

1 Article

2 **Implementing vertical farming at university scale to**
3 **promote sustainable communities: A feasibility**
4 **analysis**

5 **Zhang He¹, Asutosh, A.T.^{2*}, Wei Hu²**

6 1. M.E. Rinker, Sr. School of Construction Management, University of Florida;rupta00@ufl.edu

7 2. M.E. Rinker, Sr. School of Construction Management, University of Florida;asishasutosh@ufl.edu

8 3. School of Statistics, Renmin University of China; huwei2018000727@ruc.edu.cn

9 4. * Correspondence: asishasutosh@ufl.edu, Tel: +1-(352)-745-9946

10

11 **Abstract:** The world is facing several global issues such as food and energy crisis, climate change
12 and greenhouse gases emissions. To subdue these issues, many entities from academia and
13 industries have innovated alternate techniques of performing regular activities which cause such
14 problems. One of these innovations is the introduction of vertical and zero acreage farming in the
15 field of sustainability. These carry the potential to solve one of the most important affairs of food
16 security in most countries of the world. But, this technology has been in its nascent stage for many
17 years. This paper uses a comprehensive framework proving the feasibility of initiating vertical
18 farming on university campuses to feed the staff and students, which could also set an example to
19 the rest of the world into using this technique on a wider scale. The study chose Huazhong
20 University of science and technology (HUST) in Wuhan city, China for accessing the return on
21 investment and food sufficiency if vertical farming is implemented. Using Central Limit Theorem,
22 a statistical model was developed, and various scenarios were analyzed. The results indicated that
23 if a separate vertical farm is constructed, the breakeven can be achieved in a range of 10-20
24 depending on parameters such as type of operation, number of floors and amount of vegetation.
25 The study has shown that the use of vertical farming cannot only bring in revenue for the campus
26 but also aid in mitigating climate change.

27 **Keywords:** Vertical farming; Zero acreage farming; University; Sustainability; Economics; Climate
28 change

29

30 **1. Introduction**

31 The issue of food and nutrition security is at crux which we are experiencing on Earth in today's time.
32 A recent study shows that over 815 million people are facing food insecurity which is an increase of
33 38 million due to climate change and proliferation of vicious conflicts [1]. According to these numbers
34 in our current scenario, we must take the responsibility in mitigating this problem and to chase the
35 Sustainable Development Goals 2030 of United Nations, to eradicate hunger and poverty. At present,
36 the global food system is subjected to pressure in delivering food to the ever-growing population.
37 The consumer behavior and food production practices play important roles inefficiency of every type
38 of food system [2]. By 2050, almost 80 percent of the population will reside in urban areas. According
39 to traditional food production practices, an extra of 1 billion hectares of land will require feeding the
40 growing population in the meanwhile [3]. The scarcity of land and depleting of natural resources
41 have been a driving factor to find smart solutions in this fast-moving world. There have been many

42 successful attempts in research and innovative solutions to fight this issue in our built environment.
43 One of such innovation is the integration of farming into the building structure which is termed as
44 "Vertical Farming". It is an alternate method where the food supply chain is shifted directly from the
45 producer to the consumer. This results in significant low carbon footprint and is environmentally
46 sustainable [4]. Although this concept has remained in its nascent state, there are real-time examples
47 which prove that vertical farming is a sustainable way to feed the best quality produce by spending
48 less amount of energy. Countries such as United States, Japan, and Singapore have shown significant
49 results in applying vertical farming to their buildings. This study provides a framework which
50 encourages institutions such as universities into adopting this system for their students. This study
51 also investigates food data from Huazhong University of Science and Technology (HUST) in China
52 which has over 24 canteens and compares the production and financial outcome using vertical
53 farming. This could lead the institution into producing their own food on site and use the financial
54 benefits to something more valuable. Additionally, this could also be a chance for all the commercial
55 and residential sectors in taking the initiative to mankind and environmental responsibility. This
56 study looks at the approach to vertical farming and how it could contribute to saving fossil fuels and
57 reduce resource wastage.

58 **2. Materials and Methods**

59 **2.1 Definitions**

60 There are various definitions of Vertical Farming but to put into simple words, it is a method of urban
61 farming of fruits, vegetables, and grains, inside a building in a city or urban centre, in which floors
62 are designed to lodge crops with the absence of soil (Hydroponics & aeroponics) [5]. Using large
63 multistory buildings to cultivate agricultural produce was an incredible idea by Gilbert E. Bailey,
64 who was an American geologist. His book simply titled "Vertical Farming" was revolutionary in the
65 field of modern agriculture [6]. In the early 1980s, Dr. Yeang who was a Malaysian-born architect
66 advanced the ideas of Mr. Gilbert into the subset of architectural design. He believed that the way
67 agricultural products were grown, and all human activity must be based upon "eco-mimicry", which
68 means that to be deeply sustainable, all built or devised human environments must mimic the
69 patterns, characteristics, attributes and cycles of natural ecosystems [7]. Another definition states that
70 Vertical Farming is a system of commercial farming whereby plants, animals, fungi and other life
71 forms are cultivated for food, fuel, fibre or other products or services by artificially stacking them
72 vertically above each other [8]. The concept of supplying food using the city is not modern but the
73 idea of dedicating an entire building/skyscraper to cultivate produce is which is the concept of
74 vertical farming is a large-scale extension of urban agriculture within a building. [9]. Another concept
75 which is recently coined known as "Zero Acreage farming". It implies the farming which is carried
76 without using any additional farmland such as using rooftop gardens, indoor farming, rooftop
77 greenhouses. These are categorized as a subset of urban farming which is sustainable and
78 decentralized [10]. This concept has been introduced in cities such as Berlin (Germany) and
79 encourages other cities to incorporate these practices with recognizing its benefits and challenges
80 [10]. This could also be one of the trends which could give the common people control on their
81 produce quality and quantity.

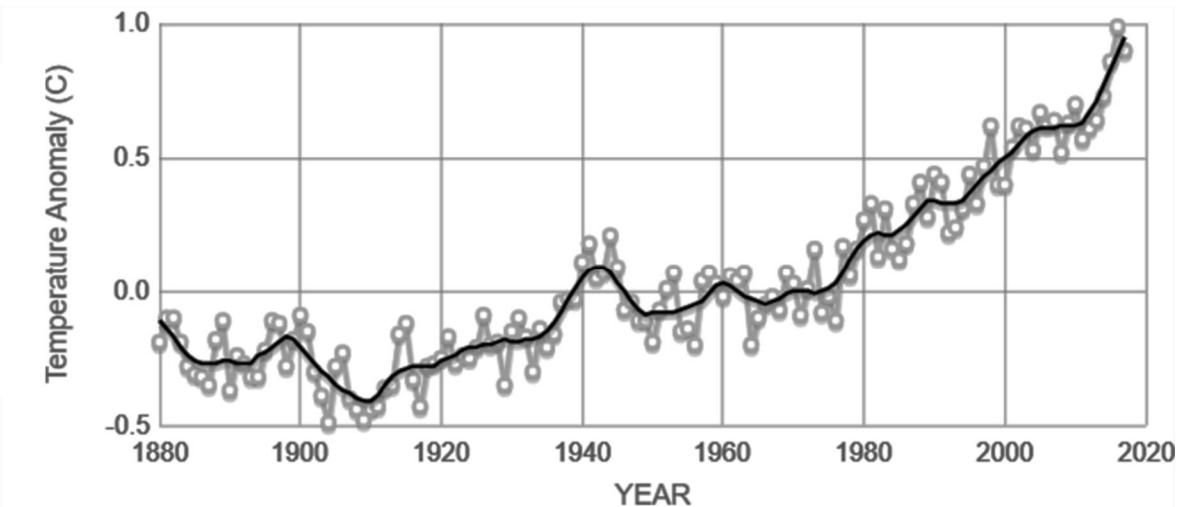
82 **2.2 Causes of vertical farming**

83 According to the U.N. (United Nations), the population of the world through mid-2017 was 7.6 billion
84 and is projected to reach 9.8 billion by 2050 and 11.2 billion by 2100 [11]. It is estimated that 19.5
85 million hectares of agriculture land are converted to urban centres and industrial developments
86 annually [12]. This is because cities are the hubs of ideas, science, jobs, productivity, social
87 development, prosperity and more. Due to the rapid urbanizations, resources such as water supplies,
88 sewage, biodiversity, land and soil resources and public health is under pressure. The sustainable
89 development of urban and rural areas requires addressing the demands for social, economic and
90 environmental land use in an integrated approach. Over 2 billion hectares of cultivable land is
91 degraded, and more than 1.5 billion people are living off the degraded land. Severe droughts in 2017
92 have led to starvation and famine which affected more than 25 million people [13].

