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Abstract: Under optimal conditions,  just 3-6 ms of visual stimulation suffices for humans to see motion. 20 
Motion perception on this time scale implies that the visual system under these conditions reliably encodes, 21 
transmits, and processes neural signals with near-millisecond precision. Motivated by in vitro evidence for 22 
high temporal precision of motion signals in the primate retina, we investigated how neuronal and 23 
perceptual limits of motion encoding relate. Specifically, we examined the correspondence between the 24 
time scale at which cat retinal ganglion cells in vivo represent motion information and temporal thresholds 25 
for human motion discrimination. The time scale for motion encoding by ganglion cells ranged from 4.6-26 
91 ms, depended nonlinearly on temporal frequency but not on contrast. Human psychophysics revealed 27 
that minimal stimulus durations required for perceiving motion direction were similarly brief, 5.6-65 ms, 28 
similarly depended on temporal frequency but, above ~10%, not on contrast. Notably, physiological and 29 
psychophysical measurements corresponded closely throughout (r = 0.99), despite more than a 20-fold 30 
variation in both human thresholds and optimal time scales for motion encoding in the retina. These results 31 
demonstrate that neural circuits for motion vision in cortex can maintain and make use of the high temporal 32 
fidelity of the retinal output signals.  33 
 34 
 35 
Keywords: human psychophysics; apparent motion; temporal integration; cat; retina; neural coding; 36 
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1. Introduction 39 
 40 

It has been long known that the mammalian visual system is highly sensitive to motion, even when 41 
presented briefly. For example, Exner [1] reported that when humans view two sequentially flashed stimuli, 42 
the threshold for temporal order detection could be as short as 15 ms.  Subsequent studies showed that under 43 
optimal conditions even 3 - 6 ms temporal-order asynchrony can be reliably discriminated [2-4]. Under 44 
these circumstances, the two stimuli are not perceived separately but as a single moving object (‘apparent 45 
motion’), indicating that the percept involves visual motion processing. 46 

The middle temporal visual area (area MT, or V5) is a region of extrastriate visual cortex in primates 47 
that has been demonstrated to be critical for motion vision [5]. Area MT has among the shortest response 48 
latencies in extrastriate cortex [6], consistent with the observation that human reaction times are shorter for 49 
moving compared with stationary objects [7]. A short response latency is functionally meaningful because 50 
it enables a rapid response to stimulus onset, for example, during collision avoidance. But appropriate 51 
behavioral responses in a dynamic visual environment also require information about the stimulus – such 52 
as the direction of motion – to be resolved at a high temporal rate [8]. Thus, there is a benefit to encoding 53 
stimulus information on the briefest possible time scale. 54 

Visual encoding starts in the retina, where visual transduction and signal processing within retinal 55 
neural circuits culminates in selective encoding of the visual input by the ganglion cells. Ganglion cells 56 
transmit visual information as series of action potentials (spike trains) through the optic nerve, via the lateral 57 
geniculate nucleus (LGN) of the thalamus, to the visual cortex. The majority of ganglion cells in the retina 58 
of cats and primates signal spatio-temporal changes in luminance contrast but do not, by themselves, 59 
provide information about motion direction. Instead, current working models suggest that motion vision 60 
depends on the integration of signals from multiple ganglion cells with spatially offset visual receptive 61 
fields [9-12]. This is supported by computational analysis of population macaque retinal parasol-type 62 
ganglion cell responses to a moving bar recorded in vitro, which showed that motion direction could be 63 
reconstructed from temporal correlations in the cells’ spike trains at a time scale of 10–50 ms [13, 14]. 64 
Thus, the time scale at which ganglion cell spike train ensembles represent visual motion approaches the 65 
inter-spike interval. This suggests that noise variations (variability) in neuronal spike timing may limit the 66 
temporal fidelity of visual motion encoding [15, 16], but to what extent they do so has remained unclear. 67 

Variability in neuronal spike timing is apparent from trial-to-trial variations in the times at which a cell 68 
fires action potentials in response to repeated presentations of the same stimulus. Spike timing variability 69 
stems from noise in neuronal signal transduction and transmission, and its demonstrated underlying sources 70 
include quantal fluctuations in photon absorption, fluctuations in cyclic nucleotides within the 71 
photoreceptors, as well as noise in ion channels and synaptic vesicle release [17]. For several of these 72 
factors, the noise amplitude depends on stimulus parameters such as stimulus temporal frequency and 73 
luminance contrast [18-21]. Here, we postulate that if spike timing variability limits the encoding of visual 74 
motion information, then the time scale for resolving visual motion at the perceptual level should similarly 75 
depend on these stimulus parameters. In agreement with this idea, model analysis of retinal ganglion cells 76 
responses obtained from primate retina in vitro showed that the optimal time scale for decoding retinal 77 
motion signals decreases with temporal frequency and contrast [13]. While other studies have explored the 78 
relation between encoding accuracy at the neuronal and behavioral level for chromatic [22] and orientation 79 
discrimination tasks [23], how the time scale of population motion encoding in the retina relates to the 80 
temporal limits of visual motion perception remains unclear.  81 

