

1 *Type of the Paper: Review*

2 **Role of wetland plants and use of ornamental** 3 **flowering plants in constructed wetlands for** 4 **wastewater treatment: a review**

5

6 **Luis Carlos Sandoval-Herazo^{1,2}, Josè Luis Marín-Muñiz^{3*}, María Graciela Hernández y Orduñas¹,**
7 **& Antonio Janoary Aleman-Chang¹**

8 ¹ División de Estudios de Posgrados e Investigación, Tecnológico Nacional de México/Instituto Tecnológico
9 de Orizaba, Oriente 9, Emiliano Zapata Sur, C.P. 94320 Orizaba, Veracruz, México;lcsandovalh@gmail.com
10 (L.C.S.-H.).

11 ² División de Estudios de Posgrados e Investigación, Tecnológico Nacional de México/Instituto Tecnológico
12 Superior de Xalapa, Sección 5A Reserva Territorial S/N, Santa Bárbara, 91096 Xalapa Enríquez, Veracruz,
13 México; lcsandovalh@gmail.com (L.C.S-H.); Graciela.hernandez@itsx.edu.mx (M.G.H-O.);
14 itsx.antonio@yahoo.com.mx (A.J.A-C.).

15 ² Department of Sustainability and Regional Development, El Colegio de Veracruz, Xalapa, Veracruz, Mexico
16 (J.L.M-M.).

17
18 * Correspondence: soydrew@hotmail.com; Tel.: +52-228-162-4680

19

20 **Abstract:** The vegetation in constructed wetlands (CWs) plays an important role in wastewater
21 treatment. Popularly, the common emergent plants in CWs have been vegetation of natural
22 wetlands. However, there are ornamental flowering plants that have some physiological
23 characteristics similar to the plants of natural wetlands that can stimulate the removal of pollutants
24 in wastewater treatments; such importance in CWs is described here. A literature survey of 87 CWs
25 from 21 countries showed that the four most commonly used flowering ornamental vegetation
26 genera were *Canna*, *Iris*, *Heliconia* and *Zantedeschia*. In terms of geographical location, *Canna* spp. is
27 commonly found in Asia, *Zantedeschia* spp. is frequent in Mexico (a country in North America), *Iris*
28 is most commonly used in Asia, Europe and North America, and species of the *Heliconia* genus are
29 commonly used in Asia and parts of the Americas (Mexico, Central and South America). This
30 review also compares the use of ornamental plants versus natural wetland plants and systems
31 without plants for removing pollutants (COD, BOD, nitrogen and phosphorous compounds). The
32 removal efficiency was similar between flowering ornamental and natural wetland plants.
33 However, pollutant removal was better when using ornamental plants than in unplanted CWs. The
34 use of ornamental flowering plants in CWs is an excellent option, and efforts should be made to
35 increase the adoption of these system types and use them in domiciliary, rural and urban areas.

36 **Keywords:** Ornamental flowering plants, constructed wetlands, wastewater, pollutants.
37

38 **1. Introduction**

39 Nowadays, the use of constructed wetlands (CWs) for wastewater treatment is an option
40 widely recognized. This sustainable ecotechnology is based on natural wetland processes for the
41 removal of contaminants, including physical, chemical and biological routes, but in a more
42 controlled environment compared with natural ecosystems [1,2,3]. These ecologically engineered
43 systems involve three important components: porous-filter media, microorganism and vegetation
44 [2]. The mechanisms for the transformation of nutrient and organic matter compounds are

45 conducted for biofilms of microorganisms formed in the porous media and the rhizosphere zone
46 [4,5]. The media materials (soil, sand, rocks, and gravel) provide a huge surface area for
47 microorganisms to attach, contributing to macrophyte growth, and also act as filtration and/or
48 adsorption medium for contaminants present in the water [6]. In regards to the vegetation, one of the
49 most conspicuous features of wetlands is the role that plants play in the production of underground
50 organisms (i.e. rot and rhizomes) in order to provide substrate for attached bacteria and oxygenation
51 of areas adjacent to the root, and absorb and adsorb pollutants from water. Nitrogen (N),
52 phosphorus (P) and other impurities are mainly taken up by wetland plants through the epidermis
53 and vascular bundles of the roots, and are further transported upward to the stem and leaves [7].
54 This provides carbon for denitrification during biomass decomposition and prevents pollutants
55 from being released from sediments [8,9,10]. The use of the CWs technology began in Europe during
56 the 1960's. [1], and has been replicated on other continents. The type of vegetation used are plants
57 from natural wetlands, including *Cyperus papyrus*, *Phragmites australis*, *Typha* and *Scirpus* spp., which
58 have been evaluated for their positive effects on treatment efficiency for nutrient and organic
59 compounds around the globe [8,9,11]. In the Americas, such species are typical in CWs, and are
60 found mainly in the United States, where the technology has been used extensively and is
61 implemented in different rural and urban zones [12,13,14,15,16]. In recent studies (15 years ago), the
62 goal of CWs studies involved an investigation into the use of herbaceous perennial ornamental
63 plants in CWs, including the use of species with different colored flowers to make the systems more
64 esthetic, and therefore, making it more probable for adoption and replication.
65

66 This review attempts to study the role of macrophytes in CWs and highlights the use of
67 ornamental flowering plants in this type of ecotechnology around the world. This includes plants
68 that are not typical in natural wetlands, and shows the resulting removal efficiency and their
69 importance in rural communities. The aim of this study is to create a context regarding the
70 advantages that the use of CWs with ornamental flowering plants provides, emphasizing that these
71 systems could be used for more sites that require wastewater treatment. The information from 87
72 constructed wetlands using ornamental flowering plants (OFP) in 21 countries was reported in the
73 literature that was analyzed. Only published or accepted (in press) papers were considered; the
74 results of theses or abstracts of conferences were not considered.