93 A study done by Crawford School of Public Policy and Australian National University estimated 4.3
94 to 20.2 trillion dollars annually is lost in global land use change [14]. The direct costs of degradation
95 of land amount to approximately USD 66 billion per year [15]. The world needs an increase of 70
96 percent in food production to feed the 9.5 billion people expected to live by 2050 [16]. China had
97 population of 13,82,710,000 which is a rise of 8,090,000 compared to 2015. With 145 people/square
98 km, it was in the 138th ranking density in 2016 [17]. Interestingly, out of 130 million square kilometres
99 of ice-free land, about 46 percent is currently being for farming and forestry and 7 percent is
100 considered urban/pre-urban [18]. FAO estimates that up to 25 percent of the land is currently highly
101 degraded and 36 percent is moderately degraded while 10 percent is merely improving [19]. Two of
102 the most populated nations in the world have almost 42 percent of its population facing chronic
103 hunger [20]. The unprecedented explosion of megacities may lead to unsustainable and ecological
104 disaster. In the year 2000, the megacities in the world took up to 2 percent of the earth's land which
105 accounted for approximately 75 percent of the industrial use of wood, 60 percent of water use and 80
106 percent of carbon emissions [21].

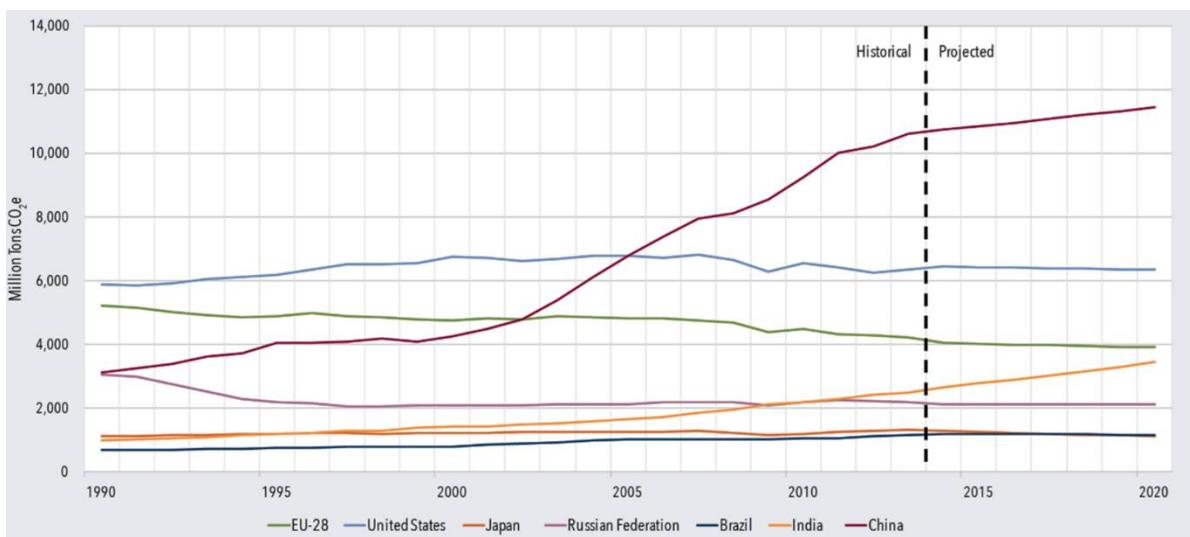
107

108 **2.2.1 Food and nutrition security**


109 Over 8.7 million species are thought to have been living on the planet out of which 8 percent are
110 extinct and 22 percent are at risk of extinction due to habitat destruction [22]. There are numerous
111 studies which have indicated the impacts on food security by climate change [23]. Sustainable
112 management of land can minimize the impacts of conventional farming. By introducing vertical
113 farming, externals independents such as pesticides, heavy machinery and others can be reduced
114 significantly. Resources such as water and energy can also be minimized. This will help in improved
115 soil nutrient availability [24]. Fortunately, there are many ways to achieve such as afforestation, pest
116 management, soil erosion control, vegetation management and others.

117

118 **2.2.2 Climate change**

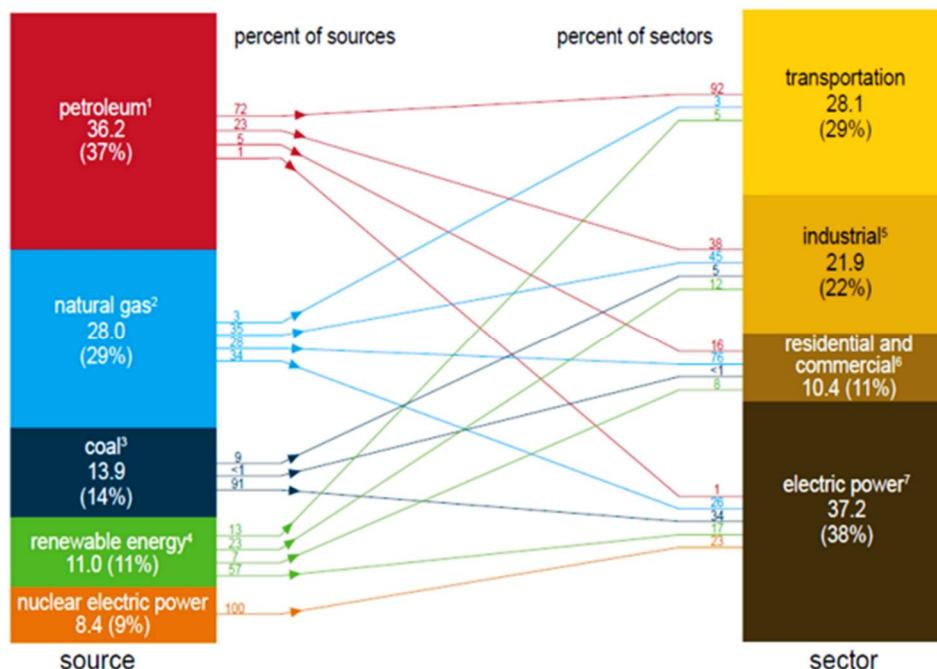

119 The average global temperature has risen by 0.85°C. For every increase in 1 degree, grain yield decline
120 by about 5 percent. The carbon emission grew rapidly in the last three previous decades from 2000 to
121 2010 [25]. The figures below demonstrate these increments through recent years which proves climate
122 change is real. Since 2001, the years have shown the warmest temperatures on a span of 136-year
123 record (Figure 1). The Consumption of food with low energy profiles have a substantial effect on
124 serious health issues such as obesity reduction and mitigation of climate change. Also, increase in
125 active transport (i.e. walking and cycling), with public transport for longer journeys could have a

126 substantial role in meeting targets for GHG emissions and would result in major public-health
127 benefits [26]. The increase in greenhouse emissions is a major contributor to climate change and the
128 data from some of the largest economies can be observed in (figure 2).
129

130
131
132

Figure 1: Global land-ocean temperature index

133
134
135
136


Figure 2: Greenhouse gas emissions for major economies

137 **2.2.3 Energy crisis**

138 Energy is the leading contributor to climate change, accounting for almost 60 percent of total global
139 greenhouse gas emissions. The rapid scaling up of low-carbon, clean and renewable energy sources
140 is a key solution in long-term climate goals. It is a keen factor to consider in the sector of farming.
141 Research shows that almost 1.4 billion people lack access to electricity and 2.7 billion people rely on
142 traditional use of biomass cooking. By 2030, 1.2 billion people will still lack access to electricity out of
143 which 87 percent reside in rural areas [27]. The figure below shows the energy consumption

144 The pattern across various industries with respect to different available sources (Figure 3). This
 145 indicates that there is an urgent need for shifting from non-renewables to renewables. Also, 92
 146 percent of the petroleum (fossil fuels) are used in transportation industry which can be saved by
 147 using techniques such as vertical farming.

