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Abstract: The vegetation in constructed wetlands (CWs) plays an important role in wastewater
treatment. Popularly, the common emergent plants in CWs have been vegetation of natural
wetlands. However, there are ornamental flowering plants that have some physiological
characteristics similar to the plants of natural wetlands that can stimulate the removal of pollutants
in wastewater treatments; such importance in CWs is described here. A literature survey of 87 CWs
from 21 countries showed that the four most commonly used flowering ornamental vegetation
genera were Canna, Iris, Heliconia and Zantedeschia. In terms of geographical location, Canna spp. is
commonly found in Asia, Zantedeschia spp. is frequent in Mexico (a country in North America), Iris
is most commonly used in Asia, Europe and North America, and species of the Heliconia genus are
commonly used in Asia and parts of the Americas (Mexico, Central and South America). This
review also compares the use of ornamental plants versus natural wetland plants and systems
without plants for removing pollutants (COD, BOD, nitrogen and phosphorous compounds). The
removal efficiency was similar between flowering ornamental and natural wetland plants.
However, pollutant removal was better when using ornamental plants than in unplanted CWs. The
use of ornamental flowering plants in CWs is an excellent option, and efforts should be made to
increase the adoption of these system types and use them in domiciliary, rural and urban areas.

Keywords: Ornamental flowering plants, constructed wetlands, wastewater, pollutants.

1. Introduction

Nowadays, the use of constructed wetlands (CWs) for wastewater treatment is an option
widely recognized. This sustainable ecotechnology is based on natural wetland processes for the
removal of contaminants, including physical, chemical and biological routes, but in a more
controlled environment compared with natural ecosystems [1,2,3]. These ecologically engineered
systems involve three important components: porous-filter media, microorganism and vegetation
[2]. The mechanisms for the transformation of nutrient and organic matter compounds are

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.
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45  conducted for biofilms of microorganisms formed in the porous media and the rhizosphere zone
46 [4,5]. The media materials (soil, sand, rocks, and gravel) provide a huge surface area for
47  microorganisms to attach, contributing to macrophyte growth, and also act as filtration and/or
48  adsorption medium for contaminants present in the water [6]. In regards to the vegetation, one of the
49  most conspicuous features of wetlands is the role that plants play in the production of underground
50  organisms (i.e. rot and rhizomes) in order to provide substrate for attached bacteria and oxygenation
51  of areas adjacent to the root, and absorb and adsorb pollutants from water. Nitrogen (N),
52 phosphorus (P) and other impurities are mainly taken up by wetland plants through the epidermis
53  and vascular bundles of the roots, and are further transported upward to the stem and leaves [7].
54  This provides carbon for denitrification during biomass decomposition and prevents pollutants
55  from being released from sediments [8,9,10]. The use of the CWs technology began in Europe during
56  the 1960’s. [1], and has been replicated on other continents. The type of vegetation used are plants
57  from natural wetlands, inlcuding Cyperus papyrus, Phragmites australis, Typha and Scirpus spp., which
58  have been evaluated for their positive effects on treatment efficiency for nutrient and organic
59  compounds around the globe [8,9,11]. In the Americas, such species are typical in CWs, and are
60 found mainly in the United States, where the technology has been used extensively and is
61 implemented in different rural and urban zones [12,13,14,15,16]. In recent studies (15 years ago), the
62  goal of CWs studies involved an investigation into the use of herbaceous perennial ornamental
63  plants in CWs, including the use of species with different colored flowers to make the systems more
64  esthetic, and therefore, making it more probable for adoption and replication.

65

66 This review attempts to study the role of macrophytes in CWs and highlights the use of
67  ornamental flowering plants in this type of ecotechnology around the world. This includes plants
68  that are not typical in natural wetlands, and shows the resulting removal efficiency and their
69  importance in rural communities. The aim of this study is to create a context regarding the
70  advantages that the use of CWs with ornamental flowering plants provides, emphasizing that these
71  systems could be used for more sites that require wastewater treatment. The information from 87
72 constructed wetlands using ornamental flowering plants (OFP) in 21 countries was reported in the
73 literature that was analyzed. Only published or accepted (in press) papers were considered; the
74 results of theses or abstracts of conferences were not considered.