75 2. Role of macrophytes in CWs

76 The plants that grow in constructed wetlands have several properties related to the water
77 treatment process that make them an essential component of the design. Macrophytes are the main
78 source of oxygen in CWs through a process that occurs in the root zone, called radial oxygen loss
79 (ROL) [17]. The ROL contributes to the removal of pollutants because it favors an aerobic
80 micro-environment, and waste removal is therefore accelerated, whereas in anaerobic conditions
81 (the main environment in CWs) there is less pollutant removal. In a recent study [18] comparing the
82 use of plants in high density (32 plants m⁻²) and low density (16 plants m⁻²) CWs, the removal of
83 nitrogen compounds in high density CWs was twice that of CWs using a low density of plants,
84 which is strong evidence of the importance of plants in such systems. The removal rate of total
85 nitrogen (TN) and total phosphorous (TP) were also positively correlated with the ROL of wetland
86 plants, according to a study involving 35 different species [19].
87

88 The roots of plants are the site of many microorganisms because they provide a source of
89 microbial attachment [8] and release exudates, an excretion of carbon that contributes to the
90 denitrification process. This is exudates a necessary source of carbon, which increases the removal of
91 pollutants in anoxic conditions [20,21]. Other physical effects of root structure on CWs includes a
92 reduction in the velocity of water flow, promotion of sedimentation, decreased resuspension,
93 prevention of medium clogging and improved hydraulic conductivity [5,2]. A 5 year study
94 evaluated the influence of vegetation on sedimentation and resuspension of soil particles in small

95 CWs [22]. The author showed that macrophytes stimulated sediment retention by mitigating the
 96 resuspension of the CWs' sediment (14 to 121 kg m⁻²). Macrophytes increased the hydraulic
 97 efficiency by reducing short-circuit or preferential flow. Plant presence led to decrease saturated
 98 hydraulic conductivity in horizontal subsurface flow. This study was imperative, since monitoring
 99 macrophytes is essential for understanding and controlling clogging in CWs [23].
 100

101 The removal of organic and inorganic pollutants in CWs is not only the role of microorganisms.
 102 This function is also exerted by plants, which are able to tolerate high concentrations of nutrients
 103 and heavy metals, and in some cases, plants are able to accumulate them in their tissues [24]. It has
 104 been estimated that between 15 and 32 mg g⁻¹ of TN and 2–6 mg g⁻¹ (dry mass) of TP are removed by
 105 CW plants, which was measured in the aboveground biomass [25,26].

106 Other uptakes of xenobiotic compounds (organic pollutants) are also the result of the presence
 107 of plants, involving processes such as transformation, conjugation and compartmentation [24].
 108

109 3. Survey results of use of ornamental flowering plants in CWs

110 Table 1 lists examples of ornamental plants used in CWs around the world that were designed
 111 for the removal of various types of wastewater. OFP have been used in some countries, particularly
 112 in Mexico and China. In China, the most popular vegetation used is *Canna* sp., while in Mexico the
 113 ornamental plant used is more diverse, including plants with flowers in different colors, shapes and
 114 aromatic characteristics (*Canna*, *Heliconia*, *Zantedeschia*, *Strelitzia* spp.).
 115

116 Table 1. Examples of ornamental plants used for CWs designed for the removal of various types
 117 of wastewater around the globe.

Country	Type of wastewater	Vegetation	Removal efficiency (%)	Reference
Brazil	Domestic	<i>Heliconia psittacorum</i>	TSS: 88, COD: 95, BOD: 95	Paulo et al. [47]
	Domestic	<i>Alpinia purpurata</i>	COD: 48-90,	Paulo et al.
		<i>Arundina bambusifolia</i>	PO ₄ -P: 20, TKN: 31	[48]
		<i>Canna</i> sp.	and TSS: 34.	
		<i>Heliconia psittacorum</i> L.F.		
	Swine	<i>Hedychium coronarium</i>	-COD: 59, TP: 44, TKN: 34 and NHx: 35	Sarmento et al. [44]
China		<i>Heliconia rostrata</i>	- COD: 57, TP: 38, TKN: 34 and NHx: 37	
		<i>Hemerocallis flava</i>	COD: 72, BOD: 90, TN: 52, TP: 41 and SST: 72.	Prata et al. (2013)[NRF]
		<i>Heliconia psittacorum</i> L.F.		
	Municipal	<i>Canna indica</i>	COD: 77, BOD: 86, TP: >82, TN: >45	Teodoro et al. (2014)[NRF]
	Aquaculture ponds	<i>Canna indica</i> mixed with other species	BOD: 71, TSS: 82, chlorophyll-a: 91.9, NH ₄ -N: 62, NO ₃ -N: 68 and TP: 20.	Li et al. [50]

