Fabrication and Internal Functionalization of Highly Macroporous WO₃ Thin Films

Maria Ojeda ¹, Cale Gaster ¹ and Clifton Harris ¹,*

¹ Winthrop University, Department of Chemistry, Physics and Geology; mariaojeda2307@gmail.com
gasterc3@winthrop.edu
* Correspondence: harrisc@winthrop.edu; Tel.: +1-803-323-4929

Abstract: Highly macroporous thin films of WO₃ were fabricated on transparent conductive substrates by application of a polymeric organic paste loaded with an amine/tungstate complex. After spin-coating and annealing at 550°C, the resulting yellow films are found to be comprised of channeled array of clustered nanoparticles. These channels are confirmed by scanning electron microscopy to extend through the entire length of the coating. The high porosity of the material enables the insertion of a co-catalyst into the internal structure of the film. These internally functionalized composites demonstrate good photosensitivity and stability in neutral electrolyte.

Keywords: Thin Films; WO₃; Photocatalysis

1. Introduction

Tungsten (VI) oxide is an n-type semiconductor that continues to spark the interests of research groups.[1-62] This material boasts several favorable attributes, including advantageous band potentials, a moderate band gap energy (2.6-2.7 eV) which allows for significant utilization of solar irradiation, good photoactivity, and low toxicity. Much of the research focused on WO₃ is regarding its viability as a catalyst for the photoelectrolysis of water.[2, 4, 14, 20, 24, 28, 34, 63] The potential of the valence band edge of WO₃ is far positive of the oxidation potential of water,[2, 4, 14, 20] providing a substantial thermodynamic driving force for oxygen evolution from the semiconductor surface under solar illumination. Although the conduction band electrons of WO₃ lack the necessary potential to drive the reduction of H⁺(aq), WO₃ can be paired with a suitable hydrogen-evolving catalyst to enable complete water splitting, either as part of a p/n tandem, or as a component of a z-scheme device. The major drawbacks of WO₃ include short diffusion lengths of the photogenerated holes, and low absorption coefficients [4, 16]. Through tailoring and optimization of the structure of a WO₃ photoelectrode, the photocatalytic behavior of the material can be greatly enhanced.[4] 1D or wire-like morphologies promote enhanced photocurrents by improving charge separation and transport.[64-68] Porous morphologies boast high surface areas which extend the catalyst-electrolyte interface and improve absorbance through increased light scattering.[37, 69, 70] In this work, we report a simple route for the fabrication of thin films of WO₃ comprised of a highly porous, channeled array of clustered nanoparticles. These channels are confirmed by SEM to extend through the entire length of the coating. After preparing the films, a co-catalyst, Co-Pi, was loaded into the porous WO₃ network, and the physical and photoelectrochemical properties of the composite coating were analyzed.

2. Materials and Methods

2.1. Reagents

Ammonium tungsten oxide hydrate ((NH₄)₆W₁₂O₃₉·xH₂O, ATO), hydroxypropyl cellulose (HPC, molar mass ≈ 100,000), triethanolamine (TEA), potassium phosphate monobasic, alpha-
terpineol and ethanol (200 proof) were purchased from VWR and used as received. Fluorine-doped tin oxide transparent conductive substrates (FTO) were purchased from Hartford Glass company (TEC-15). Prior to use, the FTO is sonicated in a solution of water, ethanol and detergent for 30 minutes, rinsed, heated briefly in dilute hydrogen peroxide, rinsed again, and dried at 100°C.

