune system. This dynamic would lead to a slower rate
s of viral spatial spread, and potentially the abrogation of a traveling wave form.

406 In sum, our understanding of ecological dynamics can help us to better understand within-host
07 viral dynamics, and to fill in some of the gaps in our knowledge about factors that may impact rates
s of viral spread. To consider how these spatial aspects of viral spread will in turn impact the genetic
e structure of the viral population, we next turn to the evolutionary literature.
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a0 5. The consequences of spatial spread on population evolution

a11 The evolutionary literature provides insight into how spatial spread impacts patterns of
a2 population genetic diversity, how it impacts the processes of purifying and positive selection,
a1z and how spatially-distinct selection pressures may shape population phenotypes. Here, given the
a4 intrinsically spatial aspect of influenza virus spread within hosts, we review this literature and again
a5 make ties to observations from the flu field where possible.

416 An important effect of spatial population expansion is a significant reduction in population
a7 genetic diversity. This effect is one of the more robust effects of spatial spread, with a large number
as  of studies showing that genetic diversity is rapidly eroded when population expansion occurs
a0 locally, as with a range expansion [83-87]. In the case of spatial expansion in two dimensions, this
a20  reduction of genetic diversity from stochastic founder effects results in sectors that are genetically
a2 homogeneous [85] (Figure 4A). Intriguingly, these patterns are consistent with a recent analysis of
a2 within-host viral populations in individuals experiencing acute influenza infections [88]. Specifically,
a2s McCrone and colleagues found that stochastic effects dominated in the structuring of the within-host
«2¢ flu populations, and that, despite high viral titers, only 57% of single nucleotide variants from an
a5 early sample were still present in a later sample from the same individual when samples were taken
a2s one or more days apart. These results are consistent with the phenomenon of spatial spread, where
a2z rapid drops in standing genetic variation would be expected further into the range expansion due to
a2s  genetic drift at the wavefront. Rapid losses of genetic diversity were also evident in a mouse model for
a20 influenza infection, where the authors found, using four distinct colors of fluorescently labeled viral
a0 proteins, that the majority of individual alveoli only showed the presence of a single color [25]. This
«  indicates that at the furthest extent of within-host viral spread, spatial founder effects and bottlenecks
a2 appear to be at play.

433 Several factors have been identified in the population genetic literature that will modulate the
a3a  extent to which the genetic diversity of a spatially expanding population will be eroded. In most
a5 cases, these factors have clear analogues for within-host viral populations. First, the ‘dispersal kernel’
a6 is known to affect the rate at which populations will lose genetic diversity, where the dispersal kernel
a7 quantifies the distribution of distances individuals in a population will seed their progeny. Intuitively,
a3s  one might think that higher levels of long-distance dispersal will always mitigate the loss of genetic
a  diversity. However, Bialozyt and colleagues showed instead that increases in the number of long
a0 distance dispersal events will counterintuitively first have the effect of reducing genetic diversity [89].
«a1  Further increases in the number of long-distance dispersal events will then act to increase levels of
a2 genetic diversity again. This pattern results in the minimum level of population genetic diversity
a3 being present at some level of long-distance dispersal. This pattern results from what has been termed
saa an ‘embolism’ effect (Figure 4B), where rare long distance dispersal events lead to single individual
as  founders with substantial replication resources surrounding them. The rapid expansion of these
ass  single individual founders leads to dramatic reductions in the overall population’s genetic diversity.
sz The dispersal kernel, as one might expect, will also impact the genetic ‘patchiness’ of the population
ass across space [90]. In light of the two possible modes by which flu viruses infect target cells, the
s relative roles of cell entry through receptor binding by free virus versus cell entry through tunneling
ss0  nanotubes will likely be important in understanding patterns of genetic diversity in within-host flu
«s1 populations. If TNTs are a major source of cellular infection, as they may be in previously infected
sz individuals with strong antibody responses, then dispersal is expected to be more highly localized,
a3 and long-distance dispersal events will be fewer. However, whether this will lead to higher or lower
asa levels of genetic diversity relative to a case with higher levels of cell entry via receptor binding by free
s virus is unclear, given that the relationship between genetic diversity and the number of long-distance
sse  dispersal events is non-monotonic [89].