Domestic	<i>Canna indica</i> Linn	COD: 82.31, BOD: 88.6, TP: >80, TN: >85	Yang et al. [51]
Municipal	<i>Canna indica</i>	NH4-N: 99, PO4-P: 87	Zhang et al. [52]
Drain of some factories	<i>R. carnea, I. pseudacorus, L. salicaria</i>	COD: 58-92, BOD: 60-90 TN: 60-92, TP: 50-97,	Zhang et al. [53]
River	<i>Canna</i> sp	COD: 95, N-NH4: 100, N-NO3: 76, TN: 72	Sun et al. [54]
Domestic	<i>Canna indica</i>	TP: 60, NH4-N: 30-70, TN: ~25	Cui et al. [55]
Aquaculture ponds	<i>Canna indica</i> mixed with other natural wetland plants	BOD: 56, COD: 26, TSS: 58, TP: 17, TN: 48 and NH4-N: 34.	Zhang et al. [56]
Wastewater from a student dormitory (University)	<i>Canna indica</i> mixed with other natural wetland plants	COD: 50-70, BOD: 60-80, N-NO3: 65-75, TP: 50-80	Qiu et al. [57]
Domestic	<i>Canna indica</i> and <i>Hedychium coronarium</i>	TP: 40-70	Wen et al. [58]
Polluted river	<i>Iris pseudacorus</i> mixed with other natural wetland plants	TN: 68, NH4-N: 93, TP: 67	Wu et al. [59]
Sewage	<i>Iris pseudacorus</i> , mixed with other plants of natural wetlands	TN: 20 and TP: 44	Xie et al. [60]
Municipal	<i>Canna indica</i>	COD: 60, NO3-N: 80, TN: 15, TP: 52	Chang et al. [61]
Simulated polluted river water	<i>Iris sibirica</i>	COD: 22, TN: 46, NH4-N: 62, TP: 58	Gao et al. [62]
Synthetic	<i>Canna</i> sp	Fluoride: 51, Arsenic: 95	Li et al. [39]
Simulated polluted river water	<i>Iris sibirica</i>	Cd: 92	Gao et al. [63]
Synthetic	<i>Canna indica</i> L.	N: 56-60	Hu et al. [64]
Synthetic (hydroponic sol.)	<i>Canna indica</i> L.	TN: 40-60, N-NO3: 20-95, NH4-N: 20-55	Wang et al. [65]
Chile	Sewage	<i>Zantedeschia aethiopica, Canna</i> spp. and <i>Iris</i> spp	BOD: 82, TN: 53, TP: 60. [66]
	Sewage	<i>Tulbaghia violacea, and Iris pseudacorus.</i>	BOD: 57-88, COD: 45-72, TSS: 70-93, PO4-P: 6-20.
Ww rural community	<i>Zantedeschia aethiopica</i>	Organic matter: 60%, TSS: 90%	Leyva et al. [29]
Colombia	Domestic	<i>Heliconia psittacorum</i>	NH3: 57
			Gutiérrez-Mosq

			COD: 70	uera and Peña-Varón [68]
	Synthetic landfill leachate	<i>Heliconia psittacorum</i>	COD, TKN and NH ₄ (all: 65-75)	Madera-Parra et al. [69]
	Cattle bath	<i>Alpinia purpurata</i>	SST: 58, TP: 85, COD: 63	Marrugo-Negret et al. [70]
	Municipal	<i>Heliconia psittacorum</i>	Bisphenol A:73, Nonylphenols: 63	Toro-Vélez et al. [71]
Costa Rica	Dairy raw manure	<i>Ludwigia inucta</i> , <i>Zantedeschia aethiopica</i> , <i>Hedychium coronarium</i> and <i>Canna generalis</i>	BOD: 62, NO ₃ -N: 93, PO ₄ -P: 91, TSS: 84	León and Cháves [72]
Egypt	Municipal	<i>Canna</i> sp	TSS: 92, COD: 88, BOD: 90	Abou-Elela and Hellal [73]
	Municipal	<i>Canna</i> sp	TSS: 92, COD: 92, BOD: 92	Abou-Elela et al. [74]
India	Paper mill effluent	<i>Canna indica</i>	9,10,12,13-tetr achlor- osteinic acid: 92 and 9,10-dichlorostearic acid: 96	Choudhary et al. [75]
	Synthetic	<i>Canna indica</i>	Dye: 70-90 COD: 75	Yadav et al. [76]
	Synthetic greywater	<i>Heliconia angusta</i>	COD:40, BOD: 70, TSS: 62, TDS: 19	Saumya et al. [77]
	Domestic	<i>Canna generalis</i>	TN: 52, T-PO ₃ : 9	Ojoawo et al. [78]
	Collection pond	<i>Canna Lily</i>	BOD: 70-96, COD: 64-99	Haritash et al. [79]
	Hostel greywater	<i>Canna indica</i>	COD, TKN and Pathogen all up	Patil and Munavalli, [80]
	Domestic	<i>Polianthus tuberosa</i> L.	Heavy metals (Pb and Fe: 73-87), (Cu and Zn: 31-34) and Ni and Al: 20-26	Singh and Srivastava [81]
Ireland	Domestic	<i>Iris pseudacorus</i>	TN: 30, TP:28	Gill and O'Luanagh [82]
Italy	Synthetic	<i>Zantedeschia aethiopica</i> , <i>Canna indica</i>	N: 65-67, P: 63-74, Zn and Cu: 98-99, Carbamazepine: 25-51, LAS: 60-72	Macci et al. [83]
Kenya	Flower farm	<i>Canna</i> sp	BOD: 87, COD: 67, TSS: 90, TN: 61	Kimani et al. [84]
Mexico	Municipal	<i>Zantedeschia aethiopoca</i>	COD: 35, TN: 45.6	Belmont and Metcalfe [85]
	Domestic	<i>Zantedeschia Aethiopica</i> and	SST: 85.9, COD: 85.8, NO ₃ -N:	Belmont et al. [86]