To address this, we assessed the relation between the time scale of motion encoding in mammalian 82 
retinal ganglion cells in vivo and the temporal limits of human motion perception. We first recorded cat X- 83 
and Y-type ganglion cell spike responses to motion stimuli with a range of contrasts and temporal 84 
frequencies. We then used model analysis to compute from these responses, for each stimulus condition, 85 
the time scale at which they best represent motion information. The measured time scales approximated 86 
those reported for macaque parasol cells, supporting the assumption that the temporal precision of the 87 
retinal spike output for a subset of ganglion cell types is similar across mammals. We then measured for 88 
matched stimuli in humans the minimum stimulus duration required for motion direction discrimination. 89 
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We found that across stimuli, the temporal limit for visual motion discrimination at the perceptual level 90 
closely matched the time scale of motion encoding at the ganglion cell level. Thus, it appears that human 91 
motion perception adheres to the temporal fidelity of visual encoding at the level of the retinal ganglion 92 
cells. Based on these results we conclude that the visual cortex both maintains and makes use of the 93 
stimulus-dependent temporal fidelity of the retinal output for resolving visual motion.  94 

 95 
2. Results 96 

 97 
2.1 Electrophysiology and modeling 98 
 99 
We recorded extracellular spike responses to repeated presentations of drifting sine wave gratings from 37 100 
retinal ganglion cells (n = 33 X type, 4 Y type) from the optic tract and 20 visual relay cells (all X type) 101 
from the lateral geniculate nucleus of anesthetized cats in vivo. Spatial frequency was optimized for each 102 
cell, and temporal frequency and luminance contrast were varied (0.5 – 16 Hz; 10 - 70%). Increasing 103 
contrast increased the modulation amplitude of a cell’s firing rate, as expected (Figure 1). We used the 104 
recorded spike trains as input to a motion detector model to determine the time scale at which their temporal 105 
structure represented motion information (see Methods for details).  106 

The motion detector was modeled as a correlator in which input spike trains were first low-pass filtered 107 
with a leaky integrator-type filter characterized by a time constant τ (Figure 2A) and then integrated. This 108 
choice of filter was motivated by its simplicity and physiological relevance, as for a range of values of τ 109 
the exponential tail can be interpreted as a first-order description of a receiving neuron's postsynaptic 110 
potential [24]. Low-pass filtering transformed the spike train from a temporal point process with time-111 
varying rate into a continuous signal – a series of superimposed pulses with exponentially decaying tails.  112 

Due to variability in spike timing, spikes in the two input spike trains rarely occurred within the same 113 
0.5 ms spike acquisition time bin. Thus, for very small values of τ (<1 ms), cross-multiplication of the two 114 
spike trains gave a near-zero output signal (Figure 2B). For large values of τ, on the other hand, the 115 
correlator was largely insensitive to the timing of individual spikes, and its output reflected the mean 116 
difference in firing rate [24], which was normalized in the model, so that for large τ, signal correlation 117 
approached unity. Between these two extremes, correlation grew monotonically with the value of the time 118 
constant (Figure 3). 119 

To determine how much motion information was carried by the temporal structure of the spike trains, 120 
the procedure was repeated after randomly shuffling the inter-spike intervals in each spike train. This 121 
eliminated temporal structure while preserving response statistics such as mean firing rate and the inter-122 
spike interval histogram. Again, correlation as a function of τ was a monotonic function (Figure 3). 123 
However, shuffling shifted the curve towards larger τ, indicating that to obtain the same level of correlation 124 
now required a longer integration time.  125 

The shift shows that by discarding the temporal structure of the spike trains, motion information was 126 
lost. Exactly how much information was lost is expressed by the difference between the original curve and 127 
the shuffled response curve (Figure 3). This difference function peaked at an intermediate value of τ, about 128 
23 ms in this example. At this integration time, the motion detector maximally extracts motion information 129 
from the temporal structure of the input spike trains. We defined this value of τ as the optimal integration 130 
time (τopt).  131 

While temporal correlation between spike responses increased with increasing stimulus contrast, above 132 
about 10%, contrast had very little effect on the optimal integration time (Figure 4). This was surprising, 133 
considering the large apparent effect of contrast on spike timing variability (Figure 1). Instead, optimal 134 
integration times depended strongly on temporal frequency: increasing temporal frequency caused 135 
correlation curves to peak at shorter integration times. This effect was robust (~20-fold change across 136 
presented frequency range) and was observed for all recorded cell types (retinal X, Y and LGN X-cells; 137 
Figure 5).  138 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2018                   doi:10.20944/preprints201810.0206.v1

Peer-reviewed version available at Vision 2019, 3, 5; doi:10.3390/vision3010005

http://dx.doi.org/10.20944/preprints201810.0206.v1
http://dx.doi.org/10.3390/vision3010005


 

 

Retinal Y cells had the shortest optimal integration time, ranging from 79 ms at 0.5 Hz to 4.6 ms at 16 139 
Hz (n = 4), indicating that these cells had the highest temporal fidelity. The optimal integration time for 140 
retinal X cells was slightly longer, ranging from 91 ms at 0.5 Hz to 6.6 ms at 16 Hz (n = 33). The optimal 141 
integration time for LGN X cells was slightly longer again, ranging from 113 ms at 0.5 Hz to 7.3 ms at 16 142 
Hz. Optimal integration times for LGN X cell responses were on average 26.3 ± 13 % longer than those for 143 
retinal X cells, suggesting some loss of temporal precision at the LGN-relay. Optimal integration times for 144 
Y type retinal ganglion cells were on average 18.4 ± 7.8 ms shorter than for retinal X cell responses, 145 
demonstrating greater temporal precision in Y-type cells.  146 