148

149

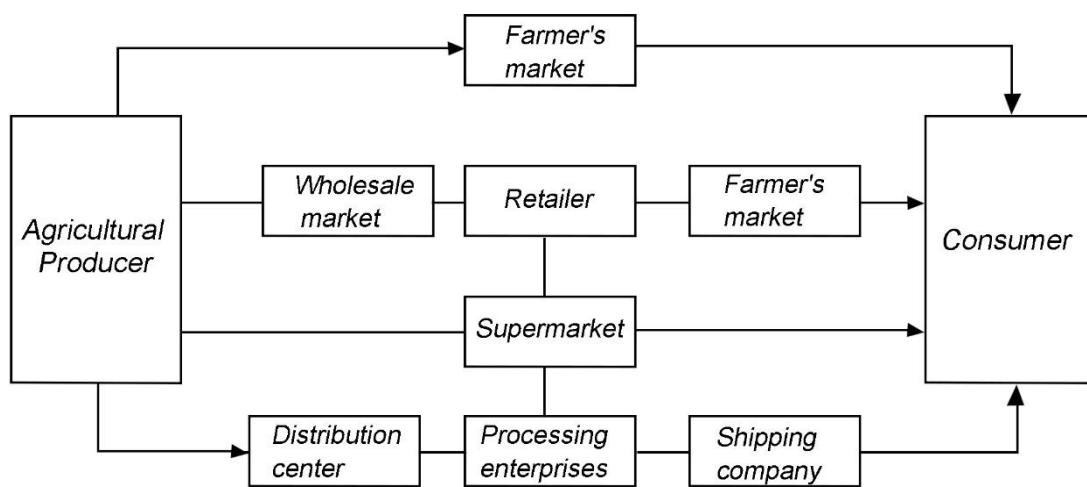
150

Figure 3: Energy consumption pattern across industries and their sources

151

152

153 **2.2.4 Water**


154 A land development is associated with a water decision and water management is very essential.
 155 Sustainable land practices must include improvement of water efficiency and quality in a cost-
 156 effective way as well as the restoration of ecosystems which are intended to mitigate water scarcity.
 157 In case of vertical farming, the issue of water scarcity is significantly minimized. Water scarcity affects
 158 almost 40 percent of the global population and with 1.7 billion people living on river basins where
 159 recharge is minimal compared to usage, it can be dangerous for survival. Additionally, the water
 160 discharge for irrigation peaks to 70 percent in the world of the total consumption and 80 percent of
 161 the wastewater are simultaneously put free into the environment [28]. A study at the James Hutton
 162 Institute found that up to 10 million of GBP could be saved over 25 years implementing sustainable
 163 land management measures in a large drinking water catchment [29]. Vertical farming has a large
 164 potential in saving consumption for the food production and the system can be designed to go off
 165 grid (municipal supply).

166

167 **2.2.5 Supply chain logistics**

168 As from the describing the industries contributing to climate change, transportation on the second.
 169 This refers to the supply chain logistics of the food industry (figure 4). The flowchart in the figure
 170 describes a typical food supply logistics cycle. It can be inferred that using the vertical farming
 171 technique, a large portion of fossil fuels and time can be saved. Many resources such as varieties of

172 machinery, labour and money are spent in the food industry. The most important resource is the time
173 which is heavily invested in providing food to the people. The rapid depletion of fossil fuels and
174 development of new technology has led to rethinking the process of food production and delivery.
175 Vertical farming can be promising in saving precious resources of the planet and provide better
176 health opportunity to the common man. Most importantly, there is a cost involved in every step of
177 this process which can be diverted into producing more food for the common people [30,31].
178

179

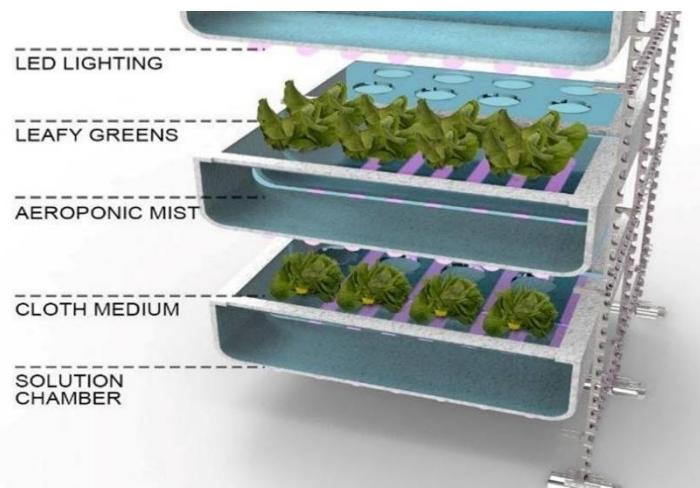
180

181 **Figure 4:** Agricultural producer to consumer logistic cycle
182

183 **2.3 Types of vertical farming**

184 **2.3.1 Aquaponics**

185 This is a type of vegetation production which includes edible and non-edible sources that combine
186 supporting the aquatic ecosystem (fish, snails and others) with a hydroponic system (harvesting with
187 only water & nutrients) in a symbiotic environment. The residue from the aquatic animals being
188 raised in the tank which gets suspended increase the toxicity of the water. These are then broken by
189 the nitrogen-fixing bacteria into nitrates and nitrites which are fed into the hydroponics systems used
190 by the plants as nutrients. It is a continuous cycle where the water is constantly recirculated where
191 the roots of the plants are impeded in nutrient-rich water. The water which has passed through the
192 hydroponic subsystem is cleaned and oxygenated which is returned to the aquaculture tanks. These
193 systems working together enable the ammonia that is toxic to the aquatic animals to be filtered out
194 of the system, while at the same time providing nutrients to the plants [32].
195


196 **2.3.2 Hydroponics**

197 Hydroponics is a subdivision of hydroculture where the plants are grown without soil, instead of
198 using mineral nutrient solutions in a water solvent. Certain plants such as terrestrial plants can be
199 grown with their roots exposed to the mineral solutions which could be supported by an inert
200 medium. One of the interesting parts of this system is that the nutrients can come from a plethora of
201 sources and not confined to duck manure or fish waste [33]. This requires minimal labour, time and
202 energy. Additionally, there are many methods of installation of these systems and can be chosen
203 according to the owner's choice. The shift from traditional irrigation to hydroponics will result in

204 decreased use of toxic agrochemicals, pesticides and others. To prevent excess costs and increase
205 profits, hydroponics is based on automation of nutrient supply. Several types of research are aimed
206 at automation of nutrient cycle in closed systems and standardization of the substrate analysis [34].
207

208 **2.3.3 Aeroponics**

209 Aeroponics is based on the principle of cultivating plants where the roots are not immersed in any
210 kind of substratum or soil but immersed in containers filled with flowing plant nutrition (Figure 5).
211 This method uses a continuous cycle in an enclosed space and enables the workforce to learn the
212 skills in a short time whereas in traditional agriculture the workforce requires skills which are not
213 easily transferable. Putting these systems into perspective, to produce 1 kilogram of tomatoes, it
214 requires up to 400 litres in traditional irrigation, 70 litres in hydroponics and only 20 litres in
215 aeroponics [35]. Furthermore, instead of using the richest soil for plants in traditional methods,
216 aeroponics allows the oxygen to provide nutrients to the rhizosphere which is the root zone of the
217 plant [36].
218

219

220 **Figure 5:** Pictorial representation of an Aeroponics system
221

222 **2.4 Advantages of vertical farming**

223 Vertical farming can produce a harvest that is environmentally friendly, nutritious and affordable
224 [37]. These farms would not require long-distance transportation resulting in reduced fuel usage,
225 which is currently consumed (20 percent) by all USA. [38, 39]. Plants would be grown using
226 technologies such as aeroponics or hydroponics which requires little or no soil-based traditional
227 agricultural practices [9,40]. Vertical farming not only produce crops year-round and be more
228 environmentally-friendly but also will make more efficient use of waste. According to Despommier
229 (2007), a city's grey, brown and black water waste could be used for irrigation. Solid waste and plant
230 matter could be converted to methane gas using anaerobic digesters that could then be used to
231 generate electricity for the farm.

232 A vertical farm could also help diminish unemployment issues faced in many urban settings. The
233 farm would need workers to construct and maintain the structure. Also, they can include a system of
234 grocery stores, organic food markets, and eateries, and local distribution and transportation networks
235 that would offer opportunities for a variety of other food-service related positions [9,41]. From a

236 psychosocial perspective, consumers will find confidence and comfort in knowing where their
 237 produce came from [42].
 238 By growing food in a neighbourhood, natives would not only have access to a year-round supply of
 239 healthy food but also would have the security that their food locally grown and because there is a
 240 limited transportation demand, the prices would be lower. Because of lower prices and better access
 241 to a healthy diet, the neighbourhood can witness an increase in their general health by lowering their
 242 risks of diseases [43]. Employees of the farm can directly sell their produce at reasonable prices to the
 243 members of the community. It is reported that these types of farmers feel more satisfied in selling the
 244 food to people with whom they have long-term relationships [38]. While using 90 percent less water
 245 than a conventional farm, the Den Bosch farm in the Netherlands has been able to achieve yields that
 246 are virtually three times greater than the average soil-based production system [44].
 247

248 **2.5 Existing vertical farms**

249 There are several examples in the world that proves that vertical farming is a much better alternative.
 250 Although there are many case studies over the world, the right amount of information is still not
 251 accessible. The paper investigates four such success stories which have set an example of having
 252 vertical farming including (Table 1). The future farm known as 'plant lab' in Den Bosch, Netherlands
 253 uses artificial environmental planning for growing strawberries, bananas and other fruits. It showed
 254 that the plants grew 3 times faster in LED and hydroponics than in general conditions which would
 255 rely on pesticides and agrochemicals [45].
 256