457 A second factor affecting the rate at which population genetic diversity will be lost in a spatially
«ss  expanding population are the life history characteristics of the population. For example, it has been
sso  shown that a juvenile, non-reproductive stage in a life cycle reduces the rate of genetic diversity loss
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s0 in populations [91]. This is because a juvenile stage slows down the colonization process and allows
s1 for more genetic diversity to accumulate at the wavefront. An ‘eclipse’ phase in viral populations is
sz analogous to this juvenile stage: infected cells are not productive immediately following infection;
«3 rather it can take several hours for viral progeny to be produced. For influenza, the duration of this
asa eclipse phase has been quantified experimentally, with most recent estimates being on the order of
a5 2-4 hours [92].
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Figure 4. The effects of spatial spread on a population’s evolutionary dynamics. (a) Local
movement in 2-dimensional space leads to the generation of genetically homogeneous ‘sectors’.
Figure reproduced from [93]. (b) Intermediate levels of long distance dispersal result in major
reductions in genetic diversity, as described by the ‘embolism effect’. Figure reproduced from [89]. (c)
Mutations can ‘surf” to high frequencies, regardless of whether they are deleterious (left), beneficial
(right), or neutral (not shown). Figure reproduced from [84]. (d) Spatially expanding populations can
select for cooperative phenotypes at the leading edge. Figure reproduced from [94].

as6 A third factor affecting the extent to which genetic diversity will be eroded is how an individual’s
sz reproductive rate depends on nearby population density. For example, theoretical studies have
ss  shown that Allee effects have the potential to maintain genetic diversity in a spatially expanding
a0 system [85,86]. A higher level of genetic diversity is maintained in populations with an Allee
a0 effect because in these cases it is not only the furthest members of a population that contribute to
ann the expanding population. As discussed in the previous section, Allee effects may be at play in
a2 within-host viral populations that require complementation, including influenza.

a73 A fourth factor affecting levels of genetic diversity in spatially expanding systems is the
a7 extent of spatial heterogeneity. Specifically, Wegmann and coauthors showed that environmental
a7s  heterogeneity leads to loss of genetic variation within similar regions and further leads to greater
are  genetic differences between regions [95]. This finding may be applicable to within-host viral
a7 populations that exist across different regions of different cell types. For example, within-host
a7s  regions of cells having predominantly «2,3 versus «2,6 sialic acid receptors might result is less
a7 genetic variation within each region and greater levels of population genetic differentiation between
a0 regions. In fact, this is exactly what was observed when Lakdawala and colleagues examined the
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se1  distribution of viral sequence variants between tissue compartments within ferrets that differ in
a2 receptor distribution [37].

283 Beyond impacts on population-level patterns of genetic diversity, populations that are spatially
«ea expanding are known to be subjected to a phenomenon called “surfing” [84,85,96,97], whereby
ass  genetic variants present on the wavefront of an expanding population may rapidly rise to high
ass  frequencies due to the dominance of genetic drift in the small wavefront populations. With the
sz process of genetic drift (over selection) dominating at the wavefront of an expanding population,
ass  de novo mutations (whether beneficial, deleterious, or neutral) that occur at the right place at the right
a0 time can rise to high frequencies and even fix in populations (Figure 4C). Since, in many systems,
a0 the majority of mutations appear to be deleterious, this surfing phenomenon results in deleterious
w1 Mmutations fixing at considerably higher rates in spatially expanding populations than in populations
sz that are growing in the absence of a spatial dimension [84,98]. As such, these spatially-extended
a3 systems are expected to carry an “expansion load” [99,100], defined as the deleterious mutation
w4 load a population carries that is due to spatial founder effects from small populations at the
a5 wavefront. While there is no evidence yet for within-host viral populations being subject to the
as surfing phenomenon and to expansion loads, one should theoretically expect this to be the case. This
a7 is because most RNA virus mutations are known to be deleterious, with recent experimental findings
ws Pproviding evidence for this specifically for influenza virus [101].

