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Abstract: The spread of viral pathogens both between and within hosts is inherently a spatial 
process. While the spatial aspects of viral spread at the epidemiological level have been increasingly 
well characterized, the spatial aspects of viral spread within infected hosts are still understudied. 
Recent experimental studies, however, have started to shed more light on the mechanisms and 
spatial dynamics of viral spread within hosts. Here, we review these experimental studies as 
well as the limited number of computational modeling efforts that have begun to integrate spatial 
considerations for understanding within-host viral spread. We limit our review to influenza 
virus to highlight key mechanisms affecting spatial aspects of viral spread for pathogens of the 
respiratory tract. There is considerable empirical evidence for highly spatial within-host spread of 
influenza virus, yet few computational modeling studies that shed light on possible factors that 
structure the dynamics of this spatial spread. In existing modeling studies, there is also a striking 
absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral 
populations. To mitigate this, we turn to the extensive ecological and evolutionary literature to 
provide informed theoretical expectations for what viral and host factors may impact the spatial 
patterns of within-host viral dynamics and for how spatial spread will affect the genetic composition 
of within-host viral populations. We end by discussing current knowledge gaps related to the 
spatial component of within-host influenza virus spread and the potential for within-host spatial 
considerations to inform the development of disease control strategies.
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1. Introduction20

More often than not, viral populations are spatially structured. At the between-host level, this21

spatial structure is evident for endemic pathogens from observed patterns of genetic differences22

across space, such as those observed for measles virus at large geographic scales [1] and dengue virus23

even at intracity scales [2]. In the case of epidemic pathogens, both surveillance data and viral genetic24

data often point to the occurrence of spatial spread, for example, in seasonal epidemics of influenza25

viruses in the U.S. [3,4]. In recent years, the processes driving these spatial dynamics have been26

increasingly well characterized, and include mobility patterns [3,5,6] and activity patterns of hosts27

and vectors [7–9], among other factors. Characterizing these spatial dynamics and understanding the28

factors driving them are important for anticipating local timing of disease incidence and for guiding29

more informed control strategies.30

At the within-host level, many viral populations also exhibit spatial structure. For chronic viral31

infections such as cytomegalovirus and SIV/HIV, evidence for this structure comes from genetic32
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compartmentalization [10–14]. In acute or slowly progressing chronic infections, spatial spread33

has been documented through spatially-explicit ‘surveys’ of viral populations, for example for34

influenza [15] and hepatitis C virus [16,17]. The specific processes driving these spatial dynamics35

have also been increasingly well characterized at the within-host level, through empirical studies36

focused on elucidating factors that influence viral dissemination and cell/tissue tropism [18–20]. A37

better understanding of the spatial patterns of viral spread within infected hosts is important for38

anticipating the timing of infection in specific tissues and for guiding more informed control strategies39

at the individual level.40

From an ecological perspective, populations are regulated by what are known as bottom-up41

and top-down processes [21]. Bottom-up processes determine the extent of resources available to42

a population, while top-down processes primarily determine the death rates of individuals in a43

population. One can also adopt this perspective to examine the ecology of within-host viral infections44

through bottom-up processes such as the availability of susceptible target cells and top-down45

processes such as viral clearance by immune cells. For all populations, including viruses, these46

bottom-up and top-down processes occur at characteristic spatial scales that determine the spatial47

dynamics of organismal spread and further impact their evolutionary dynamics.48

Here, we first review patterns and mechanisms of within-host viral spread from this49

bottom-up/top-down perspective. We then turn to the computational modeling literature to review50

insights gained from modeling studies as to how bottom-up and top-down processes, acting at51

characteristic spatial scales, can drive patterns of within-host viral spread. We limit our reviews52

of the empirical and modeling studies to human influenza A viruses (IAVs) as a representative and53

well-studied acute infection of the respiratory tract. For this virus, we surprisingly find only a very54

limited number of computational studies that explicitly consider the causes and consequences of55

spatial within-host spread. This is worrisome, given the extensive number of studies in the ecological56

and evolutionary literature that underscore the importance of space in regulating the dynamics of57

populations and in shaping their genetic composition. We thus then turn to this more extensive58

theoretical literature to shed light on what characteristics of viral populations are likely to impact59

patterns of spatial viral spread and the evolutionary consequences of this spread. While much of60

our review focuses on influenza viruses, these theoretical insights should be applicable to other viral61

systems undergoing spatial within-host spread.62

2. Experimental studies point towards spatial within-host influenza virus spread63

The within-host spatial dynamics of influenza virus infection have been increasingly well64

characterized over the last decade. Early work relied on immunohistochemistry and in situ65

hybridization approaches to determine the extent of spatial heterogeneity in viral presence/absence66

across infected host tissues. For example, by examining lung tissue blocks from several human67

patients who had fatal influenza infections, Guarner and colleagues found evidence for focal68

influenza infection in the epithelium of large bronchi in a subset of patients [22]. Interestingly, they69

found that viral antigen was only found within a fraction of the lung tissue blocks they examined,70

thus providing one of the first lines of evidence that influenza infections have a spatial dimension.71