 147 
2.2. Psychophysics 148 

 149 
Across stimulus parameters, the time constant that maximized motion encoding in cat (above) approximated 150 
values reported from primate retina [14], indicating that temporal fidelity may generalize across higher 151 
mammals, including humans. If the optimal time constant for temporal integration reflects the time scale at 152 
which retinal spike trains represent motion information, then presenting motion stimuli at shorter time 153 
scales should impair cortical motion processing. Impaired cortical motion processing, in turn, should impair 154 
psychophysical performance in a motion discrimination task. To test this, we next measured how human 155 
motion discrimination depends on stimulus duration, and compared the minimum exposure duration 156 
required for resolving motion direction at the perceptual level with the optimal integration times computed 157 
from the output of the retina and LGN.  158 

Duration thresholds [25] were measured for a direction discrimination task in which observers 159 
discriminated motion (left vs. right) of a foveal Gabor stimulus. Stimulus size (0.33 deg at 2σ of the spatial 160 
Gaussian envelope) approximated foveal V1 receptive field size (0.25 deg; [26], small enough to avoid 161 
contrast dependent center-surround interactions reported for larger moving stimuli [27]. Spatial frequency 162 
was optimized for the human fovea (3.0 c/deg; [28]. Contrast and temporal frequency - parameters known 163 
to affect motion perception (e.g., [29-33] were systematically varied.  164 

Psychophysical duration thresholds were very short, ranging from 5.6 ms at the highest temporal 165 
frequency tested (32 Hz) to about 65 ms at 0.5 Hz. Across stimuli, duration thresholds closely matched the 166 
optimal integration times computed from the responses of retinal X, Y and LGN cells (Figure 5A-D). 167 
Optimal integration times computed from the electrophysiological data and human duration thresholds both 168 
showed a robust dependence on temporal frequency that was largely independent of stimulus contrast. 169 
Thresholds increased dramatically at combinations of low contrast (< ~10%) and high temporal frequency 170 
(16 – 32 Hz). Because contrast sensitivity is known to decline strongly at high temporal frequencies [34] 171 
these increased thresholds likely reflect impaired stimulus detection. To examine the correspondence 172 
between the psychophysical and physiological results, we calculated asymptotic values of duration 173 
thresholds and τopt estimates at each temporal frequency (Figure 6). Asymptotic duration thresholds and τopt 174 
estimates for different cell types were closely correlated (human vs. retinal X, r = 0.99; human vs. retinal 175 
Y r =0.98; human vs. LGN X, r = 0.99; all p < 0.0001;  Figure 7). Thus, duration thresholds and optimal 176 
integration times show the same quantitative dependence on temporal frequency. 177 

Finally, it is important to highlight that the observed dependency on temporal frequency cannot be 178 
explained by the time it takes stimuli to cover a fixed proportion of its temporal cycle. This, arguably less 179 
interesting explanation, would lead to proportionally shorter thresholds with increasing temporal frequency. 180 
This was not the case. Expressed as a fraction of the stimulus cycle, human duration thresholds range from 181 
1/5 of a cycle (4 arcmin) at 32 Hz to as little as 1/30 of a cycle (~ 0.7 arcmin) at 0.5Hz. This six-fold increase 182 
in the threshold displacement rules out the hypothesis that threshold requires a fixed displacement of the 183 
stimulus cycle. Analogously, if optimal integration times simply reflect the linear interaction between the 184 
sine wave stimulus and the low pass filter of the detector model, we should expect a slope of 1 / frequency 185 
(Figure 6A, dotted line). For all curves, the slope is significantly shallower (paired t-test; retinal X: p < 186 
0.01; retinal Y: p = 0.087; LGN X: p = 0.016; human: p < 0.01) indicating that a proportionally smaller 187 
stimulus period is required for direction discrimination at higher temporal frequencies. Thus, the 188 
relationship between temporal frequency and both duration thresholds and τopt is non-linear. A likely 189 
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explanation is that at high temporal frequencies, temporal deviations in spike timing and unreliable spike 190 
generation – where a cell may skip its spike response to a stimulus period – become predominant in the 191 
response’s temporal structure, and disproportionately increase the optimal integration time compared with 192 
lower temporal frequencies. 193 

 194 
3. Discussion 195 
 196 
For a range of stimulus parameters, we measured (1) the time scale at which a motion detector model 197 
optimally detects motion from retinal ganglion cell responses and (2) the temporal threshold of human 198 
motion perception. The time scales of motion encoding that we computed for cat closely match reported 199 
values obtained from macaque retina, in vitro [14]. We found that across conditions, both the physiological 200 
optimal integration time and the psychophysical temporal limit changed by more than 20-fold. This change 201 
was non-linear with changes in temporal frequency and contrast. Importantly, over the entire range of 202 
stimulus parameters, the two measurements were comparable: human duration thresholds and optimal 203 
integration times showed a corresponding dependency on temporal frequency and contrast (Figures 5, 6).  204 

