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S1.  Air Mass Factor (AMF) based upon Traditional OMI-NASA Retrieval 14 

 15 
In this Section, the Air Mass Factor (AMF) is calculated based on Equations (2) and (3) on Page 3.  16 
Figure S1 below shows the spatial distributions of AMF within four seasons of 2015, based on 17 
OMI-NASA retrieval.   The AMF values of most places in southern China are between 0.5 and 0.8, 18 
with some pixels having extraordinarily high AMF (>0.85), which happens more frequently in April 19 
(spring) and July (summer) 2015, especially in Hainan, Zhanjiang and Yulin.  None of the pixels 20 
have AMF values lower than 0.25 in all four seasons, indicating that the ratio of apparent column 21 
densities (ACD) to VCD is high.  22 

 23 

 24 

Figure S1. OMI-NASA average AMF in southern China. (a) Jan 2015; (b) Apr 2015; (c) Jul 2015; (d) 25 
Oct 2015. The units of the figures are dimensionless, and AMF ranges from 0 to 1 in most 26 
circumstances. 27 
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 28 

S2.  Air Mass Factor (AMF) based upon BEHR v3.0C Retrieval 29 

 30 
Using BEHR retrieval (with higher spatial resolution datasets), the resulting AMF becomes much 31 
lower in all four seasons in 2015, possibly due to the lack of lightning emissions within NO2 profiles. 32 
There are three retrieval versions for BEHR, namely BEHR v3.0A, v3.0B and v3.0C respectively. All 33 
of them give similar AMF spatial distributions. Even for the most adverse circumstances, the 34 
difference in AMF between the two retrieval algorithms is less than 0.1 (i.e., a percentage difference 35 
of around 10%). We provide BEHR v3.0C AMF spatial plots in Figure S2, as a comparison with 36 
Figure S1. 37 
 38 

 39 

Figure S2.  BEHR v3.0C average AMF in southern China (a) Jan 2015; (b) Apr 2015; (c) Jul 2015; (d) 40 
Oct 2015.; The units of the figures are dimensionless, and AMF ranges from 0 to 1 in most 41 
circumstances. 42 

We notice that there are abrupt changes in AMF in all months compared with the corresponding 43 
spatial plot in Figure S1.  Most pixels have AMF value of less than 0.5, in contrast with AMF in 44 
traditional OMI-NASA product (Figure S1).  For coastal cities, average AMF is higher than inland 45 
areas in general. 46 
 47 
 48 
 49 
 50 
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 58 

S3.  Statistical Indices and Methods for Evaluation 59 

 60 
In analyzing satellite retrieval outputs, we adopt different statistical measures and quantities. In 61 

Section 5.2 (Table 3) and Section 6.2 (Table 4), we first obtain corresponding best fit line by using 62 
linear regression techniques, then base on pairwise comparison of datasets, the equation of best-fit 63 
straight line, Pearson correlation coefficient (R-value), p-value, t-statistics and root mean squared 64 
errors (RMSE) are deduced. Equations (S1) to (S4) below show the working formulae of these 65 
well-accepted statistical parameters used. 66 

 67 
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(S1)  69 

 70 

   p-value = {

Pr(VCD ≥ 𝑥|H)  (right tail)

Pr(VCD ≤ 𝑥|H)   (left tail)

2min{Pr(VCD ≤ 𝑥|H) , Pr(VCD ≥ 𝑥|H)}   (double tail event) 

          71 

(S2) 72 

 73 

  t-statistic (𝑡VCD̂)  = 
VCD̂−VCD0

s.e.(VCD̂)
                               (S3) 74 

 75 

RMSE = √
∑ (VCD̂−VCDi)

2N
i=1

N
                                 (S4) 76 

 77 
In Equation (S1), R-values in Section 5.2 measure the linear correlation between VCDs retrieved 78 

by two different satellite retrieval algorithms, namely 1 and 2 respectively, while in Section 6.2, it 79 
measures the linear correlation between VCD retrieved by different algorithms and MAX-DOAS 80 
tropospheric NO2 VCD measurements. The range of R-value can be from -1 to 1. 81 

 82 
In Equation (S2), H is supposed to be the null hypothesis, p-value indicates the probability 83 

where statistical summary is not less than the actual observed results, if H holds. Smaller p-values 84 
imply higher levels of significance as the null hypothesis may not adequately explain the statistical 85 
trend. 86 

 87 
In Equation (S3), VCD̂ is an estimator of VCD in the linear regression model, VCD0 is a known 88 

constant that may or may not match the actual retrieved VCD, and s. e. (VCD̂) denotes the standard 89 
error of VCD̂ to approximate VCD. 90 

 91 
In Equation (S4), measures the difference between predicted values (i.e., VCD̂ projected on the 92 

best-fit line by linear regression) and true data points (VCD). A lower RMSE is desirable because it 93 
means that most data points are less deviated from the best-fit line. 94 