75  2.Role of macrophytes in CWs

76 The plants that grow in constructed wetlands have several properties related to the water
77  treatment process that make them an essential component of the design. Macrophytes are the main
78  source of oxygen in CWs through a process that occurs in the root zone, called radial oxygen loss
79  (ROL) [17]. The ROL contributes to the removal of pollutants because it favors an aerobic
80 micro-environment, and waste removal is therefore accelerated, whereas in anaerobic conditions
81  (the main environment in CWs) there is less pollutant removal. In a recent study [18] comparing the
82  use of plants in high density (32 plants m?) and low density (16 plants m2) CWs, the removal of
83  nitrogen compounds in high density CWs was twice that of CWs using a low density of plants,
84  which is strong evidence of the importance of plants in such systems. The removal rate of total
85  nitrogen (TN) and total phosphorous (TP) were also positively correlated with the ROL of wetland
86  plants, according to a study involving 35 different species [19].

87

88 The roots of plants are the site of many microorganisms because they provide a source of
89  microbial attachment [8] and release exudates, an excretion of carbon that contributes to the
90  denitrification process. This is exudates a necessary source of carbon, which increases the removal of
91  pollutants in anoxic conditions [20,21]. Other physical effects of root structure on CWs includes a
92  reduction in the velocity of water flow, promotion of sedimentation, decreased resuspension,
93  prevention of medium clogging and improved hydraulic conductivity [52]. A 5 year study
94  evaluated the influence of vegetation on sedimentation and resuspension of soil particles in small
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95  CWs [22]. The author showed that macrophytes stimulated sediment retention by mitigating the
96  resuspension of the CWs’ sediment (14 to 121 kg m?). Macrophytes increased the hydraulic
97  efficiency by reducing short-circuit or preferential flow. Plant presence led to decrease saturated
98  hydraulic conductivity in horizontal subsurface flow. This study was imperative, since monitoring
99  macrophytes is essential for understanding and controlling clogging in CWs [23].
100
101 The removal of organic and inorganic pollutants in CWs is not only the role of microorganisms.
102  This function is also exerted by plants, which are able to tolerate high concentrations of nutrients
103  and heavy metals, and in some cases, plants are able to accumulate them in their tissues [24]. It has
104  been estimated that between 15 and 32 mg g of TN and 2-6 mg g (dry mass) of TP are removed by
105  CW plants, which was measured in the aboveground biomass[25,26] .

106 Other uptakes of xenobiotic compounds (organic pollutants) are also the result of the presence
107  of plants, involving processes such as transformation, conjugation and compartmentation [24].
108

109 3. Survey results of use of ornamental flowering plants in CWs

110

111 Table 1 lists examples of ornamental plants used in CWs around the world that were designed
112 for the removal of various types of wastewater. OFP have been used in some countries, particularly
113  in Mexico and China. In China, the most popular vegetation used is Canna sp., while in Mexico the
114  ornamental plant used is more diverse, including plants with flowers in different colors, shapes and
115 aromatic characteristics (Canna, Heliconia, Zantedeschia, Strelitzia spp).

116
117 Table 1. Examples of ornamental plants used for CWs designed for the removal of various types
118  of wastewater around the globe.
Country Type of Vegetation Removal Reference
wastewater efficiency (%)
Brazil Domestic Heliconia psittacorum TSS: 88, COD: Paulo et al.
95, BOD: 95 [47]
Domestic Alpinia purpurata COD:  48-90, Paulo et al.
Arundina bambusifolia POs-P: 20, TKN: 31 [48]
Canna sp. and TSS: 34.
Heliconia psittacorum L.F.
Swine Hedychium coronarium -COD: 59, TP: Sarmento et al.
44, TKN: 34 and [44]
Heliconia rostrata NHx 35
- COD: 57, TP:
38, TKN: 34 and
NHx: 37
Hemerocallis flava COD: 72, Prata et al.

BOD: 90, TN: 52, TP:  (2013)[NRF]
41 and SST: 72.

Heliconia psittacorum L.F. Teodoro et al.
(2014)[NRF]
China Municipal Canna indica COD: 77, Shi et al.
BOD: 86, TP: >82, [49]
TN: >45
Aquaculture Canna indica mixed with BOD: 71, TSS: Liet al.
ponds other species 82,  chlorophyll-a: [50]

919, NHsN: 62,
NOs-N: 68 and TP:
20.
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Canna indica Linn

Canna indica

R. carnea, 1. pseudacorus, L.

salicaria

Canna sp

Canna indica

Canna indica mixed with

other natural wetland plants

Canna indica mixed with

other natural wetland plants

Canna indica and Hedychium
coronarium

Iris pseudacorus mixed with
other natural wetland plants

Iris pseudacorus, mixed with
other plants of natural wetlands

Canna indica

Iris sibirica

Canna sp

Iris sibirica

Canna indica L.

