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Abstract: Active flow control of canonical laminar separation bubbles by steady and harmonic vortex 
generator jets (VGJs) was investigated using direct numerical simulations. Both control strategies 
were found to be effective in controlling the laminar boundary-layer separation. However, the present 
results indicate that using the same blowing amplitude, harmonic VGJs were more effective and 
efficient in reducing the separated region than the steady VGJs considering the fact that the harmonic 
VGJs use less momentum than the steady case. For steady VGJs, longitudinal structures formed 
immediately downstream of injection location led to formation of hairpin-type vortices causing an 
earlier transition to turbulence. Symmetric hairpin vortices were shown to develop downstream of 
the forcing location for the harmonic VGJs as well. However, the increased control effectiveness for 
harmonic VGJs flow control strategy is attributed to the fact that shear-layer instability mechanism 
was exploited. As a result, disturbances introduced by VGJs were strongly amplified leading to 
development of large-scale coherent structures, which are very effective in increasing the momentum 
exchange, thus, limiting the separated region.
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1. Introduction

A laminar boundary layer subject to an adverse pressure gradient (APG) is susceptible to
separation. In the presence of strong APG, boundary layer will detach from the solid surface. A
separated shear-layer exhibits inflectional velocity profiles which support the amplification of small
disturbances as a result of fluid dynamics instabilities. The amplified disturbances increase the
exchange of momentum and eventually derive the flow to reattach as a turbulent boundary layer,
leading to the so-called transitional laminar separation bubbles (LSBs) [1,2]. Laminar separation
bubbles can occur in many important aerospace applications operating at low Reynolds numbers,
such as low-pressure turbine blades, wings of small unmanned aerial vehicles (UAVs), wind turbine
blades and laminar flow airfoils, to name a few. Flow separation can lead to massive degradation
of aerodynamic performance characteristics such as loss in lift and a significant increase in drag [3].
Transitional LSBs have been subject of numerous detailed experimental and numerical investigations
in that past decades [1–6].

Successful flow control strategies to reduce the negative effects of laminar separation for
any aerodynamic vehicles especially operating at low Reynolds numbers could lead to significant
performance improvements [7–9]. Flow separation control strategies can be classified as either passive
or active. The classification is based on whether an external energy is introduced in the flow field or
not. Unlike the active flow control (AFC), no direct external energy is required in the passive flow
control (PFC) strategy, meaning that the performance of a PFC method is mainly based on mixing high
momentum fluid to areas of low momentum to prevent/reduce boundary layer separation [8]. Several
approaches have been employed for AFC strategy such as uniform suction and blowing actuation
and vortex generator jets (VGJs) through an array of small holes where they are operated either as
steady or unsteady/periodic. A full review of the control of flow separation by periodic excitation
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can be found in [10]. Uniform periodic suction and blowing flow control through a use of slot has
been investigated thoroughly and the successful application of this method has been demonstrated
[11–15]. The efficiency and effectiveness of periodic/harmonic suction and blowing slot is attributed to
exploitation of the fluid dynamics instability associated with the separated shear-layer. In addition to
controlling LSBs, uniform blowing has been also shown to be effective in decreasing the skin-friction
coefficient for turbulent boundary-layer over a wing section at chord-based Reynolds number of
100,000 [16].

The present numerical investigation focuses to active separation control using vortex generator
jets. VGJs constitute an AFC strategy in which fluid is injected into the boundary layer through an array
of small holes. Initially, most of the research regarding VGJs was focused on the application of VGJs on
the turbulent boundary layers [17,18]. The use of VGJs for laminar separation control is motivated
by the Wind tunnel experiments at the Air Force Research Laboratory (AFRL) at Wright-Patterson
Air Force Base [7,9,19,20]. Low pressure turbines (LPTs) are important components of many modern
jet engines. The experimental investigations of Bons et al. [19,20] and Sondergaard et al. [7] at AFRL
showed that laminar separation from LPT blades for chord Reynolds numbers between 25,000 and
100,000 can be drastically controlled by vortex generator jets. They reported that both steady and
pulsed actuation to be effective in reducing separation losses. Whereas pulsed blowing requires a
fraction of the momentum compared to the steady VGJs, pulsed forcing was shown to be more efficient
than steady case.