		<i>Canna flaccida</i>	81.7, NH ₄ -N: 65.5, NT: 72.6	
Coffee processing		<i>Heliconia psittacorum</i>	COD: 91, Coliformes: 93	Orozco et al. [87]
Domestic		<i>Strelitzia reginae, Zantedeschia aethiopica, Canna hybrids, Anthurium andeanum, Hemerocallis Dumortieri</i>	COD: >75, P: 66, Coliforms: 99	Zurita et al. [45]
Domestic		<i>Zantedeschia aethiopica</i>	BOD: 79, TN: 55, PT: 50	Zurita et al. [88]
Wastewater form canals		<i>Zantedeschia aethiopica</i>	COD: 92, N-NH ₄ : 85, P-PO ₄ : 80	Ramírez-Carrillo et al. [89]
Municipal		<i>Strelitzia reginae, Anthurium, andeanum.</i>	TSS: 62, COD: 80, BOD: 82, TP: >50, TN: >49	Zurita et al. [90]
Groundwater		<i>Zantedeschia aethiopica and Anemopsis californica</i>	As: 75-78	Zurita et al. [91]
Domestic		<i>Gladiolus spp</i>	BOD: 33, TN: 53, TP: 75	Castañeda and Flores [92]
Mixture of gray water (from a cafeteria and research laboratories)		<i>Zantedeschia aethiopica and Canna indica</i>	COD: 65, NT: 22.4, PT: 5.	Zurita and White [93]
Domestic		<i>Zantedeschia aethiopica</i>	BOD: 70	Hallack et al. [94]
Domestic		<i>Heliconia stricta, Heliconia psittacorum and Alpinia purpurata</i>	BOD: 48, COD: 64, TP: 39, TN: 39	Méndez-Mendoza et al. [95]
Municipal		<i>Canna hybrids and Strelitzia reginae</i>	DQO: 86, NT: 30-33, PT: 24-44	Merino-Solís et al. [96]
Municipal		<i>Zantedeschia aethiopica and Strelitzia reginae</i>	COD: 75, TN: 18, TP: 2, TSS: 88.	Zurita and Carreón-Álvarez [97]
Domiciliar		<i>Spathiphyllum wallisii, Zantedeschia aethiopica, Iris japonica, Hedychium coronarium, Alocasia sp, Heliconia sp. and Strelitzia reginae.</i>	N-NH ₄ : 64-93, BOD: 22-96, COD: 25-64	Garzón et al. [98]
Community		<i>Zantedeschia aethiopica, Lilium sp, Anturium sp and Hedychium coronarium</i>	NT: 47, PT: 33, COD: 67	Hernández [46]
Stillage Treatment		<i>Canna indica</i>	BOD: 87, COD: 70	López-Rivera et al. [99]
Artificial		<i>Iris sibirica and Zantedeschia aethiopica</i>	Carbamazepine: 50-65	Tejeda et al. [100]
Community		<i>Alpinia purpurata and Zantedeschia aethiopica</i>		Marín-Muñiz et al. [101]
Polluted river		<i>Zantedeschia aethiopica</i>	NO ₃ -N: 45, NH ₄ -N: 70, PO ₄ -P: 30	Hernández et al. [18]
Municipal		<i>Spathiphyllum wallisii, and Zantedeschia aethiopica</i>		Sandoval-Herazo et al. [102]

	University	<i>Strelitzia reginae</i>	Martínez et al. [21]
Nepal	Municipal	<i>Canna latifolia</i>	TSS: 97, COD: 97, BOD: 89, TP: >30 Sigh et al. [103]
Portugal	Tannery	<i>Canna indica mixed with other plants</i>	COD: 41-73, BOD: 41-58 [104]
	Community	<i>Canna flaccida, Zantedeschia aethiopica, Canna indica, Agapanthus africanus</i> and <i>Watsonia borbonica</i>	BOD, COD, P-PO ₄ , NH ₄ and total coliform bacteria (all up to 84) [105]
Spain	Domestic	<i>Iris</i> sp	Bacteria: 37 García et al. [106]
	Municipal	<i>Iris pseudacorus</i>	Bacteria: 43 Ansola et al. [107]
Sri Lanka	Municipal	<i>Canna iridiflora</i>	BOD: 66, TP: 89, NH ₄ -N: 82, N-NO ₃ : 50 [108]
Taiwan	Domestic	<i>Canna indica</i>	N-NH ₄ : 73, BOD: 11 [109]
		<i>Canna indica</i>	N-NH ₄ : 57, N-NO ₃ : 57 [110]***
Thailand	Domestic	<i>Canna</i> sp	COD: 92, BOD: 93, TSS: 84, NH ₄ -N: 88, TP: 90 [111]
	Seafood	<i>Canna siamensis, Heliconia</i> spp and <i>Hymenocallis littoralis</i>	BOD: 91-99, SS: 52-90, TN: 72-92 and TP: 72-77 [112]
	Domestic	<i>Heliconia psittacorum</i> L.f. and <i>Canna generalis</i> L. Bailey	TSS: Both >88, COD: 42-83 [113]
Turkey	Fermented fish production	<i>Canna hybrida</i>	BOD, COD, TKN: ~97 Kantawanichkul et al. [114]
	Collection system for business and hotel	<i>Cannae lilies, Heliconia</i>	BOD: 92, TSS: 90, NO ₃ -N: 50, TP: 46 [115]
Turkey	Domestic	<i>Crinum asiaticum, Spathiphyllum clevelandii</i> Schott	PO ₄ -P: ~20 Torit et al. [116]
	Municipal	<i>Iris australis</i>	NH ₄ -N: 91, NO ₃ -N: 89, TN: 91 Tunçsiper [117]
USA	Domestic	<i>Canna flaccida, Gladiolus</i> sp., <i>Iris</i> sp.	Bacteria: ~50 [118]
	Nursery	<i>Canna generalis, Eleocharis dulcis, Iris Peltandra virginica</i> .	N: ~50, P: ~60 [119]
USA	Domestic	<i>Iris pseudacorus</i> L., <i>Canna x generalis</i> L.H. Bailey, <i>Hemerocallis fulva</i> L. and <i>Hibiscus moscheutos</i> L..	BOD >75, TSS >88, Fecal baceteria >93 Karathanasis et al. [14]
	Tilapia production	<i>Canna</i> sp.	TSS: 90, NO ₂ -N: 91, NO ₃ -N: 76, COD: 12.5 and NH ₃ -N: 7.5 Zachritz et al. [120]
USA	Stormwater runoff	<i>Canna x generalis</i> Bailey, <i>Iris pseudacorus</i> L., <i>Zantedeschia aethiopica</i> (L.)	N and P <i>Canna</i> (>90), <i>Iris</i> (>30) <i>Zantedeschia</i> Chen et al. [121]