257 **Table 1:** Existing vertical farms in the world.
 258

Location	Owner	Details	Location type	URL
South Korea	Rural development authority	Three stories tall Experimental Uses grow lights	Rural	N/A
Japan	Plant factories (numerous-50+) Nuvege	Half use sunlight and the others use grow lights(Nuvege) Many are commercial successful	Peri-domestic	www.nuvege.com
Singapore	Sky Greens	Commercial Uses sunlight Four stories tall	Inside the city limits	www.skygreens.com
Chicago	The plant	Three stories NGO Uses grow lights	Inside the city limits	www.theplant.com
Chicago	Farmed Here	Commercial Uses sunlight	Inside the city limits	www.farmadhere.com

Vancouver	Alterruss	Uses sunlight Four stories tall	Inside the www.alterruss.com city limits
-----------	-----------	------------------------------------	---

259

260 An office headquarters of Pasona located in downtown Tokyo which is 9 stories has been using
261 hydroponics and soil-based farming inside the building. Apart from profits of plantation and beauty,
262 the shading causes a reduction in energy usage, improved occupant health, the increased comfort of
263 employees and others. The office contains 200 species of fruits, vegetables and rice which comprises
264 a total space of 43,000 square feet [46]. Other techniques such as underground controlled environment
265 agriculture (CEA) and underground pharming has also been applied. This shows a golden
266 opportunity for commercial sectors to be independent of the current food chain and logistics and
267 becoming self-sustainable. Research has shown there is immense potential in using community and
268 roof gardens to produce vegetables and fruits in dense neighbourhoods. The farming concrete project
269 in New York mapped all the community gardens into tracking the amount of production of plants.
270 A study at the University of Bonn (Germany) experimented the economic feasibility of vertical farm
271 by constructing. The farm was hosted by 37-floor high building and was simulated in Berlin. The
272 farm yielded about 3500 of vegetables and fruits, 140 tons of tilapia fillets which was 516 times more
273 than a quarter of hectares footprint of stacking multiple harvests. The building costs up to € 210.5
274 million dollars including equipment. The crop production was around 500 times more than growing
275 them at same area [47]. The building which will house the vertical farm can be net zero for energy,
276 water and waste as there would no human habitat and interior structure will remain simple. The
277 building can go through many programs such as LEED (Leadership in Energy and Environmental
278 Design), LBC (Living Building Challenge) and others to ensure sustainability and generate revenue
279 throughout the lifecycle of the building.

280 Innovations in Fuji City (Japan) experimented vertical farming in March 2015. The total floor space
281 enclosed 185.5 square meters and focused on leafy vegetables. The production rate is around 12,420
282 stems/roots/day. The factory grows five varieties of lettuces, mainly frilled lettuce, green leaf and
283 romaine. It has advanced, automatically-controlled equipment that monitors everything from air
284 temperature, humidity, and CO₂ concentration to nutrient liquid. Secondly, a company named
285 SPREAD Co. Ltd. has implemented one of the world's first large-scale vegetation in form of vertical
286 farming that is fully automated. It is proficient of producing 30,000 head of lettuce per day. It encloses
287 an area of 4,400 square meters and is projected to start shipping in summer of 2017. The investment
288 including R&D services and test facilities was approximately 1.6 to 2 billion yuan. The plant recycles
289 98 percent of the water used for cultivation in the factory. Labor cost has been reduced by 50 percent
290 by fully automating the processes from seeding to harvest. Importantly, Energy cost has been
291 reduced around 30 percent per head of lettuce with the use of LED lights specifically created for
292 SPREAD and the development of a unique air conditioning system with an initial investment
293 reduction of 25 percent cost per head of lettuce [48]. It is estimated that roughly 20 percent of plant
294 factories are making profit, 60 percent are breaking even, and 20 percent are losing money. The
295 number and percentage of plant factories that are profitable have been increasing steadily since 2009.
296 Depreciation costs account for roughly 30 percent, labor costs for 25 percent, and electricity [49]. In
297 2014, Mirai and Mitsui Fudosan Co., Ltd. initiated a full-scale operation of one of the largest plant
298 factories in Kashiwa-no-ha Smart City, Japan. The facility was targeted to produced 15 types of
299 vegetable. The building enclosed a gross floor area of 1,260 square meters [50]. Singapore has also

300 been successful in vertical farms and there are many case studies to learn from. One of them is the
301 Singapore skygreens. The 4 stories rotating greenhouse produces 1 ton of leafy greens on alternate
302 days using a hydraulic-driven system that rotates and provides sunlight for the growing holders. The
303 farm consists of 1,000 vertical towers and produces 800 kilograms of spinach, Chinese cabbage and
304 other greens for everyday use to provide the active Southeast Asian metropolis [51]

305

306 **2.6 A spotlight on China**

307 China is one of the largest countries in the world with a population of 1.42 Billion as of 2017 [52]. It
308 has experienced high rates of urbanization in the recent years. One of the evidence is the floor space
309 of completed buildings in 2013 was almost double that of 2007 [53]. The United Nations predicted
310 that the percentage of China's urban residents was expected to be 60 percent by 2020, and the urban
311 population would increase 350 million by 2025 with 219 cities having a population of more than 1
312 million (compared to 35 cities in Europe) [54]. The demand for land for urban housing soared along
313 with demand for business and built-up land use. Consequently, much of the farmland was converted
314 into non-agricultural built-up environments [55,56]. A land alternation survey performed by the
315 Ministry of Land and Resources in 2011 found that about 91.05 percent of the farmland loss was
316 caused by usurpation for construction, cultivated land is down to only 0.08ha/person, nationwide, a
317 figure which is just 40 percent of the world average [57]. For all these reasons, China started the
318 research and practice of vertical farming in early 2004 and being widely introduced in the market
319 since 2011. Meanwhile, because of the Low manufacturing costs and labour costs relative to other
320 developed countries, the industry attracted a huge amount of investment. For instance, in 2014, the
321 Evergrande group from China invested a billion dollars to established 22 vertical farming [58]. Dr
322 Qichang Yang as the chief scientist presided over the research which funded 8 million U.S dollars on
323 intelligent plant factory production technology, national high science and technology project.
324 Organized by Chinese Academy of Agriculture sciences [59]. However, even though the vertical farm
325 in China is growing rapidly, the government policy and economic support are still a very limited
326 contribution to its fullest potential which leads to project defects of operational capability and
327 maintenance defects. Furthermore, it caused low economic benefits and high energy consumption
328 [60]. Under current national policy and legal system, it is hard to solve the problems about lifecycle
329 cost of a vertical farming project such as maintenance, monitoring, marketing and energy utility is
330 hard to increase the acceptability of vertical farming between the public community. Another adverse
331 factor is lack of regional scientific research institution except certain state-level lab doing research on
332 vertical farming, which led to the local vertical farming project cannot effective technical support
333 [61,62]. This paper focuses on developing a framework to look at the feasibility of having vertical
334 farms starting from university scale.

335 Universities have a huge demand from young people. As of 2016, China had 2596 universities
336 compared to its population of 1.379 billion [63]. This implies the staff and students will be on a
337 constant growing curve in the upcoming years. We believe that educational universities have
338 managed to have stable income sources for many years. A report from 2017 by Economic
339 Commentary states that the individual fees of the students have risen in private and public
340 universities [64]. This is a very big opportunity to introduce vertical farming to showcase the benefits
341 and encourage other industries to apply these techniques.

342 According to a 2017 report, the unit price for a kilogram of rice is \$0.75-\$0.77 . It takes about 100~240
 343 days with two production periods (April-July and August -October) [65]. For 0.0667 hectares (equals
 344 to 1 mu), the costs involved are \$22.3 for fertilizer, seed and \$23 for corresponding pesticide, labour
 345 force \$46.15 RMB, rent for land \$46.5 which equals to a total cost of \$107.7 to \$138.5 in typical
 346 conditions. In 1996, 19.51 hundred million mu of farming area was available but in 2010 only 18.26
 347 hundred million mu of farming area was available. The area of farmland per capita is 1.38 (only 40
 348 percent of World average). Only 6.09 percent of total farming land have an ability which can produce
 349 Over 1000 kg per mu. Table 2 is an example where it shows the agricultural demand of China in 2012
 350 and the numbers increase as the population rises. This is a burden on the farmers as well as the
 351 acquisition of more fertile land.