One of the first detailed numerical investigations of active flow separation control using pulsed
VGJs was direct numerical simulations (DNS) by Postl et al. [21]. Their simulations demonstrated that
the effectiveness of pulsed VGJs are based on excitation of an inviscid shear layer instability. It was
shown that exploiting the shear layer instability leads to formation of coherent structures which are
very effective in reducing the separated region. The effect of free-stream turbulence (FST) on the control
of laminar boundary-layer separation using pulsed VGJs was investigated in detail by Hosseinverdi
and Fasel [22,23]. Using high fidelity DNS, they found that for low FST levels and a blowing ratio
of 0.6, the pulsed jets showed the same effectiveness as observed in zero FST case. When the FST
intensity was increased up to 3%, the effectiveness of the pulsed jets slowly diminished. For FST with
3% intensity, they investigated the influence of the spanwise jet spacing, the blowing ratio, and the
actuation frequency and it was demonstrated that a clear optimum exists for all three parameters. One
of their important findings was that the spanwise hole spacing of VGJs plays an important role in the
effectiveness of pulsed VGJs flow control for separated flows subjected to high levels of FST intensity.

Active flow control using VGJs can be accomplished by different temporal functions. The main
objective of this paper is to investigate and compare the relevant underlying physics of separating
control through use of harmonic and steady VGJs actuation, using high resolution DNS. In the next
section, Section 2, the computational methodology including the governing equations and numerical
methods are explained. The simulation setup and boundary conditions are presented in Section 3. The
main results for the uncontrolled LSB and controlled LSBs are discussed in detail in Sections 4 and 5,
respectively. A summary and conclusions are provided in Section 6.

2. Numerical Methodology

The following section provides a description of the computational approach used for solving
the incompressible Navier-Stokes equations. In this work, the incompressible, three-dimensional
unsteady Navier-Stokes equations (N-S) form the set of the governing equations. Instead of solving
the N-S equations in primitive variables, the velocity-pressure formulation, the velocity-vorticity
formulation of the N-S equations was solved [24] where the transport equation for vorticity vector
~ω = (ωx, ωy, ωz)T reads

∂~ω

∂t
= (~ω · ∆)~u− (~u · ∆)~ω +

1
Re
∇2~ω, (1)
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In the above equation, the velocities ~u = (u, v, w)T are non-dimensionalized by the free-stream
velocity U∞, the coordinates are normalized by an arbitrary reference length L∞, the vorticities ~ω are
non-dimensionalized by U∞/L∞ and the time t is normalized by L∞/U∞. Here, the global Reynolds
number is defined as Re = U∞L∞/ν, where ν is the kinematic viscosity.

The wall-normal velocity component, v, is obtained by solving the following Poisson equation

∂2v
∂2x

+
∂2v
∂y2 +

∂2v
∂z2 =

∂ωz

∂x
− ∂ωx

∂z
. (2)

The remaining velocity components, u and w, are calculated using the definition of the spanwise and
streamwise vorticity components,

∂u
∂y

=
∂v
∂x
−ωz,

∂w
∂y

=
∂v
∂z

+ ωx.
(3)

The governing equations are solved in a three-dimensional rectangular domain using high-order
finite difference methods. All spatial derivatives including convective and viscous terms in the
streamwise and wall-normal directions are approximated with standard fourth-order compact
difference schemes [25], except for the first derivative of non-linear terms in the x-direction. It is
known that application of central compact difference discretizations to high Reynolds number flows
typically leads to numerical instability. It is attributed to the accumulation of the aliasing errors
resulting from discrete evaluation of the nonlinear convective terms in the x-direction, owing to the
fact that central compact difference schemes are characterized by zero numerical dissipation error and
therefore, are prone to aliasing error. A common practice to remove aliasing errors and hence enhancing
the numerical stability is filtering the numerical solution at every time level. Instead, an upwind
combined compact difference (CCD) scheme proposed in [26] was employed. They demonstrated that
their proposed upwind CCD scheme has non-zero dissipation error (numerical diffusion) restricted to
the high wavenumber region, while exhibiting very good spectral resolution characteristic. The flow
field is assumed to be periodic in the z-direction allowing the flow field to be expanded in Fourier
cosine and sine series. A fourth-order accurate Runge–Kutta scheme is used to integrate the vorticity
transport equations in time.