While this study may have been biased based on the exclusive focus on fatal influenza infections,72

bronchoscopy of patients with nonfatal influenza infections also indicated that influenza virus spread73

was highly spatial, with significant variation in the degrees of inflammation and epithelial damage74

between bronchi within individual hosts [23]. Immunohistochemistry-based analysis of infected75

ferrets of influenza revealed that different subtypes of influenza virus all exhibited spatial viral76

spread, with notable differences in the spatial (and temporal) signatures of viral infection across the77

subtypes examined [15].78

Recent advances in the development of recombinant viruses expressing fluorescent reporters79

have greatly advanced our ability to understand the spatial aspects of within-host influenza80

dynamics. Manicassamy et al. used a GFP-expressing recombinant virus to examine the localization81
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and cellular tropism of the virus in mouse lungs [24]. Imaging of excised lungs four days post82

infection showed focal areas of viral infection (Figure 1A), similar to what was observed in human83

tissue samples. Fukuyama et al. engineered four distinct influenza viruses that stably encode84

different fluorescent reporter proteins [25]. By infecting mice with a mixture of these four ‘Color-flu’85

viruses and tracking them independently, they observed clusters of the same fluorescent color86

within bronchial epithelial cells at 2 days post-infection. By day five post-infection, infected87

alveolar cells showed expression of single fluorescent proteins. Both of these observations point88

to local (and possibly occasional long-distance) dispersal of virions. The authors also found that89

approximately 20% of bronchial epithelial cells were infected with more than one Color-flu virus90

at day 2 post-infection, suggesting the frequent occurrence of cellular coinfection during influenza91

infection. The frequency of coinfection may have significant consequences for the spatial dynamics92

of infection (more below).93

Figure 1. Experimental findings of within-host influenza virus spread. (a) Influenza virus spread
visualized through bioluminescent imaging. Figure shows fluorescence from excised lungs of infected
mice. Figure reproduced from [24]. (b) The genome and proteins of influenza virus can be transferred
between cells via intercellular pathways called tunneling nanotubes. Figure reproduced from [26].

The development of viruses that stably express luciferase has allowed the visualization of94

longitudinal infection dynamics and spatial distribution within live hosts [27–31]. In mice, multiple95

studies have demonstrated the existence of clear viral foci in the lungs that spread in spatial extent96

before recovery from viral infection [27–29]. Subsequent studies have demonstrated the utility of97

these luciferase reporter viruses in tracking the spatio-temporal dynamics of infection in ferrets and98

in the context of pre-existing immunity [30,31].99

Altogether, there is an increasing body of experimental work in systems ranging from mice to100

humans that indicates that influenza infections are highly spatially structured. Along with this, recent101

studies are also providing a better understanding of the specific mechanisms that may be responsible102

for the establishment of this spatial structure. One clear factor is the spatial heterogeneity of cells with103

certain receptor distributions that mediate efficient viral attachment and therewith modulate cellular104

tropism. To elaborate, IAV primarily binds host cells through interactions with the galactose-sialic105

acid (SA) linkages present on the termini of complex glycan structures. The SA structures used by106

influenza viruses are structurally diverse, but are typically classified as either α2,3 or α2,6 based on107

the orientation of the bond between the galactose and sialic acid moieties [32]. The specificity of108

HA for α2,3 or α2,6 linkages is thought be a key determinant of species and cellular tropism, with109

avian strains primarily binding α2,3, and human strains binding α2,6 [32]. Multiple studies have110

demonstrated a correlation between the presence of α2,6 linked SA receptors on the cell surface111

and virion binding and infection in human airway and nasal epithelial cultures, as well as within112

sections of human respiratory tissue [20,33–36]. Consistent with this, deep sequencing different113

anatomical sub-compartments within the ferret respiratory tract revealed clear compartmentalization114

of viral variants based on the distribution of receptor structures [37]. Importantly, the ubiquity of115
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SA receptors throughout the mammalian respiratory tract lumen may limit the spatial spread of116

virions. Release and efficient spread of newly produced virions depends upon the ability of the117

viral neuraminidase protein (NA) to efficiently cleave SA receptors from the surface of the infected118

cell [38,39]. In addition, the airway lumen contains an abundance of heavily sialylated host factors119

such as pentraxins and mucins that can bind virions and restrict their free diffusion [40,41]. Thus,120

both cellular and cell-free SA may act to restrict or structure the spatial spread of the virus by limiting121

free diffusion. This effect may be counteracted to varying degrees by the activity of the viral NA,122

which can differ between different viral strains [42].123

Recent studies have suggested that influenza virus may also be able to spread spatially via an124

entirely separate mechanism that does not depend on diffusion of extracellular virions. Specifically,125

Roberts et al. showed that viral proteins can spread between adjacent cells via intercellular126

actin pathways (“tunneling nanotubes”) without going through the standard budding and release127

process [43]. These proteins include the viral replicase machinery (nucleoprotein and polymerase128

proteins), as well as NS1. Subsequently, Kumar and colleagues showed that the genomes of influenza129

viruses can also spread between cells via these nanotubes (Figure 1B) [26].130

Thus, influenza viruses may use at least two modes of transmission between cells: (1) the131

textbook process of extracellular spread by virions, and (2) the intercellular spread of viral genomes132

and proteins between neighboring cells. Infection therefore likely occurs at two characteristic spatial133

scales: a scale with the possibility of long-distance dispersal (with cell-free virions having a small134

possibility to infect cells at appreciable distances from the cells from which they budded) and a scale135

that involves highly localized spread (with intercellular pathways having the ability to form only136

between adjacent target cells). To our knowledge, the actual distances traveled by cell-free virions137

have not been measured experimentally, but given the spread of cell-free virions between hosts, it138

is likely that cell-free virions also have some degree of long-distance dispersal capabilities within a139

host. The relative importance of these two modes of spread may differ between infected hosts. For140

example, hosts with pre-existing anti-influenza immunity may clear cell-free virions more rapidly141

than naïve hosts, resulting in a more dominant role for intercellular viral spread in these individuals.142