Canna indica L.

Zantedeschia aethiopica, Canna
spp. and Iris spp

Tulbaghia wvioldcea, and Iris

pseudacorus.

Zantedeschia aethiopica

Heliconia psittacorum

doi:10.20944/

COD: 8231,
BOD: 88.6, TP: >80,
TN: >85

NH4-N:
POs-P: 87

COD: 58-92,
BOD: 60-90TN:
60-92, TP: 50-97,

COD: 95,
N-NHa: 100, N-NOs:
76, TN: 72

TP: 60,
NH4-N: 30-70, TN:
~25

99,

BOD: 56,
COD: 26, TSS: 58,
TP: 17, TN: 48 and
NH4-N: 34.

COD:  50-70,
BOD: 60-80, N-NQOs:
65-75, TP: 50-80

TP: 40-70

TN:

NHs-N:93, TP: 67
TN: 20 and TP:

68,

44

COD: 60,
NOs-N: 80, TN:15,
TP:52

COD: 22, TN:
46, NH4-N: 62, TP:
58

Fluoride: 51,
Arsenic: 95

Cd: 92

N: 56-60

TN:
N-NOs:
NH4-N: 20-55

BOD: 82, TN:
53, TP: 60.

BOD: 57-8§,
COD: 45-72, TSS:
70-93, POs4-P: 6-20.

Organic
60%,

40-60,
20-95,

[66]

matter: TSS:
90%

NHa: 57
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Yang et al.
(51]

Zhang et al.
[52]
Zhang et al.
(53]

Sun et al.
[54]

Cui et al.
[55]

Zhang et al.
[56]

Qiu et al.
[57]

Wen et al.
[58]

Wu et al.
[59]

Xie et al.
[60]

Chang et al.
[61]

Gao et al.
[62]

Lietal.
[39]

Gao et al.
[63]

Hu et al.
[64]

Wang et al.
[65]

Morales et al.

Burgos et al.
[67]

Leyva et al.
[29]

Gutiérrez-Mosq
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Heliconia psittacorum

Alpinia purpurata

Heliconia psitacorum

Ludwigia inucta, Zantedechia

aetiopica, Hedychium  coronarium

and Canna generalis

Canna sp

Canna sp

Canna indica

Canna indica

Heliconia angusta

Canna generalis

Canna Lily

Canna indica

Polianthus tuberosa L.

Iris pseudacorus

Zantedeschia aethiopica, Canna

indica

Canna sp

Zantedeschia aethiopoca

Zantedeschia

Aethiopica and

doi:10.20944/
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COD: 70 uera and Pefa-Varon
[68]
COD, TKN Madera-Parra et
and NHas (all: 65-75)  al.
[69]
SST: 58, TP: 85, Marrugo-Negret
COD: 63 eetal. [70]
Bisphenol Toro-Vélez et al.
A:73, Nonylphenols: [71]
63
BOD: 62, Ledn and
NOs-N: 93, POs-P: Chéaves
91, TSS: 84 [72]
TSS: 92, COD: Abou-Elela and
88, BOD: 90 Hellal
[73]
TSS: 92, COD: Abou-Elela et al.
92, BOD: 92 [74]
9,10,12,13-tetr Choudhary et al.
achlor- ostearic acid:  [75]
92 and
9,10-dichlorostearic
acid: 96
Dye: 70-90 Yadav et al.
COD: 75 [76]
COD:40, BOD: Saumya et al
70, TSS: 62, TDS: 19 [77]
TN: 52, T-PO3: Ojoawo et al.
9 [78]
BOD:  70-96, Haritash et al.
COD: 64-99 [79]
COD, TKN Patil and
and Pathogen all up Munavalli,
70 (80]
Heavy metals Singh and
(Pb and Fe: 73-87), Srivastava
(Cu and Zn: 31-34) [81]
and Ni and Al: 20-26
TN: 30, TP:28 Gill and
O’Luanaigh
[82]
N: 65-67, P: Macdi et al.
63-74, Zn and Cu: [83]
98-99,
Carbamazepine:
25-51, LAS: 60-72
BOD: 87, Kimani et al.
COD: 67, TSS: 90, [84]
TN: 61
COD: 35, TN: Belmont and
45.6 Metcalfe
[85]
SST: 85.9, Belmont et al.
COD: 85.8, NOs-N: [86]
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Canna flaccida