352

353

Table 2: Average agricultural demand in China in 2012

354

	Daily Product	Beans& Nuts	Livestock	Fish& Shrimp	Eggs	Vegetables	Fruits	Grains
Daily demand(g/person/day)	300	30-50	50-75	75-100	25-100	300-500	200-400	250-400
Conversion factor (1/edible rate)	1.00	1.30	1.00	1.75	1.19	1.15	1.39	1.19
Annual Min. demand(kg/person)	110	14	18	48	11	126	101	109
Annual Max. demand(kg/person)	110	24	27	64	22	210	203	174
Population 100(million)	13.08	13.08	13.08	13.08	13.08	13.08	13.08	13.08
Annual Min. demand (100 million tons)	1.432	0.186	0.238	0.626	0.142	1.647	1.327	1.420
Annual Max. demand (100 million tons)	1.432	0.310	0.358	0.835	0.284	2.745	2.654	2.272

355

356 In Wuhan, which is a city in China has a population of 10.2 million has an urban area of 8494 square
 357 kilometres. There is a severe shortage of agricultural land and resources suffer inflation of prices.
 358 Only 61.3 percent of agricultural land is cultivable, and rest includes forestland, pasture area, park
 359 area and others. The national land contamination rate in China is 19.4 percent. Over 4.7 million
 360 hectares of land in steep slope cultivation which gives rise to serious soil erosion, main component
 361 parts of erosion matter are coming from farmlands. Additionally, there is a huge economic issue for
 362 these farmers and direct farm income is no longer the only source [66]. Wuhan has many universities
 363 and one of them is Huazhong University of Science and Technology which is one of the largest
 364 universities in China. This university was chosen to test the feasibility of implementing vertical
 365 farming on a campus scale.

366

367 **2.7 Methodology**

368 This study reviewed the latest trends in technology and best practices on vertical farming from google
369 scholar and trade information around the world. In the first step, the data of existing vertical farm
370 practices was collected through media and literature research. A survey that was carried out in
371 Huazhong University of Science and Technology (HUST) in the city of Wuhan, China to find out the
372 average daily food requirements across campus including students, staff and faculty. HUST is one of
373 the largest universities in China. The campus has 24 canteens which bring food from all over the
374 province to feed its enormous population of 57,839 people. The university as of January 2018 has
375 24599 undergraduates, 23140 graduates and 5500 staff and 4600 retire [67]. The climate, logistics and
376 demand of the city were taken into consideration while analyzing the demand proportions. In the
377 survey, with the help of General Services Department and Data Information Centre of HUST, food
378 consumption and demand data were collected from all canteens and restaurants in the campus
379 boundary. The data was then segregated into types of food, seasonal variations, amount of
380 consumption and their cost. A mixed method mode was chosen for this research to find the feasibility
381 and challenges to introducing vertical farming on the campus of HUST which could encourage
382 sustainable urban agriculture and be self-sustainable while being independent of external farming
383 conditions. Based on Central Limit Theorem, a statistical concept model was developed to determine
384 the financial scenario if a vertical was built and operated on campus to supply food to the people
385 belonging to the university. Using this model and previous case studies, a qualitative and
386 quantitative analysis was carried out for governing the advantages and challenges of modern urban
387 agriculture in this genre of our built environment. The data focused on two aspects, the one is the
388 production capacity of the current global vertical farms, such as annual output value, production
389 efficiency, vegetable species and economic benefit. And another is the usage condition of vertical
390 farming technologies. In the next step, we chose Huazhong University of science and technology
391 (HUST) as a sample to gather the specific information of all 24 canteens about procurement chain and
392 supply quantity. The data for total fruits and vegetables consumed the year 2016 was collected.
393 According to the annual report, the total amount of fruits and vegetables consumed were 2,639,720.40
394 and 108,164 kilograms respectively which resulted in a total cost of \$2,477,247.38. The individual
395 breakdown of these plants and their costs associated were collected and analyzed.

396

397 *The Assumptions made for the model to conduct this study were*

- 398 1. The vertical farm building is simple box-shaped having a building footprint of 5000 square
399 meters.
- 400 2. The building can provide more than 6.67 hectares of planting space by Multilayer cultivation.
- 401 3. The construction price for each square meter is about 1450 RMB or \$227. (In Wuhan, China)
- 402 4. Unpredictable factors such as building materials were temporarily ignored, the average building
403 cost resulted in 5.25 million per floor.
- 404 5. 0.0667hectares which are equal to 1 mu (Chinese standard farmland area unit)
- 405 6. Under typical conditions, the costs included in the cost of 145 RMB fertilizer, corresponding
406 electricity and water 150-RMB, labour force 300 RMB, land 300 RMB equivalent to the total cost
407 of 700 to 900 RMB, is the rent under typical conditions

408 7. Annual operating costs are 5,000 RMB (\$775.20)
409 8. We give two types of changes of operating costs per year. One is that the annual cost this year is
410 500 more than the previous year, and the other is that the annual cost this year is 1.1 times of the
411 previous year.
412 9. The canteen's vegetable prices are considered fixed each year.
413 10. Cucumber-30000 kg per 0.0667 hectares
414 11. Tomatoes, two times a year, 20000 kg/0.0667 hectares, 40000 kilograms per 0.0667 hectares per
415 year
416 12. Pepper, once a year, 5000 kg/0.0667 hectares
417 13. Carrots, two times a year, 10000 kg/0.0667 hectares/year
418 14. Chinese cabbage, once a year, 10000 kg/0.0667 hectares/year
419 15. Chinese cabbage, 8 times a year, 10000 kg/0.0667 hectares/year
420 16. Kale, two times a year, 3000/0.0667 hectares,6000 kg/0.0667 hectares per year
421 17. lotus root, once a year, 2000 kg/0.0667 hectares
422 18. If the building has only one floor, then we can assume the cost of the building is about 15 million,
423 else if the building has three floors, then we can assume the cost of the building is about
424 15+10+10=35 million.

425

426 3. Results

427 The goal behind the statistical model was to calculate the following

428 1. Breakeven time on the initial investment.
429 2. Profits which can be generated from the vertical farm if the eligible resources are recycled?

430 From the Central Limit Theorem, the output was set for nine varieties of vegetables to be random
431 variables that satisfy the normal distribution. The mean value is the aforesaid annual output of mu,
432 and the standard deviation parameter is set to 1/10th of the yield per 0.0667 hectares per year as
433 shown in formula 1.

434

$$435 \left\{ \begin{array}{l} \text{output_1} \sim N(\mu_1, \sigma_1^2) \\ \text{output_i} \sim N(\mu_i, \sigma_i^2) \\ \vdots \\ \text{output_10} \sim N(\mu_1, \sigma_1^2) \end{array} \right. \quad (\text{Formula 1})$$

436 The formula shows the annual output of each of the nine varieties of vegetables that satisfies the
437 normal distribution expression. The output of different vegetables does not affect each other
438 independently. (assuming climate conditions are maintained). W is used to indicate the silent costs
439 which are the initial investment of the vertical farm. Op costs (operating costs) is used to represent
440 the annual operating costs, num_unit_i to represent the number of 0.0667 hectares of [i]th vegetables.
441 For example, num_unit_1=2 and num_unit_9=1 means that [2 *0.0667] hectares of cucumber are
442 planted, and cabbage is planted in [0.0667*hectares]. Price [i] represents the price of each vegetable.
443 The "rec" years represents recovery/breakeven years of the recycling cost can be expressed as the
444 total cost divided by the annual profit (Formula 2).

445

$$446 \quad rec_years = \frac{W}{\sum_{i=1}^{10} (output_i \times num_unit_i \times price_i) - op_costs} \quad (Formula \ 2)$$

447

448 The parameters of the random variables representing the output value of each of nine kinds of
 449 vegetables per 0.0667 hectares are calculated. The average value is therefore mentioned per-mu per
 450 year and the standard deviation parameter is set to 1/10th of the annual yield per 0.0667 hectares.
 451 First, (cucumber, tomato, potato, cabbage, and five kinds of vegetables) are planted on 2*0.0667
 452 hectares and the rest are not planted. They can be expressed as in (Formula 3):
 453

$$454 \quad \begin{cases} output_1 \sim N(30000, 3000^2) & straight \ cucumber \\ output_2 \sim N(40000, 4000^2) & tomato \\ output_5 \sim N(11000, 1100^2) & big \ potato \\ output_7 \sim N(10000, 1000^2) & pakchoi \\ output_8 \sim N(15000, 1500^2) & cabbage \ plants \end{cases} \quad (Formula \ 3)$$

455

456 According to the Distribution Law of the normal distribution of random variables, if the building
 457 has only one floor, then regardless of how the annual operating costs change, the average years of
 458 recycling costs is 11.5 years. The substitution calculation can get the 68.3 percent confidence to recover
 459 the cost between 10.5-12.9 years, there is 95.4 percent confidence to recover the cost between 9.6 and
 460 14.5 years. If the climate is suitable and technical management is good, the cost may be recovered in
 461 10 years. And if the technical management and climate situation are poor, the cost will also be
 462 recovered in 15 years. If the average value and fluctuation range of production are changed in the
 463 actual situation, the value of the parameters in the model can be adjusted and recalculated.