The computational time needed to solve the N-S in the velocity-vorticity formulation is dominated
by the numerical solution of the v-velocity Poisson equation, Equation (2). In this work, a fourth-order
discretization method and an efficient solution algorithm, proposed in [26,27] to solve the Poisson
equation, was employed for solving Equation (2). Furthermore, a fourth-order accurate compact
scheme was employed to obtain u and w velocity according to Equation (3). At each stage of the
Runge–Kutta integration, the vorticity transport equations, Equation (1), are used to advance the
vorticity vector over one Runge-Kutta step. Next, the Poisson equation for the wall-normal velocity,
Equation (2), is solved at the new time level. Then, the streamwise and spanwise velocity components,
Equation (3), are computed at the new time level.

3. Computational Setup

The key features of simulation set-up and boundary conditions are explained in this section. The
integration domain is a three-dimensional rectangular section. A sketch of this domain can be seen in
Figure 1. The streamwise coordinate is x, the direction normal to the flat-plate is y and the spanwise
coordinate is z. In the simulations, a wall-normal velocity distribution at the free-stream boundary
of the computational domain was specified to create a favorable-to-adverse pressure gradient. The
adverse pressure gradient induces a laminar separation bubble on the flat-plate. This simulation setup
is defined such that it exhibits a laminar boundary layer separation with similar characteristics as
the flow separation over an airfoil (at low angle of attack) but at reduced geometric complexity. The
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flat-plate model geometry has been extensively employed for investigation of transition in LSBs and
separation control in canonical separation bubbles [2,5,6,11,15,28–31].

Domain extent and grid resolution used in the present work was guided by the direct numerical
simulations of LSBs in [14,15,30]. In the streamwise direction, 1601 grid points are equidistantly
distributed in the range xmin = 5 ≤ x ≤ xmax = 19.4. An exponential grid point distribution was
employed in the y direction with 240 grid points. The free-stream boundary of the computational
domain is located at ymax = 2. The homogenous spanwise direction (z-direction) was resolved with
127 Fourier modes (200 collocation points) for the domain width of Lz = 2. The coordinates and
velocities were made dimensionless with the same length and velocity scales as used in [15,30], i.e.
L∞ = 0.0254[m] and U∞ = 6.64[m/s], respectively.

The streamwise and spanwise grid spacings in wall units are ∆x+ = 5.5 and ∆z+ = 6.1,
respectively. The wall-normal grid resolution in wall units adjacent to the wall is ∆y+w = 0.9. The
grid resolutions in wall units were computed based on the maximum skin friction coefficient in the
turbulent boundary layer downstream of the reattachment point. The grid resolution in the present
simulations is comparable or finer compared to the resolutions used in the available literature [4,28–30].

A Blasius solution with the displacement thickness Reynolds number of Reδ∗ = 407 is prescribed
as Dirichlet conditions at the inflow boundary. At the free-stream boundary, a wall-normal velocity
distribution is applied at the upper boundary for generating the streamwise pressure gradients which
is identical to the those used by [14,15,30]. It should be noted that v-velocity at the upper boundary
is uniform in the z-direction. Furthermore, the wall normal derivatives of vorticity components are
set to zero. The no-slip and no-penetration conditions are enforced on the surface of the flat-plate,
except at a location where disturbances associated with the flow control are introduced. At the
spanwise boundaries of the domain, periodic boundary conditions are applied for all variables and
their derivatives.