Heliconia psittacorum

Strelitzia reginae, Zantedeschia
esthiopica, Canna hybrids, Anthurium
andreanum, Hemerocallis Dumortieri

Zantedeschia aethiopica

Zantedeschia aethiopica

Strelitzia reginae, Anthurium,

andreanum.

Zantedeschia  aethiopica and
Anemopsis californica

Gladiolus spp

Zantedeschia aethiopica and

Canna indica

Zantedeschia aethiopica

Heliconia  stricta, Heliconia

psittacorum and Alpinia purpurata

Canna hybrids and Strelitzia

reginae

Zantedeschia aethiopica and
Strelitzia reginae

Spathiphyllum wallisii,
Zantedechia aethiopica, Iris japonica,
Hedychium coronarium, Alocasia sp,
Heliconia sp. and Strelitzia reginae.

Zantedeschia aethiopica, Lilium
sp, Anturium sp and Hedychium
coronarium

Canna indica

Iris sibirica and Zantedeschia
aethiopica
Alpinia purpurata and

Zantedeschia aethiopica

Zantedeschia aethiopica

Spathiphyllum wallisii,

and Zantedeschia aethiopica

doi:10.20944/

81.7, NHa-N: 65.5,
NT:72.6

COD: 91,
Coliformes: 93
COD: >75, P:

66, Coliforms: 99

BOD: 79, TN:
55, PT: 50
COD: 92,

N-NHa: 85, P-POa: 80

TSS: 62, COD:
80, BOD: 82, TP: >50,
TN: >49

As: 75-78

BOD: 33,
TN:53, TP:75

COD: 65, NT:
224, PT: 5.

BOD: 70

BOD: 48,
COD: 64, TP: 39, TN:
39

DQO: 86, NT:
30-33, PT: 24-44

COD: 75, TN:
18, TP: 2, TSS: 88.

N-NHa: 64-93
BOD: 22-96
COD: 25-64

NT: 47, PT: 33,
COD: 67

BOD:87,
COD:70

Carbamazepin
e: 50-65

NOs-N: 45,
NH4-N: 70, POs-P: 30
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[87]
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[45]

Zurita et al.

[88]

Ramirez-Carrill
oetal

[89]

Zurita et al.

[90]

Zurita et al.

[91]

Castafieda and
Flores

[92]

Zurita and
White

[93]

Hallack et al.
[94]

Méndez-Mendo
za et al. [95]

Merino-Solis et
al.

[96]

Zurita and
Carreén-Alvarez

[97]

Garzodn et al.

[98]

Hernandez
[46]

Loépez-Rivera et

al. [99]
Tejeda et al
[100]
Marin-Muiiiz et
al.
[101]
Hernandez et al.
[18]

Sandoval-Heraz
oetal. [102]
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Canna indica

Canna sp

Canna siamensis, Heliconia

spp and Hymenocallis littoralis

Heliconia psittacorum L.f. and

Canna generalis L. Bailey

Canna hybrida

Cannae lilies, Heliconia

Crinum asiaticum,
Spathiphyllum clevelandii Schott

Iris australis

Canna flaccida, Gladiolus sp.,
Iris sp.

Canna-  generalis, Eleocharis
dulcis, Iris Peltandravirginica.

Iris pseudacorus L., Canna x.
generalis L.H. Bail, Hemerocallis
fulva L. and Hibiscus moscheutosL..

Canna sp.

Canna x generalis Bailey, Iris
pseudacorus L., Zantedeschia

aethiopica (L.)