2.2. Synthesis of the W(VI) Precursor Paste

To begin, 0.25g of ATO was dissolved in a mixture of 1g of deionized water and 3g of TEA using an ultrasonic homogenizer. This leads to complexation of the W$^{6+}$ center, indicated by the appearance of a deep yellow color. The complexation of W$^{6+}$ by TEA is an essential step, as it dramatically enhances the solubility of the metal precursor in ethanol. The complexed solution is then added to a separate solution of 0.75g of HPC dissolved in 5g of ethanol. Finally, 5g of alpha-terpineol is blended into the mixture. Compressed air was passed through the solution while vigorously stirring at room temperature for several hours to evaporate the ethanol, after which a highly viscous white paste was obtained. The viscosity of the paste can be adjusted based on the volume of alpha-terpineol added, corresponding to the particular needs of the reader.

2.3. Preparation Of Macroporous WO$_3$ Thin Films

Paste was applied to a clean FTO surface by spin coating at 3000 rpm. A single application of paste was used. The barrier height was set using 65 µm thick heat-resistant polyimide tape with silicone adhesive (Micronova). Afterwards, the tape was removed and the films were annealed in air at 550°C for 4 hours. The resulting films are uniform, crack-free, strongly adherent, semi-transparent, and bright yellow in appearance.

2.4 Functionalization of Macropores With Co-Catalyst

Co-Pi was a selected as a co-catalyst for this study due to its well-regarded ability to drive the water oxidation reaction with high efficiency on metal oxide surfaces in neutral media.[6, 14, 16] The synthesis of Co-Pi has been reported elsewhere.[71] In brief, a WO$_3$-coated electrode was used as the working electrode and submerged into a solution of 0.5mM CoCl$_2$(aq) and 0.1M KH$_2$PO$_4$(aq) buffered to a pH of 7. A constant voltage of 1V vs SCE was applied for a period of 15 minutes.

2.5 Methodology of Characterization

Formation of WO$_3$ was confirmed by X-ray diffraction (Rigaku MiniFlex 600, Cu Ka radiation). Surface and cross-sectional morphology of the film was analyzed using a JEOL JSM-6010PLUS/LA SEM (20 kV AV). Samples were sputtered with carbon using a Polaron carbon evaporator to minimize charging effects. For cross-sectional imaging, the FTO was cut and loaded vertically into a double-slotted set screw vise holder (Ted Pella Inc., #16312, Ø32 × 10 mm). A Tauc plot was produced using diffuse reflectance data obtained from an Ocean Optics USB-2000+ spectrophotometer coupled with a reflectance probe. Photocurrent analysis was performed using a VersaSTAT 3 potentiostat with a three-electrode setup. A saturated calomel electrode was used as the reference electrode, with platinum foil used as the counter electrode and WO$_3$-coated FTO substrates with or without added Co-Pi were used as the working electrode. The electrolyte solution was 0.1 M KH$_2$PO$_4$ adjusted to pH 7. The working electrode was back-side illuminated using a solar simulator from the Solar Light Company (AM 1.5, 100 mW/cm2).

3. Results

3.1. Structural and Optical Characterization

The deposited films show strong adhesion to the FTO surface, as well as good transparency. A top-down SEM image is shown in figure 1a. The film is comprised of spherical particles that are
aggregated into an array of interconnected clusters which produce a network of micron-scale channels that penetrate the full thickness of the coating. The cross-sectional image shown in figure 1b reveals a rough coating with non-uniform thickness. Under illumination, WO₃ is well known to suffer from hole-induced degradation due to the formation of peroxides at the surface.[28] Both Seabold[14] and Zhong[16] have demonstrated that Co-Pi, when deposited on WO₃, eliminates the peroxide-forming reaction by drastically enhancing the kinetics of the more thermodynamically favorable oxygen-evolving reaction. Due to the extent of the porosity and the full permeation of the micron-sized channels in our deposited films, the internal functionalization of the film with Co-Pi was demonstrated. Figures 1c and 1d reveal Co-Pi islands within the film, which are highlighted with circles.

Figure 1a (top left): Top-down SEM image of WO₃ film. Figure 1b (top right): Cross-sectional view. Figures 1c and 1d (bottom left, bottom right): Images of WO₃ films following addition of Co-Pi. Islands of Co-Pi can be seen inside of the macroporous WO₃ network. Circles are used to highlight the Co-Pi aggregates.