464 After recovering the cost, we can choose to grow (2 *0.0667) hectares of cucumbers, tomatoes,
 465 potatoes, bokchoy, and cabbage steadily each year. The average income is about 947,000 RMB
 466 (\$148000). There is 68.3 percent certainty that the annual income is between 825,000 and 1,041,000
 467 RMB (\$129,000-\$163,000). There is 95.4 percent certainty that the income will range between 757,000
 468 and 1136,000 RMB (\$118,000-\$177,500) per year.

469 We can also select cucumbers, tomatoes, peppers, carrots, potatoes, Chinese cabbage, Chinese
 470 cabbage, cabbage, and cabbage. Each of the nine high-yield and high-demand vegetables grows
 471 0.0667 hectares for each variety, and the remaining land can be allocated on its own, which can
 472 achieve an average annual stable profit of 592,000 RMB (\$92,500). Even if the remaining land is not
 473 cultivated, there is 68.3 percent certainty that makes an annual income of 533,000-651,000 RMB
 474 (\$83,000-\$102,000), with 95.4 percent of the determination to make annual income about 474,000-
 475 710,000 RMB (\$74,000-\$110,000).

476 Additionally, If the building has three floors then regardless of how the annual operating costs
 477 change, the average years of recycling costs would be 9 years, the substitution calculation can get 68.3
 478 percent certainty to recover the cost between 8.2-10 years, there is a 95.4 percent certainty to recover
 479 the cost between 7.5 and 11.3 years. And the annual income of planting vegetables is three times that
 480 of the original strategy where the building has only one floor. If the building has ten floors, then we
 481 can assume the cost of the whole building is about 120 million RMB (\$18.75 million). Then the whole
 482 building can provide more than (10*10*0.0667) hectares of planting space. The building can plant all

483 kinds of vegetation to meet the demand of the university. The calculation method is the same as
484 above.

485 **4. Discussion**

486 Universities have multiple sources of income through research, industry involvement, investment,
487 government grants and others. This is one of the major reasons of why universities can implement
488 new technologies such as vertical farming for their students and staff. The increasing population will
489 also increase the demand-supply chain of food systems. This can be managed by installing vertical
490 farming.

491 Introducing vertical farms in university campuses will not only save money and resources but also
492 facilitate multiple streams of income. Research labs can be established in these farm buildings where
493 people from national and international institutions can be brought in for new innovations and
494 technologies. These farms will be able to supply specific foods according to specific seasons.
495 Additionally, universities can monitor the production and usage in real time and make decisions
496 could benefit the society. This will start an incredible chain of advanced research and development
497 in the field of sustainability, science, social science, business, materials, agriculture, mathematics and
498 other interdisciplinary domains. The universities can set an example of taking bold initiative which
499 would bring them fame and they can attract resources. In the educational industry, profits may not
500 be focused on short-term gains rather than pushing boundaries for students and faculty with having
501 financially benefited in the long term.

502 Construction of vertical farming can save labour, packaging, logistics costs. Logistics have direct and
503 indirect impacts on the environment. The use of plastic sheets, styrofoam and others are non-
504 biodegradable. Also using fossil fuels in vehicles have a direct impact on the air pollution and
505 depletion of natural resources. The produce from vertical farming is free from any harmful chemicals
506 and is more healthy than traditional farming. Furthermore, this system produces the least waste
507 which is highly beneficial. The vertical farming building can serve as a teaching space for the students
508 all over the world and can inspire other institutions in getting involved in advanced urban
509 agriculture. For the general production of plants, the students can be considered as a key element.
510 Training and part/ full-time employment can motivate them to get involved in the process. This will
511 enable to create a strong sense of community belongingness. Whenever there is an excess production,
512 the vegetation can be donated or sold at a reasonable price to people outside of the university. The
513 building can be built through best sustainable practices and the operational energy can be harnessed
514 from renewable sources such as solar, wind and hydropower. Finally, there can be multiple
515 opportunities for bringing in financial resources from research labs, innovations in technology,
516 governmental capitalizations and others.

517

518 **5. Conclusions**

519 The concept of introducing vertical farming can be a strong tool used in the built environment for
520 fighting climate change and global warming. As per the study conducted on various scenarios, a
521 vertical farm can break even economically in 10-20 years and could alleviate the stress on the
522 environment. Additionally, the stress on fertile land all over the world can be reduced to great extent
523 when industries start becoming self-sustainable. The technology has been sporadic in nature

524 throughout the countries which makes it difficult to recognize its true value. Furthermore, enterprises
525 who have initiated vertical farming have not been completely transparent which results in less
526 awareness among industries, and the application on a large scale is not evident. The quality of all
527 aspects of technologies in vertical farms are also important because it relates to the ability of
528 these to achieve sustainable development and achieve cost recovery and profitability.
529 However, in the vertical farm environment, the yield and fluctuation of crops are still unclear,
530 and further practical experiments and conclusions are needed. For using vertical farming on a
531 pragmatic undertaking, there should more research focused on industrial scale, location-based
532 climate analysis, financial models scoring lower breakeven time and higher profit margins. There can
533 be federal and state incentives to push this idea among the citizens. We believe that vertical farming
534 and sustainable urban agriculture has tremendous potential in recovering from social and planetary
535 issues.

536

537 **Conflicts of Interest:** "The authors declare no conflict of interest."

538

539 References

1. FAO.; IFAD.; UNICEF.; WFP and WHO. The State of Food Security and Nutrition in the World 2017. Building resilience for peace and food security. Rome, FAO. 2017; pp.2-199; 978-92-5-109888-2 [[CrossRef](#)]
2. Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Moran, D.; Rounsevell, M. D. Losses, inefficiencies and waste in the global food system. *Agricultural systems*, 2017, 153, 190-200. [[CrossRef](#)]
3. Vertical farm-The Problem, Dickson Despommier, 2017 Available online: <http://www.verticalfarm.com/> (accessed on 22 April 2018).
4. Vertical Farming: The Future of Agriculture? Josh Hamilton, 2016 Available online: <https://www.honeycolony.com/article/vertical-farming/> (accessed on 20 Nov 2017).
5. Fischetti, M. Growing vertical. *Scientific American*, 2008, 18(S3), 74-79. [[CrossRef](#)]
6. Mancebo, F. Urban Agriculture for Urban Regeneration in the Sustainable City. In Quality of Life in Urban Landscapes. *Springer*, Cham. 2018, 311-317 [[CrossRef](#)]
7. Fred H. Besthorn. Vertical farming: social work and sustainable urban agriculture in an age of global food crises. *Australian Social Work*. 2013, 66(2), 187-203. [[CrossRef](#)]
8. Banerjee, C.; Adenauer, L. Up, up and away! the economics of vertical farming. *Journal of Agricultural Studies*. 2014, 2(1), 40-60. [[CrossRef](#)]
9. Despommier, Dickson. "The RISE of VERTICAL FARMS." *Scientific American*, vol. 301, no. 5, 2009, 80-87. [[CrossRef](#)]
10. Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U. B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarm). *Renewable Agriculture and Food Systems*. 2015 30, 1, 43-54. [[CrossRef](#)]
11. World Population Prospects: The 2017 Revision. *United Nations, Department of Social Affairs*. Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. 2017, 7 Available online: <https://www.compassion.com/multimedia/world-population-prospects.pdf> (accessed on 20 Aug 2017).
12. Cities and their rural surroundings. The urban- rural interface. UN-Water Decade Program on Advocacy and Communication. Available online:

http://www.un.org/waterforlifedecade/swm_cities_zaragoza_2010/pdf/04_cities_and_rural_surroundings.pdf (accessed on 20 Aug 2017).

13. United Nations Convention to Combat Desertification (UNCCD). UN Convention to Combat Desertification. Land matters for climate. Reducing the gap and approaching the target. 24 pp. 2015. Available Online: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/2015Nov_Land_matters_For_Climate_EN_G.pdf (accessed on 20 Nov 2017).

14. Costanza, R.; de Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. *Global environmental change*, 2014, 26, 152-158. [[CrossRef](#)]

15. Nkonya, E.; Gerber, N.; Von Braun, J.; De Pinto, A. Economics of land degradation: The costs of action versus inaction, *IFPRI* issue brief no. 68. 2011,9 [[CrossRef](#)]

16. United Nations Convention to Combat Desertification 2014 (UNCCD). The Land in Numbers Livelihoods at a Tipping Point. UN Campus, Platz der Vereinten Nationen 1, 53113 Bonn, Germany. 2014 Available Online: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/Land_In_Numbers_web.pdf (accessed on 20 Aug 2017).

17. Country economy, China population, 2017. Available online: <https://countryeconomy.com/demography/population/china> (accessed on 22 Aug 2017).