TSS: 97, COD:
97, BOD: 89, TP: >30
COD: 41-73,
BOD: 41-58
BOD,
P-POs, NHa4
total coliform
bacteria (all up to 84)
Bacteria: 37

COD,

and

Bacteria: 43

BOD:66, TP:
89, NHa4-N:82,
N-NOs:50

N-NHa: 73,
BOD: 11

N-NHa: 57,
N-NOs:57

COD: 92,

BOD: 93, TSS: 84,
NHa4-N: 88, TP: 90
BOD: 91-99,
SS: 52-90, TN: 72-92
and TP: 72-77
TSS: Both>88,
COD: 42-83

BOD,
TKN: ~ 97

BOD: 92, TSS:
90, NOs-N: 50, TP: 46

COD,

POs-P: ~20

NHa-N: 91,
NOs-N: 89, TN: 91

Baceria: ~50

N: ~50, P: ~60
BOD>75,
TSS>88, Fecal

baceteria>93
TSS: 90,

NO2-N: 91, NOs-N:
76, COD: 12.5 and
NHs-N: 7.5
N and P
Canna
Iris (>30)

Zantedeschia

(>90),
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(>90)
Residential Aeonium  purpureum  and TSS: 95 Yu et al.
Crassula ovate, Equisetum hyemale, BOD:97 [16]
Nasturtium, Narcissus impatiens,
and Anigozanthos
Vietnam Fishpond Canna generalis BOD: 50, Konnerup et
COD: 25-55 al.[122]
United Herbicide Iris pseudacorus Atrazine: McKinlay and
Kingdom polluted water 90-100 Kasperek. [123]
119
120 A review of the available literature showed that ornamental plants are used to remove

121  pollutants from domestic, municipal, aquaculture ponds, industrial or farm wastewater. The
122 removal efficiency of ornamental plants was also evaluated for the following parameters:
123 biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS),
124 total nitrogen (TN), total phosphorous (TP), ammonium (NHs-N), nitrates (NOs-N), coliforms and
125  some metals (Cu, Zn, Ni and Al). There is no clear pattern in the use of certain species of ornamental
126  plants for certain types of wastewater. However, it is important to keep in mind that CWs using
127  ornamental plants are usually utilized as secondary or tertiary treatments, due to the reported toxic
128  effects that high organic/inorganic loading has on plants in systems that use them for primary
129  treatment (in the absence of other complementary treatment options) [27, 28]. The use of OFP in CWs
130  generates an esthetic appearance in the systems. In CWs with high plant production, OFP harvesting
131  can be an economic entity for CW operators, providing social and economic benefits, such as the
132 improvement of system landscapes and a better habitat quality. Some authors have reported that
133 polyculture systems enhanced the CWs’ resistance to environmental stress and disease [14,29].

134

135  3.1. Common ornamental plants used in CWs

136 A limited quantity of OFP have been used in CWs. These types of plants are typical of
137  subtropical and tropical regions. Our survey showed that the four most frequently used genera are,
138  in order of most to least frequently used: Canna spp, Iris spp, Heliconia spp, Zantedeschia spp (Table
139 2). Species of the Canna genus are used in all continents, with Asia using them the most frequently.
140  The Iris genus is also used in Asia, along with Europe and North America. Species of the Heliconia
141  genus are commonly used in Asia and America, including Mexico, Central and South America.
142 While Zantedeschia is most frequently used in Mexico (a country in North America), they are found
143 with less frequency in Europe, Africa, and Central and South America. The use of OFP in CWs is
144  most popular in tropical and subtropical regions, due to the warm temperatures and the extensive
145  sunlight hours. Such environmental features stimulate a richer biodiversity than in other regions.

146
147 Tabla 2. Four most commonly genera plants used in CW as identified during the survey
148  according the continents.
Asia Europe America Africa Total
North America Central and
USA Mexico South
America
Canna 22 4 5 4 2 2 39
Iris 5 5 4 2 2 18
Heliconia 4 4 4 12
Zantedeschia 2 1 13 3 1 20

149

150  3.1.1. Cannaspp
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151 This perennial herb belongs to the family Cannaceae (Figure 1). It can grow in full sun or
152 semi-shaded areas and in loamy soils, with plant heights varying from 0.75 to 3.0 m under tropical
153  and subtropical conditions. It reportedly originated in Central and South America and spread
154  throughout Europe, North America and many tropical regions of the world. The Canna genus
155  includes 8-10 wild species and over 1000 hybrids that are used as garden ornamentals. During the
156  last two centuries of cultivation and improvement, Canna has been transformed into an attractive
157  OFP, with variability in flower colours (yellow, orange, red and salmon, achieved using colored
158  stains) and other positive attributes [30,31].