These two modes of viral spread can be considered bottom-up processes in that they impact143

the rate of viral spread via access to the resources necessary for replication. The spatial aspects of144

top-down processes that control viral spread, such as the activities of immune cells and cytokines in145

neutralizing virions, clearing infected cells, and rendering cells refractory to infection, have not been146

extensively studied to our knowledge. Questions that need to be addressed are thus how locally147

the immune system acts and the degree of spatial heterogeneity in the immune response across148

the respiratory tract. Further empirical work is needed to understand the potential for top-down149

regulation of viruses. However, because the respiratory tract is not a highly immune-privileged150

site, and numerous soluble components of the anti-viral immune response such as antibodies and151

interferon are thought to act at the tissue-wide or systemic level, we expect the spatial dynamics of152

influenza virus spread to be regulated more strongly by the bottom-up process of local target cell153

availability than by the top-down process of immune-mediated viral clearance.154

In sum, the experimental findings we reviewed here indicate that human influenza viruses155

exhibit strong patterns of within-host spatial spread, driven predominantly by local movement of156

cell-free virions and the intercellular spread of viral genomes and proteins. In the next section, we157

review computational models that address the role that certain viral and host factors may play in158

shaping the spatial aspect of within-host influenza virus spread.159

3. Computational models of spatial within-host influenza virus spread160

The overwhelming majority of computational within-host influenza models do not incorporate161

a spatial aspect to viral spread. Despite this, they have provided insights into the processes162

regulating within-host virus dynamics. These dynamics are typically characterized by exponential163

growth in viral load until approximately 2-3 days post-infection, with peak viral titers measured at164
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approximately 106 TCID50/mL [44]. Virus generally becomes undetectable within 5-6 days following165

infection [45] . The decline in viral load is often biphasic, with an initial rapid decline, followed by a166

longer, slower decline in viral load [46,47]. Figure 2A shows these characteristic viral load dynamics167

in a human subject experimentally infected with the H1N1 influenza A subtype.168

Several non-spatial models have been able to reproduce these characteristic infection dynamics.169

The most basic versions of these models consider only target cells and virus, yet can reproduce170

the exponential growth of the viral population within a host, followed by an exponential viral171

decline once target cells have been depleted (Figure 2A) [44]. These models, however, fail to172

reproduce observed biphasic viral declines. More complex models have incorporated the host173

response, typically by considering the role of interferon and cells of the innate and adaptive immune174

response [46–49]. These models have been able to reproduce many (and in some cases, all observed)175

patterns of viral growth and decline without unrealistic target cell depletion. The importance of the176

host immune response in regulating within-host influenza dynamics, identified by these non-spatial177

models, lay the groundwork for more complex models that explicitly account for spatial structure.178

Figure 2. (a) Fit of a non-spatial, target-cell limited within-host influenza model to viral load data
from a human subject experimentally infected with influenza A subtype H1N1. The data are shown as
black points. The black lines show model fits of viral load data. The blue lines show model-predicted
declines in the number of target cells. Solid lines show the fits of the basic model; dashed lines
show the fits of a more complex model with an eclipse phase before infected cells produce virus.
Figure is reproduced from [44]. (b) Cellular automata model of within-host influenza infection
under assumptions of local cell regeneration and localized recruitment of immune cells. Simulations
reproduce the appearance of infected foci. Figure reproduced from [50].

Incorporating spatial structure into within-host disease models can have important179

consequences. Most notably, parameter estimates inferred for spatial within-host models are often180

biologically more reasonable than those inferred for non-spatial models. This has been shown for181

models of influenza virus [51], as well for models of other pathogens [52]. This finding indicates that182

spatial aspects of viral spread might inappropriately bias inferred parameter values of non-spatial183

models. Spatial models also lead to qualitative predictions of viral dynamics that may be more184

biologically reasonable [53]. For example, under certain parameter regimes, one might expect a185

viral infection to become chronic or for viral load to equilibrate steadily; spatial models for chronic186

infections have been able to better reproduce these types of dynamics than non-spatial models, which187

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2018                   doi:10.20944/preprints201810.0232.v1

Peer-reviewed version available at Viruses 2018, 10, 627; doi:10.3390/v10110627

http://dx.doi.org/10.20944/preprints201810.0232.v1
http://dx.doi.org/10.3390/v10110627


6 of 20

have a greater tendency for viral infections to be stochastically cleared or to exhibit dampening188

oscillatory dynamics [53].189

For influenza virus, several spatially explicit within-host models have been developed in the last190

10-15 years [54–56]. These models all allow virus to spread locally from infected cells to nearby191

susceptible cells. In some of these models, other processes, such as host cell regeneration and192

immune cell recruitment, are also spatially structured. The most common approach to explicitly193

model spatial aspects of within-host influenza virus spread has been through the implementation of194

agent-based models. These generally consist of a 2-dimensional grid of cells and a defined set of195

rules that determine viral kinetics and cell death kinetics, among other kinetics such as those of the196

host immune response. Beauchemin and colleagues showed that an agent-based model of this sort197

could successfully reproduce certain features of acute influenza infections, including the timing of198

peak viral load and the 5-7 day duration of infection [54] . However, in their simulations, the number199

of infected cells appears to grow linearly until viral load peaks; this stands in contrast to observed200

patterns of exponential viral growth over the first few days of influenza infection. More work needs to201

be done to determine whether and under what scenarios one would expect exponential viral growth202

in spatially structured influenza infections.203

In a second study, Beauchemin considered the dynamical effect of factors occurring at different204

spatial scales [50]. Specifically, this study considered the regeneration dynamics of epithelial cells205

to occur either globally or locally. Which of these assumptions was adopted clearly would affect206

resource availability for the virus, and thereby shed light on the importance of this bottom-up207

process’s spatial scale in shaping the spatial distribution of the viral population. The study further208

considered the recruitment dynamics of immune cells to occur either at random or preferentially209

at infection sites. Considering these alternative assumptions allowed Beauchemin to evaluate the210

importance of spatial scale in the immune response’s top-down control of the viral population.211

Finally, this study considered different possible dispersal distances for the virus. Overall, the study212

found that local cell regeneration and short viral dispersal distances reproduced observed empirical213

patterns, including foci of infected cells, better than other combinations (Figure 2B). Whether214

recruitment of immune cells was at random or localized at infected sites did not have an appreciable215

effect as long as cell regeneration was localized. Better experimental data are still needed to quantify216

cellular regeneration, and whether it should be expected to impact influenza virus dynamics over a217

5-6 day period.218

Following this work, Levin et al. assessed in more detail the importance of the host immune219

response in regulating spatial within-host influenza virus spread [57]. In this study, the authors220

showed that T-cells were unable to control the spread of influenza viruses with high replication rates.221