This pattern of results is consistent with the hypothesis that spike timing variability, which affects the 205 
optimal integration time, is an important factor limiting the temporal resolution of motion processing. Our 206 
interpretation is that spike timing variability sets the shortest sequence of spikes that needs to be analyzed 207 
by a motion detector to reliably signal motion, and that this temporal integration limits the minimum 208 
stimulus exposure required for an observer to perceive motion direction. Note that the brief integration 209 
times reported here are categorically different from the considerably longer temporal summation of motion 210 
signal investigated elsewhere (e.g., Burr, 1981), which is thought to primarily reflect integration of neural 211 
signals at stages downstream from motion detection. Our results show that the temporal limits of human 212 
motion perception closely adhere to the time scale at which motion information is best extracted from 213 
neuronal responses at the level of the retina and LGN, suggesting the high temporal fidelity of the retinal 214 
input is maintained and utilized in visual cortex. 215 

 216 
3.1. Comparison to other reports of motion acuity  217 
 218 
Our lowest threshold (5.6 ms at 32 Hz) is comparable to the shortest temporal order judgments reported in 219 
the literature, 3 – 6 ms [2-4]. It should be noted, however, that the stimuli used in previous studies 220 
demonstrating hyperacuity for temporal order judgments were lines or circles, sequentially flashed at two 221 
spatially separate locations. In each of these studies, total stimulus duration exceeded 10 ms. Our results 222 
show that even briefer presentations suffice: drifting Gabor stimuli that are narrowband in both space and 223 
time give similar temporal hyperacuity. Interestingly, psychophysical reports of temporal hyperacuity in 224 
vision are generally restricted to stimuli with motion cues. When such cues are removed, temporal acuity 225 
worsens to about 20-30ms [35, 36], which is comparable to the general temporal resolution of human vision 226 
[37]. This suggests that the motion system has access to temporal fidelity that ius not available to other 227 
visual sub-modalities. 228 

The brief psychophysical thresholds measured here and in earlier studies (less than 10 ms) imply that 229 
motion direction can be computed from just a few spikes per cell. To illustrate this, Figure 7 shows side-230 
by-side the 16 Hz stimulus successfully discriminated by human observers (7.9 ms threshold; Figure 6) and 231 
a retinal X cell’s response to one period of a drifting sine wave. A cell typically fired 3 to 4 spikes during 232 
the time approximating the psychophysical stimulus presentation. For 32 Hz motion, which yielded the 5.6 233 
ms psychophysical threshold, the number of spikes is even smaller. This suggests that for optimal stimuli, 234 
motion direction can be computed from just a few spikes per retinal input. Such estimates, of course, are 235 
likely to be noisy but can be improved by integrating responses from additional neurons [14]. This would 236 
establish a trade-off between temporal acuity and spatial acuity. 237 

 238 
3.2. Comparing electrophysiology to psychophysics  239 
 240 
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This study connects results derived from neurophysiological recordings in an in vivo animal model with 241 
human psychophysical data – a link that should be treated with care [38]. To do so, it is important to consider 242 
the underlying assumptions along with the experimental choices that were made, to determine the extent to 243 
which the comparison of neurophysiological and psychophysical results was justified and meaningful.  244 

First, we consider the assumptions behind neurophysiological recordings and accompanying modeling. 245 
The relevance of these results depends on (1) the functional significance of the optimal integration times, 246 
(2) the implications of mimicking pairs of cells with two responses from the same cell, and (3) the homology 247 
of temporal limits in motion processing between cat and primates including humans. 248 

 249 
3.3. Significance of the optimal integration time  250 
 251 
Our model analysis of ganglion cell spike trains yields brief optimal integration times, and earlier work 252 
showed feasibility of decoding spike trains on a similarly short time scale [13]. However, it not guaranteed 253 
that the time scale over which the motion system integrates its inputs is, in fact, optimized for temporal 254 
resolution. Indeed, a shorter-than-optimal integration time could result in attenuated, but nonetheless 255 
significant detection (Figure 4), establishing a trade-off between signal-to-noise ratio, i.e. 'certainty', and 256 
temporal resolution. Indeed, motion cortex may sacrifice signal-to-noise ratio to increase temporal 257 
resolution: for example, longer, sub-optimal temporal integration could compensate for an apparent loss of 258 
temporal resolution at the LGN X cell relay (Figure 6). Thus, while, τopt represents the time scale that would 259 
enable a cell to maximize signal-to-noise ratio of the motion-evoked response, the actual parameters used 260 
in cortical motion computation remain unclear – although our psychophysical results indicate they may be 261 
similar. Finally, whether the time scale for encoding motion within a given neural circuit is fixed or whether 262 
the same circuit can adapt its integration time depending on the task demands remains to be determined.  263 

 264 
3.4. Use of single cells to model motion detector inputs 265 

 266 
Spike train analysis was based on a common motion detector model, the bi-local correlator [39-41]. 267 
Essential to this, and most other motion-detection models, is the pair-wise correlation of signals from 268 
spatially separate receptive fields after one input channel is delayed, typically through low-pass filtering 269 
(Figure 2A). Here, we mimicked this mechanism by using two responses from the same cell, evoked by 270 
repeated presentations of the same visual stimulus. This assumes that ganglion cells of the same type share 271 
the same spatio-temporal response characteristics – an assumption that is supported by our experimental 272 
results and those reported elsewhere [42, 43]. The benefit of using two responses from the same cell is that 273 
this obviated the need to explicitly model a spatial separation and delay. Since the separation-delay 274 
combination would be different for detectors tuned to different stimulus temporal frequencies (speeds), this 275 
reduced the number of free parameters and simplified the model. 276 