			(>90)		
Residential		<i>Aeonium purpureum</i> and <i>Crassula ovata</i> , <i>Equisetum hyemale</i> , <i>Nasturtium</i> , <i>Narcissus impatiens</i> , and <i>Anigozanthos</i>	TSS: 95		Yu et al. [16]
Vietnam	Fishpond	<i>Canna generalis</i>	BOD: 50, COD: 25-55	Konnerup et al.[122]	
United Kingdom	Herbicide polluted water	<i>Iris pseudacorus</i>	Atrazine: 90-100	McKinlay and Kasperek. [123]	

119

120 A review of the available literature showed that ornamental plants are used to remove
 121 pollutants from domestic, municipal, aquaculture ponds, industrial or farm wastewater. The
 122 removal efficiency of ornamental plants was also evaluated for the following parameters:
 123 biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS),
 124 total nitrogen (TN), total phosphorous (TP), ammonium (NH₄-N), nitrates (NO₃-N), coliforms and
 125 some metals (Cu, Zn, Ni and Al). There is no clear pattern in the use of certain species of ornamental
 126 plants for certain types of wastewater. However, it is important to keep in mind that CWs using
 127 ornamental plants are usually utilized as secondary or tertiary treatments, due to the reported toxic
 128 effects that high organic/inorganic loading has on plants in systems that use them for primary
 129 treatment (in the absence of other complementary treatment options) [27, 28]. The use of OFP in CWs
 130 generates an esthetic appearance in the systems. In CWs with high plant production, OFP harvesting
 131 can be an economic entity for CW operators, providing social and economic benefits, such as the
 132 improvement of system landscapes and a better habitat quality. Some authors have reported that
 133 polyculture systems enhanced the CWs' resistance to environmental stress and disease [14, 29].
 134

135 3.1. Common ornamental plants used in CWs

136 A limited quantity of OFP have been used in CWs. These types of plants are typical of
 137 subtropical and tropical regions. Our survey showed that the four most frequently used genera are,
 138 in order of most to least frequently used: *Canna* spp, *Iris* spp, *Heliconia* spp, *Zantedeschia* spp (Table
 139 2). Species of the *Canna* genus are used in all continents, with Asia using them the most frequently.
 140 The *Iris* genus is also used in Asia, along with Europe and North America. Species of the *Heliconia*
 141 genus are commonly used in Asia and America, including Mexico, Central and South America.
 142 While *Zantedeschia* is most frequently used in Mexico (a country in North America), they are found
 143 with less frequency in Europe, Africa, and Central and South America. The use of OFP in CWs is
 144 most popular in tropical and subtropical regions, due to the warm temperatures and the extensive
 145 sunlight hours. Such environmental features stimulate a richer biodiversity than in other regions.
 146

147 Tabla 2. Four most commonly genera plants used in CW as identified during the survey
 148 according the continents.

	Asia	Europe	America			Africa	Total		
			North America		Central and South America				
			USA	Mexico					
<i>Canna</i>	22	4	5	4	2	2	39		
<i>Iris</i>	5	5	4	2	2		18		
<i>Heliconia</i>	4			4	4		12		
<i>Zantedeschia</i>		2	1	13	3	1	20		

149

150 3.1.1. *Cannas* spp

151 This perennial herb belongs to the family Cannaceae (Figure 1). It can grow in full sun or
152 semi-shaded areas and in loamy soils, with plant heights varying from 0.75 to 3.0 m under tropical
153 and subtropical conditions. It reportedly originated in Central and South America and spread
154 throughout Europe, North America and many tropical regions of the world. The *Canna* genus
155 includes 8–10 wild species and over 1000 hybrids that are used as garden ornamentals. During the
156 last two centuries of cultivation and improvement, *Canna* has been transformed into an attractive
157 OFP, with variability in flower colours (yellow, orange, red and salmon, achieved using colored
158 stains) and other positive attributes [30,31].
159