18. Hooke, R.; L., Martín; Duque, J. F; Pedraza, J.; Land transformation by humans: a review. *GSA today* 2012, 22(12), 4-10. DOI: 10.1130/GSAT151A.1 [[CrossRef](#)]

19. World Hunger Rise. How close are we to #ZeroHunger? Available online: <http://www.fao.org/hunger/en> (accessed on 8 March 2018)

20. *The state of food security and nutrition in the world* 2017. Available online: <http://www.who.int/nutrition/publications/foodsecurity/state-food-security-nutrition-2017/en/> (accessed on 20 April 2017).

21. United Nations, Department of Economic and Social Affairs, Population Division (UNPD) World Population Prospects: The 2008 Revision, Highlights, Working Paper No. ESA/P/WP.210.2009. Available online: http://www.un.org/esa/population/publications/wpp2008/wpp2008_highlights.pdf (accessed on 8 April 2018)

22. Mora, C.; Tittensor, D. P.; Adl, S.; Simpson, A. G.; Worm, B.; How many species are there on Earth and in the ocean?. *PLoS biology* 2011, 9(8), e1001127. [[CrossRef](#)]

23. Schmidhuber, J.; Tubiello, F. N; Global food security under climate change. *Proceedings of the National Academy of Sciences* 2007, 104(50), 19703-19708 [[CrossRef](#)]

24. Sustainable land management contribution to successful land-based climate change adaptation and mitigation. Available online: https://www.unccd.int/sites/default/files/documents/2017-09/UNCCD_Report_SLM.pdf (accessed on 20 January 2018).

25. Land matters for climate. Reducing the gap and approaching the target. Available online: https://www.unccd.int/sites/default/files/documents/2015Nov_Land_matters_For_Climate_ENG_0.pdf (accessed on 22 April 2017)

26. An, R.; Ji, M.; Zhang, S. Global warming and obesity: a systematic review. *Obesity Reviews* 2018, 19(2), 150-163. [[CrossRef](#)]

27. World Energy Outlook 2015 - Executive Summary - English Version. Available online: <https://www.iea.org/Textbase/npsum/WEO2015SUM.pdf> (accessed on 28 January 2018)

28. Connor, R., 2015. The United Nations world water development report 2015: *Water for a sustainable world* (Vol. 1). UNESCO Publishing. [[CrossRef](#)]

29. Morris, S and Holstead, K.L. Review of the economics of sustainable land management measures in drinking water catchments 2013. CREW report CD2012/34 Available online: crew.ac.uk/publications. (accessed on 17 January 2018)

30. Bin Kaichun. The vegetable distribution mode for college canteen in China. *China Market*. 2011 10. 105-106. [\[CrossRef\]](#)

31. Xiuzhen, Zhang.; Hong, Tan.; Yuanfeng, Wu., Weichun, Li.; A joint distribution system for agriculture products of College canteen in China. *E-Business Journal*. 2013, 12. 95-96 :[\[CrossRef\]](#)

32. Higgins KW, inventor. Aquatree Global, Llc, assignee. *Aquaponics system*. United States patent application US 14/254,446. 2015 Oct 22. [\[CrossRef\]](#)

33. Santos, J. D. D.; Silva, A. L. L. D.; Costa, J. D. L.; Scheidt, G. N.; Novak, A. C.; Sydney, E. B.; Soccol, C.R. Development of a vinasse nutritive solution for hydroponics. *Journal of environmental management*. 2013, 114, pp.8-12. [\[CrossRef\]](#)

34. Savvas, D. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. *Journal of Food Agriculture and Environment*. 2003, 1, 80-86. [\[CrossRef\]](#)

35. R, Ziegler. The vertical aeroponic growing system. Patent Pending. *Synergy International Inc.* 2015. [\[CrossRef\]](#)

36. Methodologies. Botanicare. Available online: https://www.botanicare.com/hydro_101/nft-nutrient-film-technique/ (accessed on 6 February 2018).

37. Walsh, B. America's food crisis and how to fix it. 2009, Available Online: <http://www.time.com/time/health/article/0,8599,1917458,00.html>. (accessed on 8 Nov 2017)

38. Macias, T.. Working toward a just, equitable, and local food system: The social impact of Community-Based agriculture. *Social science quarterly*, 2008, 89(5), 1086-1101. [\[CrossRef\]](#)

39. Polack, R.; Wood, S.; Bradley, E. Fossil fuels and food security: Analysis and recommendations for community organizers. *Journal of Community Practice*, 2008, 16(3), 359-375. [\[CrossRef\]](#)

40. Despommier, D. The vertical farm essay 1: Reducing the impact of agriculture on ecosystem function and services. 2007. Available online: <http://www.verticalfarm.com/more?easy1> (accessed on 23 Aug 2017).

41. Hwang, J. Vertical farming in Las Vegas? Beyond pragmatism toward desire. In M. White & M. Przybylski (Eds.), *On farming: Bracket 1*. New York: Actar Publishing. 2010, 180-187

42. Dixon, J.; Omwega, A.M.; Friel, S.; Burns, C.; Donati, K.; Carlisle, R. The health equity dimensions of urban food systems. *Journal of Urban Health*, 2007, 84(1), pp.118-129. [\[CrossRef\]](#)

43. Larsen, K.; Gilliland, J. A farmers' market in a food desert: Evaluating impacts on the price and availability of healthy food. *Health & Place*, 2009, 15(4), 1158-1162. [\[CrossRef\]](#)

44. Max, A. Future farm: sunless, rainless, indoors. 2011, 4 Available online: <https://www.smh.com.au/technology/future-farm-a-sunless-rainless-room-indoors-20110411-1db87.html> (accessed on 25 Aug 2017).

45. Plant paradise emancipation of the plant. Available online: <https://www.plantlab.nl/plant-paradise/> (accessed on 4 April 2017).

46. Andrews, K; Pasona Urban farm by Kono Designs. Available online: <https://www.dezeen.com/2013/09/12/pasona-urban-farm-by-kono-designs/> (accessed on 7 April 2017).

47. Banerjee, C.; Adenaeuer, L. (2014). Up, up and away! The economics of vertical farming. *Journal of Agricultural Studies*. 2014, 2(1), 40-60. [\[CrossRef\]](#)

48. SPREAD to Construct World's First Fully Automated, Large-scale Vegetable Factory. **2015**. Available online: <https://www.prnewswire.com/news-releases/spread-to-construct-worlds-first-fully-automated-large-scale-vegetable-factory-300122974.html> (accessed on 9 April 2017).

49. Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. *Proceedings of the Japan Academy*, **2013** Series B, 89(10), 447-461. [CrossRef]

50. Japan's Largest Plant Factory Producing 10,000 Vegetables Daily Starts Full-Scale Operation at Kashiwa-no-ha Smart City Plant Factory. **2014**. Available online: http://www.mitsufudosan.co.jp/english/corporate/news/2014/0605_01/index.html (accessed on 9 April 2017).

51. About SkyGreens. Available online: <https://www.skygreens.com/about-skygreens/> (accessed on 10 April 2017).

52. Population of China (2018 and historical). Available online: <http://www.worldometers.info/world-population/china-population/> (accessed on 15 April 2017).

53. National Bureau of Statistics of China, 2014. yearbook 2014. China Statistics Press, Beijing 2014. Available online: www.stats.gov.cn/tjsj/ndsj/2014/indexeh.htm (accessed on 17 April 2017)

54. World Population Prospects. United nations2017 Available online: <https://esa.un.org/unpd/wpp/Download/Standard/Population/> (accessed on 18 April 2018)

55. Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. *Land Use Policy* **2009**, 26(2), 322-333. [CrossRef]

56. Li, Y.; Chen, C.; Wang, Y.; Liu, Y. Urban-rural transformation and farmland conversion in China: The application of the environmental Kuznets Curve. *Journal of rural studies*. **2014**, 36, 311-317. [CrossRef]

57. Ministry of Land and Resource of China (MLR) 2011. The publication of land use change survey data of China in 2011. Available online: <http://www.mlr.gov.cn/mlrenglish/communiqué/> (accessed on 19 April 2017).