(a)

(b)

Figure 1. Schematic of the computation setup in side (a) and top-down (b) views (drawing not to
scale). The integration domain does not include the flat-plate leading edge. Included in (a) are the
wall-normal velocity distribution applied at the free-stream boundary at y = ymax and the velocity
profile at the inflow boundary. In (a), xVG indicates the streamwise location of vortex generator jets at
the wall (up arrow) and the hole in (b) indicates the spanwise location of VGJs. Also, shown in (a) is
the typical mean dividing streamline for an uncontrolled LSB and its corresponding separation and
reattachment locations as shown in (b).

All second derivatives in the streamwise direction are set to zero at the outflow boundary.
Furthermore, convective boundary conditions are applied at the outflow boundary [31].
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4. Uncontrolled flow: Main Features and Validation

In this section, results obtained from 3-D DNS for the uncontrolled (natural, i.e. no external
disturbances) LSB are presented in order to understand the main characteristics of the uncontrolled
case. Furthermore, the results obtained from DNS of the natural LSB are compared with the available
DNS data [14,15,30] for validation of numerical methods and computational setup.

The instantaneous contours of spanwise-averaged ωz-vorticity (a random snapshot after the flow
reaches the statistically stationary state) is presented in Figure 2a to gain insight into the nature of the
unsteady flow field of the uncontrolled LSB. To have a complete picture about the mean features of the
LSB, the time- and spanwise-averaged streamline together with the contours of mean u-velocity are
shown in Figure 2b. The laminar boundary layer separates at xs = 10.4 followed by a smooth separated
shear layer with negligible dependency in the spanwise direction. Downstream of the separation
location, the separated laminar shear layer contains inflectional reverse-flow velocity profiles where
the normal gradient of the u-velocity is maximum near the inflection points, therefore, the ωz-vorticity
attains its maximum value at the same wall-normal location at a given x-location. Initially, the inflection
point remains close to the surface, so the viscous instability plays a more important role. Moving
further downstream, the thickness of the separated shear layer increases and the streamwise velocity
profiles become very similar to those of free shear layer. As a result of the large growth rates associated
with the separated shear layer instability, the disturbances (originated from numerical and round-off
errors) can be strongly amplified and lead to the development of large unsteady vortical structures.

The instantaneous flow visualization in Figure 2a indicates that that farther downstream the shear
layer is wavy and rolls up into spanwise vortices, which detach from the shear layer and are convected
downstream, the so-called vortex shedding process. Observed periodic shedding of spanwise coherent
vortical structures are the indication of the fact that fluctuating disturbances reach large (non-linear)
amplitudes within the separated region [6]. The presence of the large-amplitude disturbance waves
which is manifested by large vortices, considerably increases the wall-normal momentum exchange by
transporting low-momentum fluid away from the wall and high-momentum free-stream fluid towards
the wall. Thus, this increased momentum exchange limits the extent of the separation, which in the
time-average picture as shown in Figure 2b, it is indicated by the appearance of a reverse-flow vortex
and the reattachment. It is worth notin that the Reynolds number based on the free-stream velocity and
the mean separation region (l), the streamwise distance between mean reattachment and separation

(a)

(b)

Figure 2. (a) Instantaneous spanwise-averaged spanwise vorticity. (b) Time and spanwise averaged
streamline colored with u-velocity.

point, is Rel = 57, 793. It is important to note that the boundary layer developing downstream of the
reattachment location is not an equilibrium turbulent boundary layer which is consistent with the
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Figure 3. Temporal evolution (a) and the corresponding frequency spectra (b) of the wall-normal
disturbance velocity (averaged in spanwise direction) at various streamwise locations along the
centerline of separated shear layer.

finding in [32] as they showed that the boundary layer subjected to a non-constant pressure gradient
appears to converge towards the canonical state after a sufficiently long downstream length.