160
161 **Figure 1.***Canna* spp

162 **3.1.2. *Iris* spp**

163 Irises are perennial plants (Figure 2), whose flowers are distinguished by a great variety of
164 colours and miscellany of patterns on the perianth leaves [32]. Depending on the species, flower
165 width ranges from 2.5 to 25 cm. *Iris* leaves are grass-like or sword-like and embrace the shoot with
166 their bracts. Plant height is highly diverse, ranging from 10 to 200 cm, which allows them to be used
167 in a variety of flower compositions. As both the leaves and the flowers are decorative, with the
168 proper selection of species and varieties, they can add splendour to any garden from early spring
169 until late autumn. Irises of the beardless variety (*Limniris*) are growing in popularity throughout the
170 world, characterized by the various shapes of their perianth sepals and their untypical leafy pistils.
171 They are low-maintenance plants and are resistant to the diseases that affect bearded irises [32,33].

172
173
174 **Figure 2.***Iris* spp

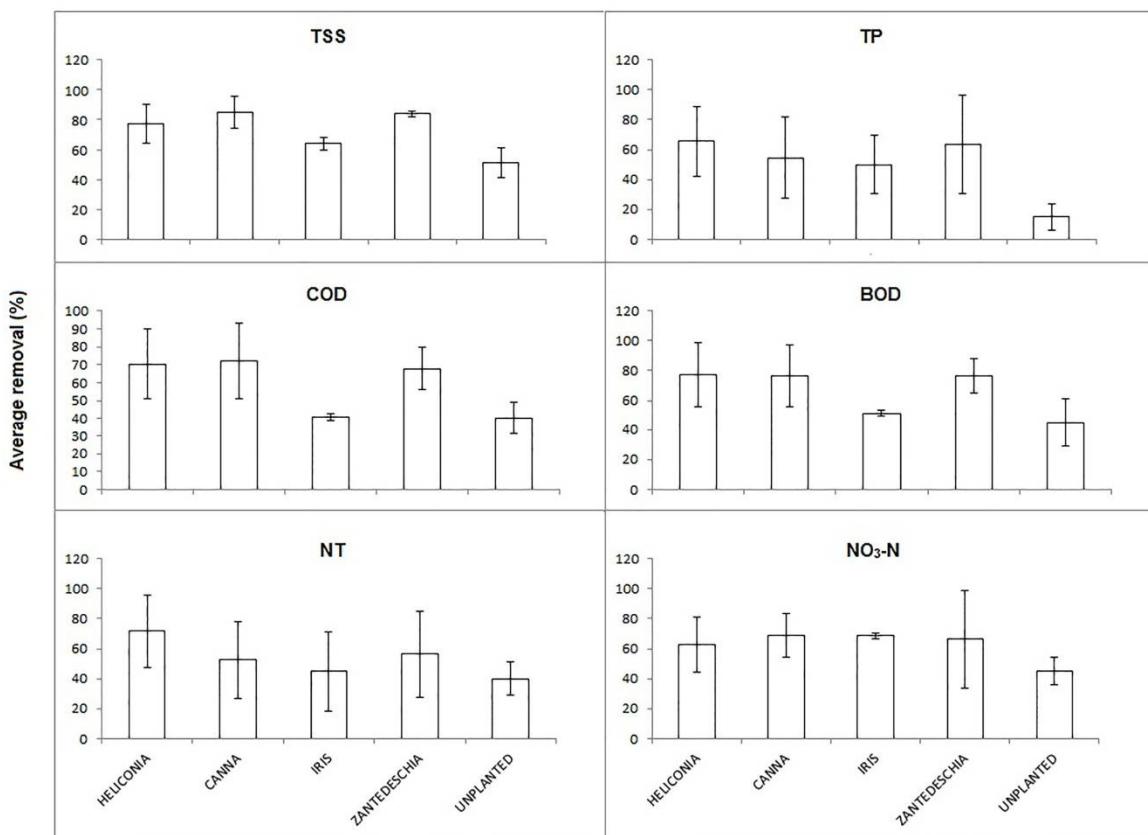
175 **3.1.2. *Heliconia* spp**

176 This species is the only genus in the plant family Heliconiaceae (Figure 3), which is a member of
177 the order Zingiberales. In addition to the several cellular features (short root hair cells, sieve tube
178 plastids with starch, silica bodies, inaperturate and exineless pollen) that distinguish the
179 Zingiberales from other monocots, there are several very conspicuous characters by which they can
180 be recognized, including, 1) large leaves with long petioles and blades possessing transverse
181 venation, 2) large, usually colorful, bracteate inflorescences, and 3) arillate seeds. This order is most
182 closely related to the family Bromeliaceae and their relatives in the superorder Bromeliiflorae [34].
183 The inverted flowers, presence of a single staminode, and drupaceous fruits are special features of
184 *Heliconia*. Many species and varieties native from Brazil are now being grown as potted plants and as
185 cut-flowers. The number of species of *Heliconia* ranges from 120 to over 400 [35].