Hypothetical differences in the response characteristics of the cells that provide the correlator’s inputs 277 
necessarily decrease the temporal correlation and, therefore, would require a longer integration time to 278 
reach the same correlation coefficient. Because the response characteristics of cells in our model are 279 
identical, the model gives an upper bound to the correlation coefficient and optimal integration time. With 280 
increasingly dissimilar cells, this upper bound could still be approximated by pooling over a larger number 281 
of inputs, and indeed, in macaque increasing the number of cells used in the computation of motion gives 282 
a better overall performance [14].  283 

Finally, our use of repeated responses from single cells assumes that ganglion cells have independent 284 
noise, which is supported in the literature [44, 45]. While nearby retinal ganglion cells tend to fire correlated 285 
spikes [46, 47], correlated neural activity only has a weak effect on the encoding of motion speed [14]. 286 
Together, these arguments should permit the use of single neuron recordings to approximate motion 287 
encoding by two of more retinal inputs. 288 

 289 
3.5. Species differences  290 

 291 
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We compared our results with those of Chichilnisky and Kalmar (2003), who employed an almost identical 292 
bi-local detector model to compute optimal time scales for motion discrimination from ganglion cell 293 
responses recorded in the macaque retina in vitro. For comparable stimuli, our estimates of optimal 294 
integration times from cat X and Y-cells closely match the equivalent ‘optimal temporal filter widths’ 295 
reported for macaque parasol cells [13]. The optimal integration time for a cat retinal ganglion cell 296 
responding to a sine wave drifting at 14 deg sec-1 is 12 ms. For macaque parasol cells responding to a bar 297 
also moving at 14 deg sec-1, the optimal time scale reported by Chichilnisky and Kalmar (2003) is 13 ms. 298 
This suggests that in terms of the time scale of motion encoding, cat X and Y and macaque parasol cells 299 
are comparable.  300 

The similarity between response temporal fidelity in cat and primate retina is perhaps not surprising 301 
because variability in spike rate and spike timing is likely to be similar across these species. Response 302 
variability at the level of the retina variability depends on four key factors: neural noise, contrast sensitivity, 303 
refractory period, and peak firing rate. Because these are fundamental properties shared among equivalent 304 
cell types (e.g., cat Y and primate parasol), one would not expect major differences between them, and none 305 
have been reported. On the contrary, for a spatio-temporal white noise stimulus, cat and macaque retinal 306 
responses appear to be highly similar (cat: [48-50]; macaque: [21, 42]. Thus, our measurements agree with 307 
the established similarities of cat ganglion cell and macaque parasol cell responses. Because parasol cells 308 
are thought to underlie motion vision in macaques and humans, the observed similarity also suggests that 309 
measurements of responses in the front-end visual system in both cat and macaque can make valid 310 
predictions for motion vision in humans.  311 

 312 
3.6. Psychophysical assumptions  313 

 314 
Finally, we considered the factors affecting psychophysical estimates of temporal limits in motion 315 
perception. The results presented here are conditional on the definition of the stimulus duration and the 316 
psychometric threshold. Moving stimuli were shown in a Gaussian temporal envelope, whose duration is, 317 
in theory, infinite. In practice, duration is typically defined as 2σ of the temporal Gaussian (cf. [28],  which 318 
includes 68% of total stimulus contrast. Detection threshold was conservatively defined as 82% correct, a 319 
commonly used optimal choice for a QUEST staircase [51]. Although our definition of the stimulus 320 
duration and selection of the threshold level follow established conventions, they are arbitrary. When tested, 321 
the use of other conventions resulted in small changes in duration threshold that did not affect our main 322 
findings.  323 

Psychophysical threshold can be affected by inadvertent slips of the subject’s attention, especially for 324 
very brief stimuli. To prevent this, the delay between button press and stimulus onset was fixed and 325 
therefore predictable for the subjects, who were experienced at the psychophysical task. The use of 326 
adaptable staircases to measure thresholds further minimized any possible effects of inattention. The 327 
remaining factors influencing psychophysical results are the task and the stimulus parameters. Here, the 328 
task was the simplest possible discrimination task. Stimulus parameters were optimized for human motion 329 
perception [28] and were designed to avoid known inhibitory effects of large moving stimuli [25]. 330 
 331 
Without direct physiological measurements of the neural correlate of the motion detector's integrator, we 332 
can only infer the exact quantitative relationship between the temporal fidelity of the retina’s output and 333 
the temporal limits of motion vision. Instead, we report here for closely matched stimulus conditions, strong 334 
similarity and co-dependency on stimulus parameters between predicted optimal integration times and 335 
human duration thresholds. Our findings support the hypothesis that the temporal limits of motion vision 336 
approximate the limits set by motion encoding in the retina.  337 

 338 
4. Methods 339 

 340 
4.1. Electrophysiological preparation and recordings 341 

 342 
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Extracellular single unit recordings from retinal ganglion cells and LGN cells were obtained with tungsten 343 
microelectrodes (TM33B20KT, World Precision Instruments, USA, typical impedance 2.0 MΩ at 1.0 kHz) 344 
from 19 anesthetized adult cats of either sex (3 - 5 kg). Surgical procedures were standard and in accordance 345 
with the guidelines of the Law on Animal Research of the Netherlands and of the Utrecht University's 346 
Animal Care and Use Committee.  347 

Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20 mg kg-1, i.m.). 348 
Following preparatory surgery, anesthesia was maintained by artificial ventilation with a mixture of 70% 349 
N2O - 30% O2 and halothane (Halothaan, 0.4 - 0.7%). To minimize eye movements, muscle paralysis was 350 
induced and maintained throughout the experiment by infusion of pancuronium bromide (Pavulon, 0.1 mg 351 
kg-1 hr-1, i.v.). Oxygen-permeable contact lenses (+3.5 to +5 diopters, courtesy of NKL, Emmen, The 352 
Netherlands) were used to both focus the visual stimulus on the retina and protect the corneae. 353 

LGN and optic tract recordings were obtained at approximately 10 and 20 mm below the cortical 354 
surface at Horsley-Clarke coordinates A8, L10 [52]. Action potentials from single cells were detected with 355 
a window discriminator (BAK Electronics Inc.) and digitized at 2.0kHz (PCI 1200, National Instruments) 356 
for on-line analysis and storage (Apple Macintosh G4 computer, custom-written software).  357 

 358 
4.2. Visual stimulation  359 

 360 
Stimuli for electrophysiology experiments were computer-generated (ATI rage graphics card, Macintosh 361 
G4 computer, custom-written software), presented on a linearized 19", 100 Hz CRT monitor (Sony 362 
Trinitron Multiscan 400PS) at 57 cm from the optic node and centered on the receptive field of the cell 363 
under study. Mean luminance was 54 cd·m-2. For those cells (<15%) that showed significant response 364 
modulation to the 100Hz refresh rate of the monitor [53], the frame rate was increased to 120Hz.  365 

For each cell, spatial and temporal tuning curves were measured using drifting sinusoidal gratings 366 
(spatial frequency 0.1 - 4.0 cycles deg-1, temporal frequency 0.5 – 50 Hz). Cells were classified as X or Y 367 
on the basis of a null-test [54]. Responses to twenty repeats of a 3 second presentation of drifting sine wave 368 
gratings were used for the model analysis. Sinusoidal gratings fully covered the receptive field and spatial 369 
frequency was optimized for each cell (average 0.8 cycles deg-1). Temporal frequency and luminance 370 
contrast were varied (0.5 – 16 Hz and from 10 - 70% Michelson contrast, respectively). A stimulus block 371 
consisted of 6 temporal frequencies and 7 contrasts, resulting in 42 stimuli presented in a random order. 372 
Data presented in this study were obtained from cells with receptive fields located within the central 15 373 
degrees of the visual field. Only single unit recordings that were stable during at least 20 repeats of the 374 
stimulus block and showed significant response modulation to the high contrast stimuli were accepted for 375 
analysis. 376 

 377 
4.3. Psychophysics 378 

 379 
Stimuli for human psychophysics experiments were computer-generated using Matlab (The Mathworks; 380 
Natick, MA), the Psychophysics Toolbox [55] and Video Toolbox [56], and shown on a linearized monitor 381 
(800 x 600 pixels, 200 Hz). We used a bit stealing technique [57] to expand gray-scale resolution from 256 382 
to 768 levels. To obtain a 200 Hz refresh rate, we used a high-speed PROCALIX monitor (Totoku, Irving, 383 
TX) driven by a MP960 graphics card (VillageTronic, Berlin, Germany). Viewing was binocular at 83 cm 384 
(yielding 2 x 2 arcmin per pixel). Luminance of the gray screen background was 41.1 cd/m2. Three 385 
observers participated in the experiment (first and second authors and a naïve observer). All procedures 386 
complied with institutionally reviewed guidelines for human subjects and all subjects provided written 387 
informed content. 388 

Stimuli were vertically oriented Gabor patches, comprising a drifting vertical sine grating windowed 389 
by a stationary two-dimensional Gaussian envelope (2σ width = 20 arcmin, spatial frequency = 3 390 
cycles/deg, starting phase randomized). Gabor contrast was modulated by a temporal Gaussian envelope. 391 
Peak Gabor contrast and temporal frequency were varied in a 7 x 5 design (0.5 – 32 Hz and 5 – 80 %, 392 
respectively). The observers’ task was to discriminate motion (left vs. right) of a briefly presented Gabor 393 
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patch. Duration thresholds [25, 58, 59] were estimated using two interleaved QUEST staircases [51], where 394 
staircases adjusted the standard deviation of the temporal Gaussian envelope and converged to 82% correct. 395 
Duration was defined as 2σ width of the Gaussian envelope. The entire set of 35 conditions was repeated 396 
four times in random order. This yielded eight threshold estimates per condition, of which the first two 397 
thresholds discarded as practice. Trials were self-paced. Each trial began with a key-press, followed by a 398 
stimulus 350 ms later. Feedback was provided. 399 