To have a better understating of the unsteady nature of the LSB and estimate the dominant
frequency associated with the vortex shedding, the time traces and the respective frequency spectra of
the wall–normal disturbance velocity (averaged in spanwise direction) are provided in Figure 3 for
several streamwise locations within the bubble. The data are extracted along the local displacement
thickness which is very close to the center of shedding vortex core. All spectra show the development of
a distinct peak close to f = 240 (hz), which corresponds to the shedding frequency of the uncontrolled
separation bubble. This finding is consistent with the results of the LSB reported in [14,15,30].

Prior to the detailed discussion of the investigations for the VGJ controlled LSBs, the mean flow
results obtained from the present numerical simulations for the uncontrolled case are compared to
the results from DNS reported by [30] in Figure 4. Shown are the streamwise distributions of the
wall-pressure coefficient, cp, and wall-normal profiles of the streamwise velocity. In Figure 4, the
velocity profiles were selected from upstream of the separation location, inside the separated region
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Figure 4. Time- and spanwise-averaged wall-pressure coefficient (a) and wall-normal profiles of
u-velocity (b). Line: present numerical results; symbols: DNS data reported by [30].

and downstream of the mean reattachment location for comparison purposes. The present DNS results

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0200.v2

Peer-reviewed version available at Fluids 2018, 3, 94; doi:10.3390/fluids3040094

http://dx.doi.org/10.20944/preprints201810.0200.v2
http://dx.doi.org/10.3390/fluids3040094


7 of 14

show excellent agreement with those reported by [30], which confirms the proper implementation and
accuracy of the numerical methods and the computational setup in this work.

5. Controlled Flow: Steady and Harmonic VGJs

This section is devoted towards understanding the response of laminar boundary layer separation
to various vortex generator jets flow control strategies. Before proceeding further, a numerical
procedure to model VGJs is explained. Vortex generator jets are realized by specifying appropriate
boundary condition for the velocity at the wall. In particular, a non-zero wall boundary condition for
the wall-normal velocity is prescribed to simulate VGJs as

vVGJ(x, z, t) = Amax cos3
(

π
|~r−~rVG|

D

)
G(t), (4)

where Amax is the maximum forcing amplitude (blowing amplitude) and G(t) is a function to
provide the temporal behavior of the controlled disturbance input. This approach was implemented
successfully in DNS of pulsed vortex jets flow control [22,23]. In Equation (4), D is the hole diameter.
It is important to note that the forcing function is only applied on grid points at wall for which
|~r −~rVG| < D/2 where r = (x, 0, z)T and~rVG = (xVG, 0, 0)T defines the center of the hole. For all
cases, VGJ hole had a diameter of D = 0.2 and were located at xVG = 9, which is near the onset of APG.
It is worth noting that because of the enforced spanwise periodicity of the simulations, a spanwise
VGJ spacing is identical to the spanwise domain width. As explained in [22,23], the main reason why
cos3 velocity distribution was chosen, is the fact that Equation (4) provides a smooth Poiseuille-type
velocity profile for the jet exit velocity and thus avoids large spatial gradients near the edge of hole.

In this investigation, two different forcing strategies were considered: (i) a harmonic blowing
G(t) = 0.5[1 + sin(2πFt)] and (ii) steady injection G(t) = 1. For the harmonic forcing, F is the
fundamental forcing frequency and it is set to F = 240 (hz) which is the dominant natural shedding
frequency of the unforced separation bubble. Figure 5 presents the time signal of the wall-normal
velocity at the forcing location for different forcing strategies as well as the spatial distribution of the
jet velocity at the wall.

All simulations were carried out using the same maximum amplitude of Amax = 0.3. A
momentum coefficient, cµ, of VGJs is proportional to the integral of the square of the time signal
over one forcing period, cµ ∝

∫
G2(t)dt. Therefore, different forcing strategies lead to different

momentum coefficients. The corresponding momentum coefficients for the steady and harmonic cases
are cµ ≈ 8.37× 10−5 and cµ ≈ 6.28× 10−5, respectively, which are in the same range employed in
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Figure 5. (a) ) Reproduced time-signal of two different forcing strategy: harmonic (solid red line)
and steady (dashed green lines) VGJs. (b) Spatial distribution of the jet velocity at the wall. In (a), T
represents the fundamental forcing period, T = 1/F.