This inability of the host immune response to control the viral infection was due to delays in T-cell222

migration to the infection site. The results of this spatial model sheds light on how the localized223

interaction between the immune system and the virus could result in some viral strains, but not224

others, being able to evade top-down control by the host immune response.225

Despite the increase in their use, agent-based models are still computationally intensive and226

frequently do not allow for effective interfacing with data or analytical insight. Fortunately, several227

alternative approaches exist for modeling spatial aspects of within-host viral spread that do not rely228

on agent-based model simulations. One such approach is to compartmentalize the respiratory tract229

into several distinct ‘patches’, with low levels of viral transmission between one another. Within230

a patch, virus is assumed to have equal access to all cells and is similarly targeted equally by all231

host immune responses. A study by Reperant et al. provides an example of this type of approach,232

in which viral dynamics are considered across three tissue compartments: the trachea/bronchi,233

the bronchioles, and the alveoli [58]. These compartments captured spatial heterogeneity in host234

cell types across tissues by differing in their initial number of susceptible target cells, in their235

viral clearance rates, and in their immunoglobulin distributions. By simulating this multi-patch236

compartmental model for a number of different influenza A subtypes, the authors found that these237
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tissue differences lead to strain-specific variation in viral localization along the respiratory tract, and238

therewith differences in the onward transmission potential of different influenza subtypes. A second239

alternative approach makes use of partial differential equations (PDEs), which can deterministically240

simulate the dynamics of a viral population over both space and time. With PDEs, certain processes241

can occur locally while others can occur over more extensive spatial scales. For within-host influenza242

dynamics, for example, virus production, infection and death of cells, and immune activation can all243

occur locally, while viruses, cytokines, and certain cells can diffuse or migrate over more extensive244

ranges across space.245

A third alternative approach to agent-based models is to consider space implicitly, rather than246

explicitly. This can be done by including saturating (instead of mass-action) terms in non-spatial247

mathematical within-host models [49]. While mass-action terms are often used in within-host models248

to describe virus infection of target cells, using a saturating term (such as a Michaelis-Menton term) to249

describe the infection process would allow for deviation from a well-mixed assumption. The rationale250

for using such a term is that when a virus is produced from infected cells, it cannot reach all target cells251

in a host. Instead, there are only a small number of target cells that are available to the virus to infect.252

Thus, the rate at which susceptible cells become infected can rapidly saturate even while many target253

cells remain susceptible. A final approach for modeling space implicitly is to allow for overdispersion254

of virus among target cells, by assuming, for example, a negative binomial distribution for viral255

particles across host cells rather than a Poisson distribution [59]. With overdispersion, a small number256

of target cells are infected with a large number of virions, while a large number of target cells might257

still be uninfected. Overdispersion can thus capture expected viral distribution patterns under the258

assumption of spatial viral spread.259

While spatial within-host models have helped us understand how influenza virus infections260

spread within a host, the current literature has not addressed many open questions that seem261

particularly important in the context of spatial viral spread. One question is how the eclipse phase262

of infected cells impacts viral population growth and spatial spread dynamics. A second question is263

how cellular coinfection impacts the rate of viral spread. In a spatially structured infection, we expect264

substantially more cellular coinfection than in a non-spatial setting, where virus is spread more evenly265

over an entire population of cells. As such, the effect that cellular coinfection has on the rate of viral266

production will be critical to determining how quickly the viral population will spatially expand.267

Higher levels of cellular coinfection in a spatially structured setting will also impact viral reassortment268

rates [60], and thereby also impact the adaptive potential of influenza viruses. Intriguingly, these269

questions, among others, have already been addressed, albeit not in the specific context of within-host270

viral dynamics. Indeed, there is a rich ecological literature that can be mined to inform us of answers271

to these questions, provided that we make effective analogies between processes identified in this272

literature and those acting on within-host viral populations.273

4. Ecological factors driving patterns of spatial spread274

One of the most straightforward questions we can ask about within-host disease spread is275

how fast it will progress. On this question, the ecological literature has shown that spatially276

unstructured populations grow faster than their spatially structured counterparts when starting from277

small population sizes [61,62]. When population sizes are small, spatially unstructured populations278

are expected to grow exponentially, whereas spatially structured populations are expected to grow279

slower than exponentially (that is, sub-exponentially). This reduced growth rate is due to the lower280

relative availability of resources in spatially structured populations: resources are scarce in the centers281

of expanding populations, and resources are only abundant for those individuals at the very front of282

the expanding population wave. In the context of within-host viral spread, this means that infections283

that are highly spatially structured have constrained growth rates relative to those infections that are284

more spatially unstructured. This expectation is consistent with Beauchemin’s finding that a decrease285
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in the rate of influenza virus diffusion reduces the growth rate of the virus and its overall population286

size [50].287

While spatial structure is known to slow overall population growth, the ecological literature288

has also delved more specifically into what factors impact the rate of spatial population spread. In289

general, a population expanding outward from its point of origin is theoretically expected to spread290

as a “traveling wave”, that is, at a constant rate and with a wavefront shape that is maintained291

over time [63,64]. This traveling wave dynamic is expected when a population is expanding in a292

single dimension along a line (Figure 3A) or in 2-dimensional space (Figure 3B), the latter of which293

would be more relevant for the within-host spread of influenza virus populations. If a population is294

expanding in a single dimension, the amount of occupied area is expected to grow linearly in time295

[64]. Alternatively, if a population is expanding in two dimensions, the square root of occupied area296

is expected to grow linearly in time [64] (Figure 3C).297

Figure 3. Patterns and dynamics of spatial spread from the ecological literature. (a) Populations
expand as a “traveling wave” in a single spatial dimension. (b) Populations expand as a “traveling
wave” in two-dimensional space. Figures (a) and (b) reproduced from [63]. (c) When populations
expand in two spatial dimensions, the square root of the area that is inhabited is expected to
grow linearly in time. Figure reproduced from [64]. (d) Types of density-dependence. Negative
density-dependence occurs when per capita growth rates decrease with increases in local population
densities. Allee effects occurs when per capita growth rates first increase, and then decrease, with
increases in local population densities. Figure reproduced from [65].