Given that we were expecting very brief motion direction thresholds (especially for high temporal 400 
frequency conditions), we paid close attention to what is the lower limit of temporal stimulus duration that 401 
we can accurately present and measure. Stimuli were displayed on a 200 Hz monitor by discrete sampling 402 
of the temporal Gaussian waveform every 5 ms, while ensuring that the middle sample always contained 403 
the peak of the Gaussian [59]. For example, a Gabor patch presented in a temporal Gaussian window with 404 
2σ = 5.6 ms (our lowest threshold: 32 Hz motion, 80% peak contrast) would be shown in 3 video frames 405 
displaying 20.1, 100, and 20.1% of the peak contrast (see Figure 7 for another example). To test for possible 406 
floor effects at the highest stimulus temporal frequency (32 Hz) we measured duration thresholds for 8, 16, 407 
and 32 Hz motion at 100 Hz and 200 Hz frame rates. Substantially lower thresholds for 8 and 16 Hz stimulus 408 
presented at 200 Hz would indicate deleterious under-sampling of the Gaussian waveform at 100 Hz. 409 
Respective thresholds for 8 and 16 Hz motion were 7.9% and 8.3% lower at 200 Hz than at 100 Hz frame 410 
rate, likely indicating the effects of higher fidelity motion representation at 200Hz. In contrast, the threshold 411 
for 32 Hz motion was 28% lower at 200 Hz, indicating a floor effect for 32 Hz motion at 100 Hz frame 412 
rate. Based on these measurements, we can assert that our set up is adequate for measuring the 32 Hz 413 
stimulus presented at a frame rate of 200 Hz.  414 

 415 
4.4. Model analysis  416 

 417 
Essential to most motion detection models is the integration of visual signals from spatially separated 418 
receptive fields [39, 40]. Known as a bi-local motion detector (Figure 2A), the model’s output reflects the 419 
time-varying correlation between the input signals, one of which is temporally delayed relative to the other 420 
(Hassenstein and Reichardt, 1956). The delay causes sensitivity to the temporal sequence of stimulation of 421 
the two receptive fields, and combined with a threshold nonlinearity renders its response selective for 422 
motion direction. Because detector function is based on temporal correlations, motion detection depends 423 
on temporal similarity of the input signals.  424 

The input signals in our model are retinal spike trains. Their temporal correlation is determined by the 425 
magnitude of noise variations (variability) in these spike patterns. If variability in the spike pattern is large 426 
then the correlation between responses from the two cells will be small. Thus, variability in the cells’ 427 
temporal spike pattern should limit motion detection. The correlator can counter this variability, by 428 
integrating the spike trains over a finite time window to increase temporal overlap. But temporal integration 429 
comes at a cost of increasing the time scale at which motion may be resolved. To assess this trade-off, we 430 
measured for the recorded ganglion cell responses how the integration time that optimizes correlation 431 
detection varies with stimulus contrast and temporal frequency – parameters expected to affect ganglion 432 
cell spike response variability.  433 

The bi-local detector was modeled as a correlator unit whose two inputs signals were pairwise 434 
combinations of spike trains recorded from a single ganglion cell, evoked by repeated presentation of the 435 
same visual stimulus (minimum of 20 stimulus repeats; n = 33 retinal X cells, 4 retinal Y cells, and 20 LGN 436 
X cells). Using responses on alternate trials obtained from a single cell simplifies the model, as it obviates 437 
explicit modeling of spatial separation and time delay of the two input receptive fields, and maximizes 438 
temporal correlations independent of temporal frequency. As such, the model represents a detector whose 439 
input signals are spike responses from two cells with identical response characteristics and spatio-temporal 440 
receptive fields, but subject to independent noise variations [44, 45]. Differences in response characteristics 441 
and receptive fields between cells necessarily decrease temporal similarity of their spike responses – 442 
resulting in poorer detection performance. Therefore, our model provides an upper limit to motion detector 443 
performance given a ganglion cell’s spike response variability.  444 
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Input to the model was a set of recorded spike trains si(t), n ≥ 20,  445 
 446 

(1) 𝑠 (𝑡) = ∑ 𝛿(𝑡 − 𝑡 ){ } ; 𝑖 = 1, , , 𝑛.  447 

 448 
Spike trains were passed through a first order filter with time constant τ, and normalized for τ, adding 449 

an exponential tail with an integral of 1 to each spike,  450 
 451 

(2) 𝑥 (𝑡, 𝜏) = 𝑠 (𝑡) ∗  452 

 453 
 From this set, pairs of spike trains were multiplied, integrated and normalized to the integral of the first 454 

spike train,  455 
 456 

(3) 𝑦(𝜏) = ∙∑ ∑ ∙ ( , )∙ ( , )( ) ∑ ∙ ( , )  457 

 458 
This operation was performed for a series of τ ranging from 1 - 500 ms resulting in y(τ). Spike trains si(t) 459 
were then shuffled by redistributing the inter-spike intervals in each spike train. This yields spike trains 460 
si’(t) that have identical mean firing rates, yet lack all stimulus related temporal structure. Repeated for 461 
shuffled spike trains si’(t), the same procedure results in y’(τ), which was used as a measure of chance-level 462 
coincidence between spikes in the two the spike trains given the mean spike rate. The difference function 463 
C(τ) describes the specific contribution of the temporal structure of the input spike trains to the coincidence 464 
detected by the hypothetical correlator unit.  465 