186
187 **Figure 3.***Heliconia* spp

188 **3.1.2. *Zantedeschia* spp**

189 Also known as Arum or Calla lilies, a relatively small genus of eight species, forms the tribe
190 *Zantedeschieae* (Figure 4) in the subfamily Philodendroideae [36]. This genus is confined to southern
191 Africa, including Angola, Zambia, Malawi, Zimbabwe and Tanzania. Showy and decorative hybrids
192 and varieties of *Zantedeschia* have drawn much interest among plant breeders abroad, where tubers,
193 cut flowers and container plants form the basis of a lucrative export industry in the USA, the
194 Netherlands and New Zealand [36,37].
195


196
197 **Figure 4.***Zantedeschia* spp

198 **3.2. Influence of plants on treatment performance in constructed wetlands**

199
200 Some studies have provided evidence of the positive effects that vegetation of natural wetlands
201 has on pollutant removal (organic matter, nitrogen and phosphorus compounds) in constructed

202 wetlands when compared to systems without plants [5,10]. In planted mesocosms with *Phragmites*
 203 *australis*, the efficiency of total nitrogen and total phosphorous removal was 97% and 91%,
 204 respectively, while in systems without plants, the removal efficiency was 53% for total nitrogen and
 205 61% for total phosphorous [38]. A similar situation was observed when studying fluoride ion
 206 removal in constructed wetlands, where the pollutant removal in systems without plants was 20%
 207 lower than in systems with vegetation [39]. The increase in the removal of pollutants in systems with
 208 plants is due to the increased oxygen supply to the rhizosphere through the plants' roots [2,8].
 209

210 The use of ornamental plants in constructed wetlands for pollutant removal have been applied
 211 in different countries around the globe (Table 1), commonly in tropical and subtropical areas. A
 212 comparison of performance efficiencies of CWs with different OFP showed that the removal
 213 percentages were similar across all plant genera for TSS (62–86%), COD (41–72%), BOD (51–82%), TP
 214 (49–66%), NH₄-N (62–82%), NO₃-N (63–93%) and TN (48–72%) (Figure5). Such values are within the
 215 range reported for [6] for CWs from China, India, Ireland, Spain and Thailand, as well as for the
 216 values reported in a review of wastewater treatment of CWs in developing countries [40] and CWs
 217 in tropical and subtropical regions [41,42], all using plants typically found in natural wetlands
 218 (*Cyperus*, *Typha* and *Phragmites* sp.), which were 67–92.5% for TSS, 49–81% for COD, 60–91.5% for
 219 BOD, 33–90% for NH₄-N, and 50–77% for TP. In general, the mean TN and TP removal when using
 220 ornamental plants in CWs were less than the mean removal of the other pollutants (TSS, CDO, BOD,
 221 NH₄-N or NO₃-N) (Figure 5). Such removal is influenced not only by the plants, but also by other
 222 parameters, such as filter media, or operational parameters, such as hydraulic and influent loading,
 223 which are related with the removal of pollutants in CWs and need to be considered in system
 224 designs [43]. When comparing the removal efficiency of pollutants in CWs with OFP and CWs
 225 without plants (Figure5), pollutant removal was almost 40% higher for TSS, COD, BOD, NT AND
 226 N-NO₃ in CWs with plants than in those without. For TP the removal efficiency was almost 70%
 227 higher in CWs using ornamental plants than in those without vegetation.

228
 229 Figure5. Comparing the average removal efficiencies of contaminants using
 230 ornamental plants and systems unplanted in various CWs systems in the globe

231

232 Miller et al. [42] evaluated the use of CWs in Brazil, including systems with ornamental plants,
233 and concluded that warm temperatures, extensive sunlight hours and available land are important
234 characteristics for encouraging plant growth and proliferation. Such features are typical in tropical
235 and subtropical regions, where the option of a CW with ornamental plants can be an excellent choice
236 for the removal of pollutants.

237

238 In cases where the wetlands are constructed to assist rural communities that involve big areas,
239 the growth of OFP also creates a useful source of commercialization. The flowers could be sold as
240 bouquets, as plants with attached roots for use in gardens, or for crafts made with parts of the plants,
241 providing another strategy for convincing landowners to adopt these systems. The statistics that we
242 report here regarding the removal efficiency of ornamental plants in CWs around the world is
243 evidence that urban areas can also use CW systems as beautiful landscapes in supermarkets, streets,
244 universities, hospitals, in riverine areas or as floating wetlands in rivers, lakes or lagoons. The
245 combination of different species of ornamental plants in CWs makes the system more colorful, and
246 therefore, more attractive for the public.

247

248 These comparisons indicate the same general range of removal efficiency between CWs using
249 ornamental plants and CWs with vegetation from natural wetlands. Thus, it is clear that ornamental
250 plants should be considered in new CW designs. The use of ornamental plants could be a strategy
251 used to increase the adoption of these systems because it makes the systems more aesthetic, and
252 therefore, they would not be observed as a treatment system, but instead would be seen as large
253 outdoor planters' in house gardens. We recommend the construction of domiciliary wetlands using
254 ornamental plants to decrease water pollution and to assist with maintaining a better public health.

255

256 3.2. Advantages of using ornamental plants in CWs

257

258 A range of novel and cost-effective constructed wetland systems for wastewater treatment have
259 been engineered around the world. The influence of design parameters, such as porous media,
260 hydraulic retention time, and flow of water, on the performance of CWs has been reported,
261 highlighting the sustainability of this technology and the esthetic appearance using OFP [6,28,43,44].