One important factor that affects the velocity of the traveling wave is the type of298

“density-dependence” that the population is subject to, where density-dependence refers to the299

relationship between local population density and individual (per capita) growth rates. Populations300

are said to undergo density-independent growth when an individual’s growth rate is not influenced301

by local population density. Negative density-dependence is said to occur when an individual’s302

growth rate decreases with increases in local population density, such that the maximum per capita303

growth rate occurs at small population sizes (Figure 3D). Positive density-dependence is said to occur304

when an individual’s growth rate increases with increases in local population density. Systems can305

be subject to multiple forms of density-dependence. For example, in populations with an Allee effect,306

there is a transition from positive to negative density-dependence with increases in local population307

density (Figure 3D). In populations that are strictly subject to negative density-dependence, the308

(asymptotic) velocity of the traveling wave is given by
√

4 f ‘(u)D, where D is the dispersal rate,309

measured in units of dispersal distance 2/time, and f ‘(u) is the individual growth rate at low310

population density [63]. In populations with an Allee effect, the (asymptotic) velocity of the traveling311

wave is lower than in similar populations without an Allee effect [66–68]. Thus, the type of312

density-dependence a population experiences will impact the velocity of its spatial spread.313
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While a spatially-expanding population is generally expected to exhibit traveling wave314

dynamics, it may initially exhibit transient dynamics that differ from its asymptotic, long-term315

behavior. In many cases , these transient dynamics are expected to have a slower velocity than316

those of the asymptotic traveling wave [63,69,70], with the rate of spread expected to accelerate317

once the local population has reached a threshold density [71]. This expected increase in the rate of318

spatial population spread is an important theoretical finding that, if ignored, could lead to dramatic319

underestimation of the rate at which a population will ultimately spread and the total distance that it320

will ultimately travel. In the case of an Allee effect, some population expansions may even fail due to321

local populations failing to exceed certain threshold densities [68].322

Unfortunately, little is known about density-dependence in viral populations specifically. Within323

a host, the characterization of density-dependence in a viral population would require determining324

how the number of viral progeny from a given intracellular viral particle depends on the multiplicity325

of infection of the cell the viral particle resides in. For some viral pathogens, host cell machinery326

may be the primary limiting factor. In this case, the population would be strictly subject to negative327

density-dependence. In influenza, there is some indication that an Allee effect may be at play. This328

expectation derives from a study that showed that over 90% of the time, singularly infected cells329

fail to produce viral progeny [72]. This failure to produce viral progeny stems from the failure of330

one or more of influenza’s eight gene segments to be delivered to the nucleus. The existence of331

these “semi-infectious particles” [73] that can produce viral progeny through complementation can332

therefore be thought of as bringing about positive density-dependence at low cellular multiplicities333

of infection (MOIs). With host cell machinery ultimately limiting viral production at high cellular334

MOIs, IAV growth may therefore be characterized by an Allee effect. As such, we may expect some335

infections to fail due to threshold population sizes not being reached, and we may expect the rate of336

viral spread to be slower for strains of IAV that have higher proportions of semi-infectious particles.337

A second ecological factor that is known to impact the rate of spatial population spread is the338

frequency of long-distance dispersal events [74–76]. The primary ecological effect of long-distance339

dispersal events is an increase in the rate at which populations expand spatially [77]. This increase340

in the rate of spatial spread further leads to an overall increase in population growth rates because341

dispersed individuals have access to more resources than they would otherwise have had. In a study342

that compared two different modes of range expansion (exclusively short-range diffusion versus a343

combination of short-range diffusion and long-distance dispersal), populations were found to invade344

more quickly when long-distance dispersal occurred, even if these events occurred only rarely [75].345

Increases in the rate of spatial population spread with higher frequencies of long-distance dispersal346

events is consistent with the findings that asymptotic velocity of a traveling wave increases with the347

dispersal rate D (see equation above).348

Given the importance of long-distance dispersal events on the dynamics of spatially structured349

populations, knowledge of how frequently virions disperse at these long distances within infected350

hosts appears critical. To the best of our knowledge, the frequencies of these events have not351

been quantified, either in vivo or in vitro. Clearly, transmission of influenza particles between hosts352

constitutes a long-distance dispersal event. While we know that influenza virions generally infect353

nearby cells, and can even be transmitted between cells directly via intercellular actin pathways, the354

extent to which virions travel long distances within a host is unknown. Intriguingly, the observed355

exponential growth of the viral population for the first 2-3 days following infection may be an356

indication that long-distance within-host dispersal occurs; in its absence, we would expect a pattern of357

subexponential viral growth. As mentioned above, long-distance dispersal mitigates to some extent358

the growth-slowing depletion of local resource (target cells, in the case of viruses), and thereby brings359

the rate of viral population growth closer to an exponential form. The frequency of long-distance360

viral dispersal in IAV infections should be investigated further, given the evidence in the ecological361

literature for the strong influence that dispersal rates have on rates of population spread.362
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Spatial heterogeneity is a third key factor that can impact the rate of spatial population spread.363

Spatially heterogeneous environments might be caused by irregularities in the landscape such as364

unevenly distributed resources or barrier zones. While we normally expect populations to expand365

through space as a traveling wave, there is evidence that spatial heterogeneity can result in much366

more complex patterns. For example, Keeling and colleagues showed that heterogeneity across the367

landscape in resource distribution and quality helped to explain why a disease outbreak traveled368

irregularly and was difficult to predict [77]. Another important example can be found in a study by369

Sharov and Liebhold, who used empirical data and a spatially heterogeneous model to show that a370

single “barrier zone” could greatly reduce that rate of population spread [78]. Similar results have371

been found in other studies on the importance of barrier zones, which can serve to reduce the rate of372

spatial expansion or even halt it entirely [79].373

These effects of spatial heterogeneity are an important consideration for within-host viral spread.374