a99 While this surfing phenomenon is also relevant to beneficial mutations, the consequences of
soo  genetic drift dominating at the wavefront results in lower rates of beneficial mutation accumulation in
so1  a spatially expanding population than would be anticipated in population expanding in the absence
sz of a spatial dimension. This is for two reasons: first, beneficial mutations are rare, so, relative
sos to deleterious mutations, de novo mutations are unlikely to be beneficial. Second, if a beneficial
sos Mmutation does arrive in the right place at the right time, it is unlikely for it to be brought to high
sos frequencies through selection because of the dominance of genetic drift at the wavefront. This surfing
sos phenomenon is thus known to slow the rate of adaptation of spatially expanding populations, and
soz could even lead to fixation of deleterious mutations within hosts. Spatial within-host dynamics may
soe therefore provide a mechanism to explain why RNA viruses, including influenza, appear to carry
soo  deleterious mutation loads [102-104].

510 Finally, spatially expanding populations may select for different phenotypes than ones that do
su not have a spatial dimension. This would occur, for example, if individuals residing at the wavefront
siz experience different selection pressures from the ones residing at the interior of the population
sis range. Rather than this being an unlikely case, different selection pressures at different points in
sie  the population range are theoretically expected in many situations. At the wavefront, resources are
sis  relatively abundant, and individuals with a high intrinsic growth rate (“r”) are known to outcompete
sie  others. In contrast, in the interior of a population range, resources are limiting, and individuals
si7 - with more efficient resource use do best (i.e.,, those individuals with higher basic reproduction
sie  numbers, Ry). This difference in » versus R selection pressures has been considered in the context of
s10  infectious diseases, and is at the core of why epidemic pathogens (with abundant host resources) are
s20 expected to evolve to higher virulence compare to endemic pathogens (with scarce resources) [105].
s2 Analogously, one would expect more virulent viruses to be selected for at the wavefront of an
s expanding population, compared to the interior [61], regardless of whether we are considering the
s2s viral population to be expanding within hosts or across the globe. In the context of within-host flu
s22 dynamics, spatial spread may therefore select for phenotypes that kill infected cells more rapidly but
s2s  have higher rates of viral production. Another within-host phenotype that may be at least partly
s26 under viral genetic control is the viral dispersal kernel. Given theoretical findings that the evolution
s27 of long-distance dispersal is favored during an expansion process [106], perhaps one might even
s2e  expect influenza virus to evolve a preference for cell entry via budding over cell entry via TNTs.
s20 Finally, a recent study intriguingly found that cooperative phenotypes have a selective advantage
s along the wavefront of expanding populations [94] (Figure 4D). This theoretical finding is particularly

"
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s relevant to recent work examining the evolution of viral cooperation, collective interactions, and more
ss2  generally, the budding research area of “sociovirology” [107].

533 In sum, the spatial aspect of within-host viral spread will generally reduce viral genetic diversity,
s« slow the rate of viral adaptation, more easily enable the fixation of deleterious mutations, and result in
s3s  the evolution of viral phenotypes that may be advantageous for only a subset of the viral population.

s3s  Discussion

537 We have reviewed current understanding and open questions regarding patterns and
sss mechanisms of within-host viral spread from both empirical and computational perspectives. Our
s30  ability to visualize within-host spatial structure has improved greatly thanks to advances in imaging
se0 techniques, particularly the use of fluorescent reporters and luciferase expressing viruses. The
sa1 recently discovered ability of viruses to spread directly from cell to cell via ‘tunneling nanotubes’ is
se2  an exciting development, but the feasibility and frequency of long-range dispersal remains unknown.
ses  Spatially explicit and non-spatial models have been applied to viral data; non-spatial models are far
saa  more common, and allow one to interpret data on viral load kinetics. However, ignoring spatial
ses  structure in the infection processes can lead to biased or incorrect estimates of parameter values.
ss Non-spatial models are also less useful in understanding the roles that viral infection processes
sez such as cellular multiplicity of infection and viral reassortment play in regulating viral dynamics.
sse  They are also less relevant to understanding the factors that govern viral population dynamics and
se0 evolutionary dynamics, such as patterns of genetic diversity and viral mutation loads. Further,
sso  ignoring spatial heterogeneity and its consequence on viral population structure may prevent us
ss1 from interpreting experimental data beyond viral load measurements and make result in imprecise
ss2  predictions about the impact of therapeutic interventions.