159

160
161

162  3.1.2.Iris spp

163 Irises are perennial plants (Figure 2), whose flowers are distinguished by a great variety of
164  colours and miscellany of patterns on the perianth leaves [32]. Depending on the species, flower
165  width ranges from 2.5 to 25 cm. Iris leaves are grass-like or sword-like and embrace the shoot with
166  their bracts. Plant height is highly diverse, ranging from 10 to 200 cm, which allows them to be used
167  in a variety of flower compositions. As both the leaves and the flowers are decorative, with the
168  proper selection of species and varieties, they can add splendour to any garden from early spring
169  until late autumn. Irises of the beardless variety (Limniris) are growing in popularity throughout the
170  world, characterized by the various shapes of their perianth sepals and their untypical leafy pistils.
171  They are low-maintenance plants and are resistant to the diseases that affect bearded irises [32,33].

172 =
173 Figure 2.Iris spp

174

175  3.1.2. Heliconia spp
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176 This species is the only genus in the plant family Heliconiaceae (Figure 3), which is a member of
177  the order Zingiberales. In addition to the several cellular features (short root hair cells, sieve tube
178  plastids with starch, silica bodies, inaperturate and exineless pollen) that distinguish the
179  Zingiberales from other monocots, there are several very conspicuous characters by which they can
180  be recognized, including, 1) large leaves with long petioles and blades possessing transverse
181 venation, 2) large, usually colorful, bracteate inflorescences, and 3) arillate seeds. This order is most
182  closely related to the family Bromeliaceae and their relatives in the superorder Bromeliiflorae [34].
183  The inverted flowers, presence of a single staminode, and drupaceous fruits are special features of
184  Heliconia. Many species and varieties native from Brazil are now being grown as potted plants and as
185  cut-flowers. The number of species of Heliconia ranges from 120 to over 400 [35].

.

186 o ¥
187 Figure 3.Heliconia spp

188  3.1.2. Zantedeschia spp

189 Also known as Arum or Calla lilies, a relatively small genus of eight species, forms the tribe
190  Zantedeschieae(Figure 4) in the subfamily Philodendroideae [36]. This genus is confined to southern
191  Africa, including Angola, Zambia, Malawi, Zimbabwe and Tanzania. Showy and decorative hybrids
192  and varieties of Zantedeschia have drawn much interest among plant breeders abroad, where tubers,
193  cut flowers and container plants form the basis of a lucrative export industry in the USA, the
194  Netherlands and New Zealand [36,37].

195

196 ' N .
197 Figure 4.Zantedeschia spp

198  3.2. Influence of plants on treatment performance in constructed wetlands

199
200 Some studies have provided evidence of the positive effects that vegetation of natural wetlands
201  has on pollutant removal (organic matter, nitrogen and phosphorus compounds) in constructed
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wetlands when compared to systems without plants [5,10]. In planted mesocosms with Phragmites
australis, the efficiency of total nitrogen and total phosphorous removal was 97% and 91%,
respectively, while in systems without plants, the removal efficiency was 53% for total nitrogen and
61% for total phosphorous [38]. A similar situation was observed when studying fluoride ion
removal in constructed wetlands, where the pollutant removal in systems without plants was 20%
lower than in systems with vegetation [39]. The increase in the removal of pollutants in systems with
plants is due to the increased oxygen supply to the rhizosphere through the plants” roots [2,8].

The use of ornamental plants in constructed wetlands for pollutant removal have been applied
in different countries around the globe (Table 1), commonly in tropical and subtropical areas. A
comparison of performance efficiencies of CWs with different OFP showed that the removal
percentages were similar across all plant genera for TSS (62-86%), COD (41-72%), BOD (51-82%), TP
(49-66%), NH4-N (62-82%), NOs-N (63-93%) and TN (48-72%) (Figure5). Such values are within the
range reported for [6] for CWs from China, India, Ireland, Spain and Thailand, as well as for the
values reported in a review of wastewater treatment of CWs in developing countries [40] and CWs
in tropical and subtropical regions [41,42], all using plants typically found in natural wetlands
(Cyperus, Typha and Phragmites sp.), which were 67-92.5% for TSS, 49-81% for COD, 60-91.5% for
BOD, 33-90% for NHs-N, and 50-77% for TP. In general, the mean TN and TP removal when using
ornamental plants in CWs were less than the mean removal of the other pollutants (TSS, CDO, BOD,
NHs-N or NOs-N) (Figure 5). Such removal is influenced not only by the plants, but also by other
parameters, such as filter media, or operational parameters, such as hydraulic and influent loading,
which are related with the removal of pollutants in CWs and need to be considered in system
designs [43]. When comparing the removal efficiency of pollutants in CWs with OFP and CWs
without plants (Figure5), pollutant removal was almost 40% higher for TSS, COD, BOD, NT AND
N-NOs in CWs with plants than in those without. For TP the removal efficiency was almost 70%
higher in CWs using ornamental plants than in those without vegetation.
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231