We know that flu infections occur in a spatially heterogeneous environment. Across the length of the375

respiratory tract, the ‘landscape’ is heterogeneous in terms of cell densities and receptor structures.376

Progressing from the upper to the lower respiratory tract, we see an increase in the number of377

α2,3 SA binding receptors relative to α2,6 receptors, meaning there are fewer appropriate target378

cells for human influenza viruses to bind to [80,81]. This change in resource distribution could379

affect the pattern and rate of viral spread, helping to explain why many human influenza infections380

are confined to the upper respiratory tract. Furthermore, we can expect that within-host patterns381

of immune response would also add heterogeneity to the environment, in the form of interferon382

diffusing as it is released from infected cells and immune cells moving through the system. This is383

an active area of study, and recent advances in within-host imaging techniques will no doubt greatly384

advance our understanding of within-host spatial heterogeneity and its effects on viral spread.385

Finally, the presence of other species can strongly affect the ability of a species to invade.386

Competitors can act to reduce the availability of resources or alter the environment in other ways387

that make it more difficult for a species to disperse and survive. Unsurprisingly, most models388

suggest that the presence of a competitor will act to slow down the rate of spatial spread [82]. The389

competitor can still have this effect even if it is less fit than the focal species. This is especially390

true if the competitor is already established in the new location before the focal species arrives [76],391

but this is not a requirement. Similarly, predators can also slow down the rate at which a species392

can invade a new territory, and, depending on their distribution in the landscape and their time of393

release, they may even make it such that the invasion dynamics of the prey species can no longer be394

characterized by a traveling wave [63]. In the context of influenza, while the virus may not explicitly395

be subject to interspecific interactions, we could perhaps think of components of the immune response396

as either competitors or predators. In particular, exposure to interferon-α is known to make cells397

refractory to viral infection, thereby reducing the number of susceptible target cells available to a398

virus. Interferon-α could therefore potentially be considered as an asymmetrical competitor of IAV399

within a host. The depletion of susceptible target cells by interferon-α would act to slow down400

the rate of viral spread within a host. The cellular and humoral immune responses of hosts could401

instead be thought of predators of the within-host IAV population, by neutralizing free virus or402

killing infected cells. Viruses infecting hosts with pre-existing immunity would thereby experience403

top-down, predator-like control from the immune system. This dynamic would lead to a slower rate404

of viral spatial spread, and potentially the abrogation of a traveling wave form.405

In sum, our understanding of ecological dynamics can help us to better understand within-host406

viral dynamics, and to fill in some of the gaps in our knowledge about factors that may impact rates407

of viral spread. To consider how these spatial aspects of viral spread will in turn impact the genetic408

structure of the viral population, we next turn to the evolutionary literature.409
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5. The consequences of spatial spread on population evolution410

The evolutionary literature provides insight into how spatial spread impacts patterns of411

population genetic diversity, how it impacts the processes of purifying and positive selection,412

and how spatially-distinct selection pressures may shape population phenotypes. Here, given the413

intrinsically spatial aspect of influenza virus spread within hosts, we review this literature and again414

make ties to observations from the flu field where possible.415

An important effect of spatial population expansion is a significant reduction in population416

genetic diversity. This effect is one of the more robust effects of spatial spread, with a large number417

of studies showing that genetic diversity is rapidly eroded when population expansion occurs418

locally, as with a range expansion [83–87]. In the case of spatial expansion in two dimensions, this419

reduction of genetic diversity from stochastic founder effects results in sectors that are genetically420

homogeneous [85] (Figure 4A). Intriguingly, these patterns are consistent with a recent analysis of421

within-host viral populations in individuals experiencing acute influenza infections [88]. Specifically,422

McCrone and colleagues found that stochastic effects dominated in the structuring of the within-host423

flu populations, and that, despite high viral titers, only 57% of single nucleotide variants from an424

early sample were still present in a later sample from the same individual when samples were taken425

one or more days apart. These results are consistent with the phenomenon of spatial spread, where426

rapid drops in standing genetic variation would be expected further into the range expansion due to427

genetic drift at the wavefront. Rapid losses of genetic diversity were also evident in a mouse model for428

influenza infection, where the authors found, using four distinct colors of fluorescently labeled viral429

proteins, that the majority of individual alveoli only showed the presence of a single color [25]. This430

indicates that at the furthest extent of within-host viral spread, spatial founder effects and bottlenecks431

appear to be at play.432

Several factors have been identified in the population genetic literature that will modulate the433

extent to which the genetic diversity of a spatially expanding population will be eroded. In most434

cases, these factors have clear analogues for within-host viral populations. First, the ‘dispersal kernel’435

is known to affect the rate at which populations will lose genetic diversity, where the dispersal kernel436

quantifies the distribution of distances individuals in a population will seed their progeny. Intuitively,437

one might think that higher levels of long-distance dispersal will always mitigate the loss of genetic438

diversity. However, Bialozyt and colleagues showed instead that increases in the number of long439

distance dispersal events will counterintuitively first have the effect of reducing genetic diversity [89].440

Further increases in the number of long-distance dispersal events will then act to increase levels of441

genetic diversity again. This pattern results in the minimum level of population genetic diversity442

being present at some level of long-distance dispersal. This pattern results from what has been termed443

an ‘embolism’ effect (Figure 4B), where rare long distance dispersal events lead to single individual444

founders with substantial replication resources surrounding them. The rapid expansion of these445

single individual founders leads to dramatic reductions in the overall population’s genetic diversity.446