pulsed VGJs investigations [21–23].
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The fundamental physical mechanisms associated with separation control using harmonic and
steady VGJs are investigated next. The λ2 vortex identification [33] provides insight into the underlying
flow physics of controlled LSBs and nature of the vortical structures and their evolution. The
λ2-criterion is based on a decomposition of the velocity gradient tensor, ∂ui/∂xj, into the symmetric
part (the rate-of-strain-rate tensor, Sij) and the antisymmetric part (the vorticity tensor, Ωij). Consider
the three real eigenvalues (λ1 ≤ λ2 ≤ λ3) of the symmetric tensor SikSkj + ΩikΩkj, a vortex region is
defined where λ2 < 0 according to Jeong and Hussain [33]. Figures 6 and 7 present the instantaneous
iso-surfaces of the λ2-criterion colored by streamwise velocity in top-down and perspective views
for harmonic and steady VGJs, respectively. A close-up perspective view of the flow structures
immediately downstream of the actuator is presented in Figures 6 and 7 (right plot) as well. These
structures are associated with the high-amplitude forcing through the jet hole.

For harmonic VGJs shown in Figure 6, downstream of the hole a pair of counter-rotating
longitudinal vortices is seen to develop close to the wall. Traveling further downstream, these vortices
stretch in the wall-normal direction leading to the formation of hairpin-type vortices. The hairpin
vortices lift up from the surface and appear to trigger transition to turbulence which manifested by the
emergence of Λ-structures around x = 11.5 and z = 0. An important observation is the formation of
oblique large-scale coherent structures in the separated shear layer, which are marked by green dashed
lines in the left plot in Figure 6. The generation of these organized structures could be an indication of
excited instability waves, which will be discussed later.

For steady VGJs case presented in Figure 7, longitudinal structures are developed immediately
downstream of the jet hole, where the symmetric counter-rotating vortex pair remains intact for some
streamwise distances. Further downstream, the iso-surfaces clearly illustrate the formation of hairpin
like vortices which initiate the breakdown process to turbulence. One of the main differences between
the steady VGJs forcing with the harmonic one is the lack of organized 2-D or 3-D coherent structures.
It appears that the flow reattachment is caused by the increased momentum exchange due to the
longitudinal vortices and accelerated transition to turbulence.

Figure 6. Instantaneous flow visualizations for controlled LSB using harmonic VGJs. Plotted are
iso-surfaces of λ2 = −50 colored by u-velocity in top-down and perspective views. Close-up view
(right plot) represents the flow structure near the actuator based on λ2 = −20. Dashed lines in the left
plot indicate the generation of oblique coherent structures.
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Figure 7. Instantaneous flow visualizations for controlled LSB using steady VGJs. Plotted are
iso-surfaces of λ2 = −50 colored by u-velocity in top-down and perspective views. Close-up view
(right plot) represents the flow structure near the actuator based on λ2 = −20.

The effectiveness of the vortex generator jet actuation for all cases can be evaluated by comparing
time- and spanwise-averaged results. Figures 8 and 9 present a comparison of the skin-friction
coefficient, c f , and displacement thickness, δ∗, for the uncontrolled and controlled cases, respectively.
While the separation length is significantly reduced using different VGJs, the steady VGJs is less
effective in reducing the separated region compare to the harmonic case as shown in Figure 8. In
particular, the mean separation length is reduced by 72% and 62% for the harmonic and steady VGJs,
respectively. Here, the mean separation length is defined as the distance between the reattachment
point at which c f changes from negative to positive and the separation location, where c f changes from
positive to negative. It is worth noting that the separation location is delayed for both controlled cases
with the furthest separation location for the harmonic case. The displacement effect of the separation
bubble manifests itself in strong increases in the boundary-layer displacement thickness, where δ∗ is
defined as

δ∗ =
∫ δ

0

(
1− u

Upsd

)
dy, (5)

where δ is the local boundary-layer thickness and Upsd is a ‘pseudo’ free-stream velocity, which is
obtained by a wall-normal integration of the spanwise vorticity [29]. From the displacement thickness
distribution in Figure 9, it is found that in addition to reduction in separation length, all forcing
strategies were found to be very effective in reducing the wall-normal extent of the separated region.
Here, the steady actuation is less effective in reducing the bubble height.