Figure 2 reveals photographic images of the porous film before and after addition of Co-Pi. As shown, the Co-Pi deposition begins at the FTO surface, and the catalyst particles aggregate within the channels. This is confirmed by the prominent appearance of the dark Co-Pi deposit which can be seen when viewing the coated FTO through the backside, but much less so when viewing from the front.
X-ray diffraction data is shown in the supporting information (S1). Characteristic peaks at 2θ = 24°, 23.5° and 23° suggests that the material is in the monoclinic phase. The band gap of the material was calculated as 2.62 eV from analysis of the Tauc plot, also provided in the supporting information (S2). For materials having allowed, indirect transitions, extrapolation of the linear portion of the plot of (αhv)^1/2 vs hv yields the band gap energy in eV, where α is the absorption coefficient. The value of α is directly proportional to the Kubelka-Munk function, (1-R)^2/2R, where R is the reflectance.

3.2. Photoelectrochemical Performance

The photoelectrochemical (PEC) performance of these films was measured in neutral electrolyte. Although WO₃ films do not exhibit long term stability at neutral pH, a neutral medium was chosen for several reasons. First, any practical water-splitting catalyst intended for large-scale use must be able to operate in neutral pH conditions. Second, the efficiencies of the hydrogen and oxygen evolving reactions are affected inversely at extremes of pH. It has been demonstrated by numerous groups that coating WO₃ with a protecting layer of another material can prevent dissolution in neutral electrolyte.[1,2,6,14] While we have not yet demonstrated this with our current system, the photocurrent generation of bare and Co-Pi functionalized WO₃ films has been analyzed and is presented in figure 3. According to the current-voltage trace, the incorporation of Co-Pi into the porous film results in a 302 mV cathodic shift in the onset potential of photocurrent, owing to the decreased overpotential of water oxidation on Co-Pi relative to WO₃ and improved hole transport kinetics.[16,71,72] However, the maximum current is decreased relative to the bare WO₃. This is likely the result of non-productive photon absorption by the dark Co-Pi material, as well as the creation of new recombination sites.[14]
The stability and efficiency of the WO$_3$ film is greatly extended when functionalized with Co-Pi, as is reported in literature.[1,6,16,71-74] Figure 4 shows the photocurrent produced by the Co-Pi loaded WO$_3$ film in neutral electrolyte under continuous excitation with an applied bias of 0.3V vs SCE. In the absence of the co-catalyst, the photocurrent decay is almost instant, with >90% loss in a matter of minutes. With co-catalyst added, the duration of the current is extended, with a loss of ~8% over the course of approximately 2 hours. The addition of a protecting layer to the WO$_3$ catalyst would minimize this decay.[16]

4. Discussion

We have presented a simple spin-coating route for the fabrication of thin films of WO$_3$ comprised of a highly macroporous array of clustered nanoparticles containing fully permeating channels. During anodic electrodeposition of the co-catalyst, Co-Pi, nucleation initiates at the FTO interface, then aggregation proceeds throughout the porous WO$_3$ network to yield an internally functionalized system. The system shows good photosensitivity, and the cathodic shift of the photocurrent onset potential, along with the improved stability of the film under illumination indicate good electrical contact between WO$_3$ and Co-Pi. Future work in this area should include the addition of a protective coating to the WO$_3$ particles, or further loading of the porous network to improve charge separation and transport.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: X-ray Diffraction Pattern of WOx. Figure S2: Tauc Plot of WOx Film.

Funding: This research and the APC was funded by the NSF and South Carolina EPSCoR/IDeA program, award# 17-RE06.

Acknowledgments: We would also like to thank Winthrop University’s SURE program and Dr. Julian Smith for assistance with SEM.

Conflicts of Interest: The authors declare no conflict of interest.

References