The dispersal kernel, as one might expect, will also impact the genetic ‘patchiness’ of the population447

across space [90]. In light of the two possible modes by which flu viruses infect target cells, the448

relative roles of cell entry through receptor binding by free virus versus cell entry through tunneling449

nanotubes will likely be important in understanding patterns of genetic diversity in within-host flu450

populations. If TNTs are a major source of cellular infection, as they may be in previously infected451

individuals with strong antibody responses, then dispersal is expected to be more highly localized,452

and long-distance dispersal events will be fewer. However, whether this will lead to higher or lower453

levels of genetic diversity relative to a case with higher levels of cell entry via receptor binding by free454

virus is unclear, given that the relationship between genetic diversity and the number of long-distance455

dispersal events is non-monotonic [89].456

A second factor affecting the rate at which population genetic diversity will be lost in a spatially457

expanding population are the life history characteristics of the population. For example, it has been458

shown that a juvenile, non-reproductive stage in a life cycle reduces the rate of genetic diversity loss459
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in populations [91]. This is because a juvenile stage slows down the colonization process and allows460

for more genetic diversity to accumulate at the wavefront. An ‘eclipse’ phase in viral populations is461

analogous to this juvenile stage: infected cells are not productive immediately following infection;462

rather it can take several hours for viral progeny to be produced. For influenza, the duration of this463

eclipse phase has been quantified experimentally, with most recent estimates being on the order of464

2-4 hours [92].465

Figure 4. The effects of spatial spread on a population’s evolutionary dynamics. (a) Local
movement in 2-dimensional space leads to the generation of genetically homogeneous ‘sectors’.
Figure reproduced from [93]. (b) Intermediate levels of long distance dispersal result in major
reductions in genetic diversity, as described by the ‘embolism effect’. Figure reproduced from [89]. (c)
Mutations can ‘surf’ to high frequencies, regardless of whether they are deleterious (left), beneficial
(right), or neutral (not shown). Figure reproduced from [84]. (d) Spatially expanding populations can
select for cooperative phenotypes at the leading edge. Figure reproduced from [94].

A third factor affecting the extent to which genetic diversity will be eroded is how an individual’s466

reproductive rate depends on nearby population density. For example, theoretical studies have467

shown that Allee effects have the potential to maintain genetic diversity in a spatially expanding468

system [85,86]. A higher level of genetic diversity is maintained in populations with an Allee469

effect because in these cases it is not only the furthest members of a population that contribute to470

the expanding population. As discussed in the previous section, Allee effects may be at play in471

within-host viral populations that require complementation, including influenza.472

A fourth factor affecting levels of genetic diversity in spatially expanding systems is the473

extent of spatial heterogeneity. Specifically, Wegmann and coauthors showed that environmental474

heterogeneity leads to loss of genetic variation within similar regions and further leads to greater475

genetic differences between regions [95]. This finding may be applicable to within-host viral476

populations that exist across different regions of different cell types. For example, within-host477

regions of cells having predominantly α2,3 versus α2,6 sialic acid receptors might result is less478

genetic variation within each region and greater levels of population genetic differentiation between479

regions. In fact, this is exactly what was observed when Lakdawala and colleagues examined the480
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distribution of viral sequence variants between tissue compartments within ferrets that differ in481

receptor distribution [37].482

Beyond impacts on population-level patterns of genetic diversity, populations that are spatially483

expanding are known to be subjected to a phenomenon called “surfing” [84,85,96,97], whereby484

genetic variants present on the wavefront of an expanding population may rapidly rise to high485

frequencies due to the dominance of genetic drift in the small wavefront populations. With the486

process of genetic drift (over selection) dominating at the wavefront of an expanding population,487

de novo mutations (whether beneficial, deleterious, or neutral) that occur at the right place at the right488

time can rise to high frequencies and even fix in populations (Figure 4C). Since, in many systems,489

the majority of mutations appear to be deleterious, this surfing phenomenon results in deleterious490

mutations fixing at considerably higher rates in spatially expanding populations than in populations491

that are growing in the absence of a spatial dimension [84,98]. As such, these spatially-extended492

systems are expected to carry an “expansion load” [99,100], defined as the deleterious mutation493

load a population carries that is due to spatial founder effects from small populations at the494

wavefront. While there is no evidence yet for within-host viral populations being subject to the495

surfing phenomenon and to expansion loads, one should theoretically expect this to be the case. This496

is because most RNA virus mutations are known to be deleterious, with recent experimental findings497

providing evidence for this specifically for influenza virus [101].498

While this surfing phenomenon is also relevant to beneficial mutations, the consequences of499

genetic drift dominating at the wavefront results in lower rates of beneficial mutation accumulation in500

a spatially expanding population than would be anticipated in population expanding in the absence501

of a spatial dimension. This is for two reasons: first, beneficial mutations are rare, so, relative502

to deleterious mutations, de novo mutations are unlikely to be beneficial. Second, if a beneficial503

mutation does arrive in the right place at the right time, it is unlikely for it to be brought to high504

frequencies through selection because of the dominance of genetic drift at the wavefront. This surfing505

phenomenon is thus known to slow the rate of adaptation of spatially expanding populations, and506

could even lead to fixation of deleterious mutations within hosts. Spatial within-host dynamics may507

therefore provide a mechanism to explain why RNA viruses, including influenza, appear to carry508

deleterious mutation loads [102–104].509

Finally, spatially expanding populations may select for different phenotypes than ones that do510

not have a spatial dimension. This would occur, for example, if individuals residing at the wavefront511

experience different selection pressures from the ones residing at the interior of the population512

range. Rather than this being an unlikely case, different selection pressures at different points in513

the population range are theoretically expected in many situations. At the wavefront, resources are514

relatively abundant, and individuals with a high intrinsic growth rate (“r”) are known to outcompete515

others. In contrast, in the interior of a population range, resources are limiting, and individuals516

with more efficient resource use do best (i.e., those individuals with higher basic reproduction517

numbers, R0). This difference in r versus R0 selection pressures has been considered in the context of518

infectious diseases, and is at the core of why epidemic pathogens (with abundant host resources) are519

expected to evolve to higher virulence compare to endemic pathogens (with scarce resources) [105].520