58. Xishou Yu.; Yueping Liu. Status quo of China plant factory industry development and its future prospect. *Agricultural Outlook*. In Chinese. **2014**, 7, 1673-3908,58-61. [CrossRef]

59. Liu, S., & Teng, P. High-Tech Plant Factories: Challenges and Way Forward. Policy Brief, S. Rajaratnam School of International Studies, **2017** Nanyang Technological University Singapore. [CrossRef]

60. Xishou Yu.; Yueping Liu. Status quo of China plant factory industry development and its future prospect. *Agricultural Outlook*. In Chinese. **2014**, 7, 1673-3908,58-61. [CrossRef]

61. Chen Yuming. Prospect and strategies of the development of vertical farm in Chinese cities. *Modern Business Trade Industry*. In Chinese. **2013**, 23(20):96 1672-3198. [CrossRef]

62. Qichang, Y. Developmental strategy of plant factory. *Science & Technology Review*. **2014**, 32(10), 20-24. [CrossRef]

63. Number of universities in China between 2006 and 2016. Available online: <https://www.statista.com/statistics/226982/number-of-universities-in-china/> (accessed on 21 May 2017)

64. Hinrichs, Peter. Trends in Employment at US Colleges and Universities, 1987–2013. 2106. Available online: <https://www.clevelandfed.org/newsroom-and-events/publications/economic-commentary/2016-economic-commentaries/ec-201605-trends-in-employment-at-us-colleges-and-universities.aspx> (accessed on 23 May 2017)

65. Economic benefit analysis of rice scale cultivation 2012,4. Available online: <http://www.nczfj.com/liangshizhongzhi/20106214.html> (accessed on 25 May 2017)

66. He Xiurong. The thinking about scale of agricultural operation in China. *Issues in Agricultural Economy* 2016, 9, 37(09), 4-15. [CrossRef]

67. The university information profile, Huazhong University of Science and Technology. Available online: <http://www.hust.edu.cn/755/list.htm> (accessed on 28 January 2018)

List of Figures:

Figure 1: - Global land ocean temperature index, NASA; Available online (CrossRef)

Figure 2: Greenhouse gas emissions for major economies, Center for Climate and Energy Solutions; available online [CrossRef]

Figure 3: Energy consumption pattern across industries and their sources, EIA; available online [CrossRef]

Figure 4: Agricultural producer to consumer logistic cycle, prepared by author [30,31]

Figure 5: Pictorial representation of an Aeroponics system, prepared by author

Figure 6: Existing vertical farms,

List of Tables:

Table 1: Existing vertical farms Despommier, D. (2013). Farming up the city: the rise of urban vertical farms. *Trends in Biotechnology*, 31(7), 388-9.

Table 2: Average agricultural demand in China in 2012, Zhenya, Zhou.; Mingjie, Gao.; Wuanxin, Li.; Qing, Zhang.; Qiyu Luo. Estimation of the primary products demand in China based on the balanced diet. Chinese journal of agricultural resources and regional planning. 2015 9. 85-90. [CrossRef]

Appendix A

The vegetable and fruit consumption by HUST (Huazhong University of Science and Technology) in 2016 as per the data collected is shown in the following tables.

Vegetables	Amount(kg)	Price in USD (RMB 6.45 : 1)
Sea mushroom	6.2	11.05
Mushroom(capped)	3583	8474.57
Mushroom	11611.45	32763.87
Mongolia mushroom	166.5	331.32
Babysbreath	25	48.06
Nostoc commune	346.2	1011.91
Straight cucumber	83195.45	51366.13
Towel gourd	29708.6	19212.58

Bitter gourd	21099.9	14339.96
Wax gourd	60530.9	25939.09
Pumpkin	31886.6	16043.10
Horredcucumbern	31780.1	20914.94
Tomato	156396.1	107086.70
Cherry tomato	33856.6	15101.83
Opo squash	11521.5	7025.43
Eggplant	57386	34925.47
Eggplant king	34979.5	40608.17
Pimenton	127100.05	95853.45
Cayenne pepper	26811.85	33270.69
Wuhu pepper	16064	15812.03
Hangzhou-pepper	15437.95	15458.42
Green bean	68904.2	82643.19
Fresh corn	18540.6	33702.60
Fresh lotus root	11073.1	17297.94
Net onion	28949	23002.34
Cutteted lettuce	19264.9	15381.63
Head of lettuce	29397.5	39637.13
Chinese cabbage	105107.7	56670.61
Pakchoi	86014.5	54379.11
Cabbage plants	85700.4	67020.45
Cabbage sprouts	44027	21018.60
Red Brassica campestris	11023	17477.43
Cabbage	157831	78485.54
Rain-water food	11264.7	7121.88
Romaine	16230.45	21568.87
Lactuca sativa	19153.45	16276.58
Spinaciaoleracea	18078.5	21057.89
Caraway	8265.1	13830.48
Cauliflower	36706.85	37887.78
Broccoli	5	6.98

Crowndaisy chrysanthemum	979	948.22
Garlic puree	10765.1	23546.61
The head of garlic	7425	17041.48
Garlic (white)	2104.75	6275.46
Garlic (red)	6613.5	5291.50
Shallot	19372.75	30343.24
Green Chinese onion	16840.25	21484.47
Sweet rice bean	4307.9	5944.23
Shanghai celery cabbage	4465.5	5831.64
Red rice pepper	383.9	1111.26
Purple potato	2453.8	4757.58
Chinese chestnut	2247.7	16243.45
Broccoli	32316.5	41619.14
Parsley	14.3	71.63
White radish	57378.7	25007.83
Carrot	81530.15	51415.07
Green tangerine radish	2	0.54
Dasheen	15365.2	9786.70
Chinese yam	24441.8	61294.12
Big potato	118039.9	67528.17
Big potato fresh	295895.9	253434.75
Sweet potato	26252	21668.22
Lotus Root	75351.15	117068.76
Mud artemisia	1365.5	1683.61
Net mud artemisia	1593.7	5651.79
Mung bean sprout	28355	15352.95
Soybean sprouts	16380	8106.16
Chinese chives	42861.3	31248.33
Blanched garlic leaves	3152.6	7245.57
Garlic bolt	16023.6	25991.50
New garlic sprout	15154.82	17432.36
Celeriac	6007.4	4948.68
Fine celery	12224.15	13308.09
Celery	8510.95	6982.33
Onion	13563.3	9178.45
Fresh ginger	15883.85	17861.98
Galanga	11.5	45.58
Chrysanthemum	309	725.46
Cloud ear	250	426.36
Oyster mushroom	9302.5	12093.28
Enokitake Mushroom	9226.5	15582.62

Pleurotus Mushroom	10263.55	24677.47
Agrocyb cylindracea	2610.3	6143.31
King oyster mushroom (big)	17950.25	29551.17
King oyster mushroom small	142.4	160.67
Baby cabbage 1.1~1.3	2751	4555.61
Baby cabbage	75.6	134.57
Raw corn	1655.6	3071.96
Water chestnuts	12	30.70
Cantonese cabbage	8034.8	15609.87
Fresh water caltrop kernel	788.9	2970.47
Fresh cicada douban	7105.45	23338.08
Cantonese leaf lettuce	21970.5	37636.45
Fresh pea	2338	11555.00
Fresh soya beans	10534.2	31713.67
Special green hang pepper	6549.4	11121.74
Shearing beans	2393	4606.80
Mini-cucumber	1622.1	3810.56
Snow peas	4053	13151.95
Purple cabbage	568.8	501.10
Red hang pepper	2193.73	4097.24
Hotbed chives	2355	6124.09

No.	Fruits	Amount(kg)	Price (RMB)	Price (USD)
1	honey-dew melon	4132	26731.08	4144.353488
2	Seedless watermelon	49824.3	318248.79	49340.89767
3	pawpaw	331.85	3445.29	534.1534884
4	Fuji Crystal apple	38327.5	30233.34	4687.339535
5	pineapple	7246.6	46421.04	7197.060465
6	banana	472	2781.72	431.2744186
7	mango	1863.61	38927.74	6035.308527
8	kiwi berry	1506.4	22385.34	3470.595349
9	Crown pear	3481.65	22312.4	3459.286822
10	lemon	247.63	5087	788.6821705
11	Watermelon with seed	635.2	698.44	108.2852713
12	calamondin orange	95.3	1383.51	214.4976744
	TOTAL	108164.04	518655.69	80411.7349

No.	Canteen name	Breakfast	Lunch	Dinner	Total
1	BAIPIN	92	1105	1147	2344
2	BAIHUI	804	617	598	2019
3	XIYI	2368	4905	4333	11606
4	XIER	422	1218	859	2499
5	LINFENGWAN	31	291	294	616
6	BAIJING	2009	2821	2299	7129
7	YUYUAN	968	1015	1093	3076
8	JIJINGLOU	1875	1667	1529	5071
9	JIXIAN	1444	1723	1449	4616
10	JIEDAIZHONGXIN	69	34	20	123
11	QINGZHEN	230	678	450	1358
12	DONGYI	3405	5364	4001	12770
13	DONGER	404	560	493	1457
14	DONGSAN	607	1109	1111	2827
15	XUEYI	0	2026	1009	3035
16	XUEER	119	159	56	334
17	QIQIN	1049	1051	670	2770
18	TONGQIN	1198	2490	1912	5600
19	DINGXIANG	326	1032	246	1604
20	XINGLIN	0	277	199	476
21	ZIJIN	4983	4695	4356	14034
22	YUNYUAN	837	734	794	2365
23	DONGJIAOGONG	793	4147	3296	8236
24	DONGYUAN	24033	39718	32214	95965

Daily Consumption Statistics in the canteens-provided by Information of Data Centre and Technology