The boundary layer separation in uncontrolled case is almost two-dimensional and the separated
region can be universally identified by the vanishing of wall shear. However, flow separation in
controlled LSBs using VGJs can be distinctly different from two-dimensional separation due to the
localized (3-D) effects of flow structures associated with VGJs. Therefore, for a better understanding
of the mean flow topology near the wall, it is instructive to illustrate the skin-friction lines for the
different controlled cases as shown in Figure 10. The skin-friction lines are constructed using the
streamwise and spanwise wall-vorticity components. In Figure 10, the skin friction lines are colored by
the wall-spanwise vorticity together with time averaged ωz = 0 (dashed lines). Note that ωz-vorticity
at the wall are directly proportional to the local skin friction. The results from the uncontrolled case is
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Figure 8. Comparison of time- and spanwise-averaged wall skin friction coefficient for uncontrolled
and controlled LSBs obtained from different forcing strategies. UNC refers to the uncontrolled case.
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Figure 9. Comparison of time- and spanwise-averaged displacement thickness for uncontrolled and
controlled LSBs obtained from different forcing strategies. UNC refers to the uncontrolled case.

also included in Figure 10 for comparison. In the uncontrolled case, the skin-friction lines converging
in a single line are an indication of a singularity in the flow field, that is separation line. On the other
hand, skin friction lines diverging from a single line show the location of flow reattachment. The
effect of the VGJs on the mean flow pattern near the wall is immediately visible around x = 9, which
corresponds to the forcing location. The localized effect is related to the fact that vortex generator jets
were employed in the wall-normal direction. For the controlled LSBs, the separation line is no longer
straight in the z-direction and strongly modulated in the spanwise direction. Another interesting
observation is that the boundary layer remains attached in the plane z = 0 even downstream of the
separation line. Whereas skin-friction lines are nearly parallel downstream of the separation line for
the natural LSB, they exhibit complex three-dimensional pattern for controlled cases.

The instantaneous flow structures visualizations, as shown in Figures 6 and 7, do not provide
a complete understanding of the underlying flow physics of different VGJs flow control strategies.
The question about why steady VGJs is less effective than harmonic actuation in controlling the
separation bubbles, despite the fact that it injects more momentum into the flow field, remains
unanswered. To identify the dominant mechanisms for different flow control strategies investigated,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0200.v2

Peer-reviewed version available at Fluids 2018, 3, 94; doi:10.3390/fluids3040094

http://dx.doi.org/10.20944/preprints201810.0200.v2
http://dx.doi.org/10.3390/fluids3040094


11 of 14

Figure 10. Skin friction lines and color contours of spanwise vorticity on the flat-plate obtained for
uncontrolled and controlled LSBs. From top to bottom: uncontrolled, harmonic and steady VGJs.
Dashed lines correspond to the time-averaged ωz = 0.

the time-dependent velocity field were Fourier decomposed in time and spanwise direction. The
double Fourier decomposition was motivated by DNS of pulsed VGJs in [23], where they successfully
employed this approach to understand and identify the underlying flow physics of pulsed VGJs flow
control. For Fourier transform in time, the flow data are sampled with a time interval of ∆t = T/40 for
10 forcing periods where T is the period of the actuation. The notation (n, m) is used here to represent a
Fourier mode, where n/T is the frequency and 2πm/Lz is the spanwise wavenumber of a disturbance
wave [23]. Here, Lz is the spanwise domain width. Therefore, mode (1, 0) represents a 2-D disturbance
wave with the fundamental frequency F = 1/T and mode (1, 2) denotes a harmonic wave of period
T with spanwise wavelength λz = Lz/2, and so on. The downstream development of the maximum
disturbance u-velocity Fourier amplitude of a Fourier mode, Au, for the controlled flows with different
VGJs scenarios is presented in Figure 11. It should be noted that only the modes that reach high
amplitudes are highlighted in Figure 11. For each case, the streamwise locations of the time- and
spanwise-averaged separation and reattachment were identified by vertical dashed lines.