Analogously, one would expect more virulent viruses to be selected for at the wavefront of an521

expanding population, compared to the interior [61], regardless of whether we are considering the522

viral population to be expanding within hosts or across the globe. In the context of within-host flu523

dynamics, spatial spread may therefore select for phenotypes that kill infected cells more rapidly but524

have higher rates of viral production. Another within-host phenotype that may be at least partly525

under viral genetic control is the viral dispersal kernel. Given theoretical findings that the evolution526

of long-distance dispersal is favored during an expansion process [106], perhaps one might even527

expect influenza virus to evolve a preference for cell entry via budding over cell entry via TNTs.528

Finally, a recent study intriguingly found that cooperative phenotypes have a selective advantage529

along the wavefront of expanding populations [94] (Figure 4D). This theoretical finding is particularly530
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relevant to recent work examining the evolution of viral cooperation, collective interactions, and more531

generally, the budding research area of “sociovirology” [107].532

In sum, the spatial aspect of within-host viral spread will generally reduce viral genetic diversity,533

slow the rate of viral adaptation, more easily enable the fixation of deleterious mutations, and result in534

the evolution of viral phenotypes that may be advantageous for only a subset of the viral population.535

Discussion536

We have reviewed current understanding and open questions regarding patterns and537

mechanisms of within-host viral spread from both empirical and computational perspectives. Our538

ability to visualize within-host spatial structure has improved greatly thanks to advances in imaging539

techniques, particularly the use of fluorescent reporters and luciferase expressing viruses. The540

recently discovered ability of viruses to spread directly from cell to cell via ‘tunneling nanotubes’ is541

an exciting development, but the feasibility and frequency of long-range dispersal remains unknown.542

Spatially explicit and non-spatial models have been applied to viral data; non-spatial models are far543

more common, and allow one to interpret data on viral load kinetics. However, ignoring spatial544

structure in the infection processes can lead to biased or incorrect estimates of parameter values.545

Non-spatial models are also less useful in understanding the roles that viral infection processes546

such as cellular multiplicity of infection and viral reassortment play in regulating viral dynamics.547

They are also less relevant to understanding the factors that govern viral population dynamics and548

evolutionary dynamics, such as patterns of genetic diversity and viral mutation loads. Further,549

ignoring spatial heterogeneity and its consequence on viral population structure may prevent us550

from interpreting experimental data beyond viral load measurements and make result in imprecise551

predictions about the impact of therapeutic interventions.552

We then turned to the ecological and evolutionary literature to provide theoretical insight553

into the population dynamics and genetics of spatial within-host viral spread. Ecological and554

evolutionary studies indicate that the within-host spread of a virus should be strongly influenced555

by its own dispersal patterns and life history characteristics, as well as the spatial heterogeneity556

in the host environment. The ecology literature has also given us insight into critical gaps in557

our knowledge about within-host viral spread. Specifically, we need more empirical data on viral558

density-dependence and the extent to which Allee effects are present in the system. Studies to559

determine the distance that viruses disperse would also greatly improve our understanding of what560

regulates the rate of within-host spread. Long-range dispersal greatly increases the speed of invasion,561

even if that dispersal is rare; but the extent to which long-range dispersal occurs in flu is currently562

unknown. The evolutionary literature has provided us with theoretical expectations for how the563

genetics of the viral population will change over time in a flu infection, and the effect that space may564

have on the ability of the viral population to adapt. These predictions should be tested empirically,565

using available imaging and sequencing techniques.566

Perhaps most importantly, the ecology and evolution literature has the potential to inform the567

development of control strategies. Current control strategies focus on treatment and prevention of568

infection using drug therapies and vaccination. These interventions introduce antibodies or antivirals569

into the system, both of which are functionally similar to predators from the standpoint of a virus570

in a host. They can be very effective under the right circumstances, but vaccines are notoriously571

difficult to formulate due to the rapid evolution of seasonal flu strains, and antiviral resistance is not572

uncommon. In order to control an infection, the host must be able to contain the virus and prevent573

its ongoing spread. In vivo, this seems to be possible because the immune system responds quickly574

to the location of infection, and the virus ultimately runs out of local susceptible cells to infect. Early575

intervention is likely to be most effective, not only because there are fewer total virions and infected576

cells, but because influenza may be subject to strong Allee effects. Control efforts should be focused577

on reducing the maximum intrinsic growth rate of a population, not the transient initial rate [69].578
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Studies of spatial heterogeneity suggest that introducing a barrier zone can be a very effective579

control strategy [77]. In wildlife populations, an artificial barrier has been successfully introduced580

at times to prevent the spread of rabies, by depositing vaccine-laden food items [108]. While it is581

likely not possible to introduce a physical barrier within the host’s respiratory tract, the concept of a582

barrier is somewhat analogous to the local action of the immune system to “immunize” susceptible583

cells that are close to the site of infection. Different cell types and tissues in the respiratory tract may584

also function as a kind of barrier, because the virus is not equally able to infect each of these.585

Finally, influenza infection could potentially be controlled by introducing defective interfering586

particles (DIPs) into the system. DIPs are naturally occurring during infections, and they essentially587

parasitize wild-type virus, reducing the amount of infectious offspring that is produced from cells588

coinfected with DIPs and wild-type virus. The ability of DIPs to interfere with wild-type virus589

depends on the local cellular MOI, because in the absence of co-infection with a wild-type (“helper”)590

virus, DIPs cannot replicate [109]. Studies in both mice and ferrets have shown that DIPs can modify591

within-host influenza virus dynamics, decreasing peak viral loads and delaying its timing [110].592

Further, the administration of DIPs can reduce influenza symptoms and virulence [110].593

While we have focused here on influenza virus, insight from the ecological and evolutionary594

literature is also applicable to a broad range of other viral infections. Accounting for the ecological595

and evolutionary dynamics of within-host spatial spread will deepen our understanding of the596

behavior and outcomes of a wide variety of viral infections and potentially lead to new conceptual597

advances in infection control strategies.598
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