232 Miller et al. [42] evaluated the use of CWs in Brazil, including systems with ornamental plants,
233  and concluded that warm temperatures, extensive sunlight hours and available land are important
234 characteristics for encouraging plant growth and proliferation. Such features are typical in tropical
235  and subtropical regions, where the option of a CW with ornamental plants can be an excellent choice
236  for the removal of pollutants.

237

238 In cases where the wetlands are constructed to assist rural communities that involve big areas,
239  the growth of OFP also creates a useful source of commercialization. The flowers could be sold as
240  bougquets, as plants with attached roots for use in gardens, or for crafts made with parts of the plants,
241  providing another strategy for convincing landowners to adopt these systems. The statistics that we
242 report here regarding the removal efficiency of ornamental plants in CWs around the world is
243 evidence that urban areas can also use CW systems as beautiful landscapes in supermarkets, streets,
244  universities, hospitals, in riverine areas or as floating wetlands in rivers, lakes or lagoons. The
245  combination of different species of ornamental plants in CWs makes the system more colorful, and
246  therefore, more attractive for the public.

247

248 These comparisons indicate the same general range of removal efficiency between CWs using
249  ornamental plants and CWs with vegetation from natural wetlands. Thus, it is clear that ornamental
250  plants should be considered in new CW designs. The use of ornamental plants could be a strategy
251  used to increase the adoption of these systems because it makes the systems more aesthetic, and
252 therefore, they would not be observed as a treatment system, but instead would be seen as large
253  outdoor planters’ in house gardens. We recommend the construction of domiciliary wetlands using
254  ornamental plants to decrease water pollution and to assist with maintaining a better public health.
255

256  3.2. Advantages of using ornamental plants in CWs

257

258 A range of novel and cost-effective constructed wetland systems for wastewater treatment have
259  been engineered around the world. The influence of design parameters, such as porous media,
260  hydraulic retention time, and flow of water, on the performance of CWs has been reported,
261  highlighting the sustainability of this technology and the esthetic appearance using OFP [6,28,43,44].
262

263 One of the advantages of using OFP in CWs is the significant reduction of nutrient
264  contamination (Figure. 1), representing an economical and sustainable alternative to
265  decentralization practices; CWs are less expensive than commercial systems and are easier to build
266  and operate [45,46]. Furthermore, by using plants with commercial value, the resources invested in
267  the design, construction and maintenance of the system can be recovered in the profits of retail sales,
268  without impeding the removal of pollutants of the system. The production of flowers in the CWs can
269  provide economic benefits to the operators of the technology and can create beautiful landscapes
270  using flowers such as Canna, Iris, Heliconias and Zantedeschia spp. (Tables 1 and 2).

271 4. Conclusions

272 The use of ornamental flowering plants in constructed wetlands has been identified in 21
273 countries. The most commonly used ornamental plants are Canna spp., Iris spp, Heliconia spp., and
274 Zantedeschia spp., which are mainly used in tropical and subtropical regions. These plants have been
275  evaluated for the efficiency of pollutant removal in CWs, with studies concluding that they can be
276  used for such a purpose. Our survey also found that many ornamental plants are planted using a
277  mixture of various species, or are mixed with plants from natural wetlands. There is no clear pattern
278  inthe use of a specific plant species for a certain type of wastewater, but the use of ornamental plants
279  in wastewater treatment is a great economic and ecological option, and their flowers add to the


http://dx.doi.org/10.20944/preprints201810.0178.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2018 d0i:10.20944/preprints201810.0178.v1

13 of 20

280  esthetic appearance of CWs. The last characteristic could be used to increase system adoptions by the
281  people in domiciliary, rural or urban areas.
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