For both cases, a strong peak can be seen in the Fourier spectra which corresponds to mode
(0, 1) representing steady disturbance waves with spanwise wavelength λz = Lz. It appears that this
mode is governed by spanwise spacing of VGJs. However, the streamwise growth rate and the onset
of the growth associated with this mode is slightly different for two cases. For steady VGJs, mode
(0, 1) decays up to the separation location and then starts to grow further downstream. This mode
starts to grow further upstream and experiences stronger growth for harmonic case compare to the
steady actuation, hints the fact that different physical mechanism plays a role when harmonic VGJ
is employed. Another important observation in Figure 11b is that in the steady VGJs case, unsteady
disturbances reach appreciable amplitudes only downstream of reattachment location indicating that
this flow control strategies is unable to excite fluctuating disturbances. The dominant unsteady Fourier
modes for this case are modes (1, 2) and (1, 3). This could explain why this type of VGJs forcing
is less effective in controlling the separation bubble compared to the harmonic VGJs flow control
while injecting more momentum into the flow through the hole. On the other hand, harmonic 2-D
and 3-D disturbances with the fundamental frequency F, modes (1, 0), (1, 1), (1, 2) and (1, 3), were
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Figure 11. Disturbance development of the Fourier modes of controlled flow with different forcing
strategies in (n, m) notation. Plotted are the maximum Fourier amplitude of disturbance u-velocity.
(a) Harmonic, (b) steady VGJs. The vertical dashed lines correspond to the forcing location, mean
separation and reattachment locations (xVG, xs, xR).

strongly excited by harmonic forcing. In particular, mode (1, 1) is the dominant Fourier mode, which is
consistent with the instantaneous flow visualization in Figures 6 where dominant coherent structures
with the spanwise wavelength of λz = Lz were identified.

6. Conclusions

High resolution direct numerical simulations of canonical separation bubbles on a flat-plate were
carried out for investigating active flow control for a laminar separation bubble using vortex generator
jets. The main focus of this paper was to investigate the underlying flow physics of controlled LSBs
using steady and harmonic VGJs. From our investigations, we found that both VGJs flow control
strategies were successful in reducing the streamwise and wall-normal extent of the separation bubbles
when the same blowing amplitude was used for the actuation. However, it was found that harmonic
VGJ is indeed more effective in reducing laminar boundary-layer separation than steady forcing
whereas larger momentum coefficient was used for the steady VGJ. In particular, the mean bubble
length was reduced by 72% for harmonic VGJs in comparison to 62% of steady VGJs. Using spectral
analysis, the present investigation demonstrated that different physical mechanisms are associated
with steady and harmonic VGJs. The effectiveness of steady actuation was related to the generation of
steady longitudinal vortices which accelerate the transition process, and as the result, limits the extent
of the separated region. In addition to generation of steady modes, harmonic VGJ forcing was able to
excite the unsteady 2-D and 3-D disturbances, and the rapid amplification of disturbance waves leads
to the generation of strong coherent structures that are very effective in controlling the LSB. While the
breakdown to turbulence alone provides a limited amount of momentum exchange, the present results
indicated that the generation and development of strong organized coherent structures is primarily
responsible for the increased effectiveness of harmonic VGJs compared to steady VGJs.
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Abbreviations

The following abbreviations are used in this manuscript:

AFC Active flow control
APG Adverse pressure gradient
c f Skin-friction coefficient
cp Wall-pressure coefficient
D VGJ hole diameter
DNS Direct Numerical Simulations
F Forcing freqency
LSB Laminar separation bubble
Lz Spaniwse doamin width
λz Spanwise wavelength
VGJ Vortex generator jet
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