553 We then turned to the ecological and evolutionary literature to provide theoretical insight
sse into the population dynamics and genetics of spatial within-host viral spread. Ecological and
sss  evolutionary studies indicate that the within-host spread of a virus should be strongly influenced
sss Dy its own dispersal patterns and life history characteristics, as well as the spatial heterogeneity
ss7 in the host environment. The ecology literature has also given us insight into critical gaps in
sss our knowledge about within-host viral spread. Specifically, we need more empirical data on viral
sso density-dependence and the extent to which Allee effects are present in the system. Studies to
seo determine the distance that viruses disperse would also greatly improve our understanding of what
se1 regulates the rate of within-host spread. Long-range dispersal greatly increases the speed of invasion,
se2 even if that dispersal is rare; but the extent to which long-range dispersal occurs in flu is currently
ses  unknown. The evolutionary literature has provided us with theoretical expectations for how the
see  genetics of the viral population will change over time in a flu infection, and the effect that space may
ses have on the ability of the viral population to adapt. These predictions should be tested empirically,
ses Using available imaging and sequencing techniques.

s67 Perhaps most importantly, the ecology and evolution literature has the potential to inform the
ses development of control strategies. Current control strategies focus on treatment and prevention of
ses infection using drug therapies and vaccination. These interventions introduce antibodies or antivirals
s into the system, both of which are functionally similar to predators from the standpoint of a virus
s in a host. They can be very effective under the right circumstances, but vaccines are notoriously
sz difficult to formulate due to the rapid evolution of seasonal flu strains, and antiviral resistance is not
s7s uncommon. In order to control an infection, the host must be able to contain the virus and prevent
s7a  its ongoing spread. In vivo, this seems to be possible because the immune system responds quickly
s7s  to the location of infection, and the virus ultimately runs out of local susceptible cells to infect. Early
sz intervention is likely to be most effective, not only because there are fewer total virions and infected
s77  cells, but because influenza may be subject to strong Allee effects. Control efforts should be focused
s7e on reducing the maximum intrinsic growth rate of a population, not the transient initial rate [69].
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579 Studies of spatial heterogeneity suggest that introducing a barrier zone can be a very effective
sso control strategy [77]. In wildlife populations, an artificial barrier has been successfully introduced
ser  at times to prevent the spread of rabies, by depositing vaccine-laden food items [108]. While it is
se2 likely not possible to introduce a physical barrier within the host’s respiratory tract, the concept of a
ses  barrier is somewhat analogous to the local action of the immune system to “immunize” susceptible
ses  cells that are close to the site of infection. Different cell types and tissues in the respiratory tract may
ses  also function as a kind of barrier, because the virus is not equally able to infect each of these.

586 Finally, influenza infection could potentially be controlled by introducing defective interfering
se7  particles (DIPs) into the system. DIPs are naturally occurring during infections, and they essentially
ses  parasitize wild-type virus, reducing the amount of infectious offspring that is produced from cells
seo coinfected with DIPs and wild-type virus. The ability of DIPs to interfere with wild-type virus
seo depends on the local cellular MOI, because in the absence of co-infection with a wild-type (“helper”)
so1  virus, DIPs cannot replicate [109]. Studies in both mice and ferrets have shown that DIPs can modify
so2 within-host influenza virus dynamics, decreasing peak viral loads and delaying its timing [110].
sos  Further, the administration of DIPs can reduce influenza symptoms and virulence [110].

594 While we have focused here on influenza virus, insight from the ecological and evolutionary
sos literature is also applicable to a broad range of other viral infections. Accounting for the ecological
sos and evolutionary dynamics of within-host spatial spread will deepen our understanding of the
sez behavior and outcomes of a wide variety of viral infections and potentially lead to new conceptual
ses advances in infection control strategies.
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