 466 
(4) 𝐶(𝜏) = 𝑦(𝜏) − 𝑦′(𝜏) 467 

 468 
This simple motion model incorporates low-pass filtering (temporal integration) and correlation of 469 

input signals — two essential components of established models of motion perception [39, 40, 60]. For 470 
each cell and stimulus condition, all possible response pairs (180 minimum) were used in the simulations. 471 
τopt was calculated by averaging the results from each spike train pair. Note that the actual procedure 472 
followed was the closest possible numerical approximation (time base 0.5 ms) to the equations presented 473 
here. 474 
 475 
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Figure legends 615 
 616 
Figure 1. Retinal ganglion cell responses to drifting sinusoidal grating stimuli. Raster plot of a 1 second 617 
section of the response of a single retinal ganglion cell to drifting sinusoidal grating stimuli, varying in 618 
contrast (10 - 70%) and temporal frequency (left 2.0; right 8.0 Hz). Each dot in the display represents a 619 
spike.  Each line represents the response to a single presentation of the stimulus. Stimuli were presented 620 
randomly interleaved, and repeated a minimum of 20 times. 621 
 622 
Figure 2. Temporal integration improves correlation detection. (A) Bilocal motion detector model. 623 
Correlator unit X receives input from two units sampling the retinal image with spatially separated receptive 624 
fields, RF1 and RF2.  Through cross-multiplication of the input spike trains, the correlator's output is high 625 
only when it receives positive input synchronously. The combination of spatial separation ∆x and temporal 626 
delay ∆t in one of the input channels tunes the detector to stimulus motion with a velocity of ∆x/∆t. This 627 
elementary model captures the essence of spatio-temporal correlation of the retinal input, a requirement for 628 
any motion detection model. Because the correlator also responds to non-directional, uniform flicker, di-629 
rectional selectivity generally follows from a comparison of the output of two or more detectors, tuned to 630 
opposite motion directions. (B) A short integration time (2 ms) gives little overlap between input signals 1 631 
(top) and 2 (middle). Only highly coincident spikes (temporal deviation < ~4 ms) result in non-zero output 632 
(bottom). (C) A long integration time (100 ms) gives substantial overlap between the two input signals and 633 
results in a strong output signal (bottom). 634 
 635 
Figure 3. Computing the optimal integration time. From the difference between the correlation curve 636 
for the recorded (solid squares) and shuffled spike trains (open squares) we obtained a relative correlation 637 
curve (red circles; see Model for details). We defined the optimal integration time (τopt) as the time constant 638 
where the relative correlation curve peaks. At this integration time, the correlator best extracts motion in-639 
formation from the temporal structure of the input spike trains. Optimal integration times were computed 640 
in Matlab, following cubic spline interpolation of the 15 data points. 641 
 642 
Figure 4. Stimulus parameters set optimal integration time for correlation detection. Relative corre-643 
lation curves based on the data partially displayed in Figures 1 and 3. The optimal integration time (inte-644 
gration time at peak) decreases with increasing temporal frequency. Contrast (10 - 70%) determines total 645 
correlation (peak height), but above about 10% has little effect on the optimal integration time. 646 
 647 
Figure 5. Optimal integrations time and duration thresholds decrease with increasing temporal fre-648 
quency but change little with contrast. (A-C) Optimal integration times for all combinations of stimulus 649 
temporal frequency and contrast for 33 retinal X cells, 4 retinal Y cells, and 20 LGN X cells. Optimal 650 
integration time systematically decreased with increasing temporal frequency, but was largely independent 651 
of contrast above about 10%. Error bars show mean ± SEM. (D) Minimal presentation duration required 652 
for human observers to discriminate motion direction as a function of stimulus temporal frequency and 653 
contrast. Duration threshold decreased with temporal frequency of the sinewave grating. Above about 10%, 654 
duration threshold was largely independent of stimulus contrast. Error bars show mean ± SEM for four 655 
subjects. 656 
 657 
Figure 6. Optimal integration time closely matches duration threshold across stimulus conditions. 658 
(A) Optimal integration times, averaged across responses to 40 - 70% contrast stimuli, decrease with in-659 
creasing temporal frequency. A similar decrease is observed for human duration thresholds. The slope of 660 
each curve deviates systematically from 1/frequency (dotted line). Optimal integration time and duration 661 
threshold do not simply reflect detection of a fixed stimulus displacement. (B) Optimal integration times 662 
closely match duration thresholds, except at the highest temporal frequencies, where optimal integration 663 
times for retinal Y cells are shorter than the duration threshold, i.e., their temporal fidelity exceeds psycho-664 
physical performance.   665 
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 666 
Figure 7. Direction discrimination apparently requires few spikes per cell. Human observers were 667 
asked to discriminate motion direction of a drifting sine wave grating (16 Hz) in a spatial Gaussian envelope 668 
(Gabor patch, top left). (A) Contrast of the Gabor patch was Gaussian modulated in time. Presented at 200 669 
Hz, this paradigm allowed very brief presentations of stimulus motion. Example shows the discrete sam-670 
pling of contrast values (σ = 7.9 ms, 70% contrast). (B) To a drifting sine wave (16 Hz) of equivalent spatial 671 
frequency and same contrast, a cat retinal ganglion cell fires ~4 spikes. 672 
  673 
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Figure 1.  674 
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Figure 2.  678 
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Figure 3.  684 
 685 
 686 

 687 
 688 
  689 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2018                   doi:10.20944/preprints201810.0206.v1

Peer-reviewed version available at Vision 2019, 3, 5; doi:10.3390/vision3010005

http://dx.doi.org/10.20944/preprints201810.0206.v1
http://dx.doi.org/10.3390/vision3010005


 

 

Figure 4.  690 
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Figure 5.  696 
 697 
 698 

 699 
 700 
  701 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2018                   doi:10.20944/preprints201810.0206.v1

Peer-reviewed version available at Vision 2019, 3, 5; doi:10.3390/vision3010005

http://dx.doi.org/10.20944/preprints201810.0206.v1
http://dx.doi.org/10.3390/vision3010005


 

 

Figure 6.  702 
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Figure 7.  708 
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