262

263 One of the advantages of using OFP in CWs is the significant reduction of nutrient
264 contamination (Figure. 1), representing an economical and sustainable alternative to
265 decentralization practices; CWs are less expensive than commercial systems and are easier to build
266 and operate [45,46]. Furthermore, by using plants with commercial value, the resources invested in
267 the design, construction and maintenance of the system can be recovered in the profits of retail sales,
268 without impeding the removal of pollutants of the system. The production of flowers in the CWs can
269 provide economic benefits to the operators of the technology and can create beautiful landscapes
270 using flowers such as *Canna*, *Iris*, *Heliconias* and *Zantedeschia* spp. (Tables 1 and 2).

271

4. Conclusions

272

273 The use of ornamental flowering plants in constructed wetlands has been identified in 21
274 countries. The most commonly used ornamental plants are *Canna* spp., *Iris* spp., *Heliconia* spp., and
275 *Zantedeschia* spp., which are mainly used in tropical and subtropical regions. These plants have been
276 evaluated for the efficiency of pollutant removal in CWs, with studies concluding that they can be
277 used for such a purpose. Our survey also found that many ornamental plants are planted using a
278 mixture of various species, or are mixed with plants from natural wetlands. There is no clear pattern
279 in the use of a specific plant species for a certain type of wastewater, but the use of ornamental plants
in wastewater treatment is a great economic and ecological option, and their flowers add to the

280 esthetic appearance of CWs. The last characteristic could be used to increase system adoptions by the
281 people in domiciliary, rural or urban areas.

282 **Author Contributions:** J.L.M-M. and L.C.S-H. wrote, coordinated and reviewed the paper and finalized the data
283 collection. M.G.H-O and A.J.A-C. contributed to refining the paper structure and to improving the scientific
284 aspects.

285 **Acknowledgments:** This work was supported by the El Colegio de Veracruz with the agreement
286 2017-III-IerExt-21.

287 **Conflicts of Interest:** The authors declare no conflict of interest.

288 **References**

- 289 1. Kadlec, R.; Wallace, S. *Treatment Wetlands* 2009, Boca Raton, Florida: Taylor and Francis Group. (2nd ed.)
- 290 2. Mitsch, WJ.; Gosselink, JG.. *Wetlands*. Hoboken, NJ: Wiley. 2015, (5th ed.)
- 291 3. Marín-Muñiz, J.L. Humedales: riñones del planeta y hábitat de múltiples especies. SEV-COLVER. 2018, 100p.
- 292 4. Brix, H. Functions of macrophytes in constructed wetlands. *Water Sci Techn.* 1994, 4: 71-78; DOI:
293 <https://doi.org/10.2166/wst.1994.0160>
- 294 5. Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. *Water.* 2013, 5, 405-419; DOI: 10.3390/w5020405
- 295 6. Valipour, A.; Ahn, Y. Constructed wetlands as sustainable ecotechnologies in decentralization practices: a
296 review. *Environ PollutRes.* 2016, 23, 180-197; DOI: <https://doi.org/10.1007/s11356-015-5713-y>
- 297 7. Valipour, A.; Azizi, S.; Raman, VK.; Jamshidi, S.; Hamnabard, N. The comparative evaluation of the
298 performance of two phytoremediation systems for domestic wastewater treatment. *Environ Sci Eng.* 2014, 56,
300 319-326; Available online: <https://europepmc.org/abstract/med/26563084>. (accessed on 30/ august 2018).
- 301 8. Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: a review. *Hydrobiologia.* 2011, 20, 133-156; DOI: <https://doi.org/10.1007/s10750-011-0738-9>
- 302 9. Vymazal, J. Emergent plant used in free water surface constructed wetlands: A review. *Ecol. Eng.* 61, 582-592;
303 DOI: <https://doi.org/10.1016/j.ecoleng.2013.06.023>.
- 304 10. Wang, C.; Zhang, M.; Ye, M.; Wang, J.; Li, G. Pilot-scale electrochemical oxidation combined with
305 constructed wetland system for unconventional surface water treatment. *J Chem Technol Biotechnol.* 2014, 89,
306 1599-1606; DOI: <https://doi.org/10.1002/jctb.4464>.
- 307 11. Mburu, N.; Rousseau, D.; Bruggen, J.; and Lens, P. Use of macrophyte *Cyperus papyrus* in wastewater
308 treatment. *Springer International Publishing Switzerland.* 2015, DOI: https://doi.org/10.1007/978-3-319-08177-9_20.
- 309 12. Bachand, PAM.; Horne, AJ. Denitrification in constructed free-water surface wetland: II. Effects of vegetation
310 and temperature. *Ecol Eng.* 2000, 14, 17-32; DOI: [https://doi.org/10.1016/S0925-8574\(99\)00017-8](https://doi.org/10.1016/S0925-8574(99)00017-8).
- 311 13. Tilley, DR.; Badrinarayanan, H.; Rosati, R.; Son, J. Constructed wetlands as recirculation filters in large-scale
312 shrimp aquaculture. *Aquacult Eng.* 2002, 26, 81-109; DOI: [https://doi.org/10.1016/S0144-8609\(02\)00010-9](https://doi.org/10.1016/S0144-8609(02)00010-9).
- 313 14. Karathanasis, AD.; Potter, CL.; Coyne, MS. Vegetation effects on fecal bacteria, BOD, and suspended solid
314 removal in constructed wetlands treating domestic wastewater. *Ecol Eng.* 2003, 20, 157-169; DOI:
315 [https://doi.org/10.1016/S0925-8574\(03\)00011-9](https://doi.org/10.1016/S0925-8574(03)00011-9).
- 316 15. Chang, NB.; Islam, K.; Marimon, Z.; Wanielista, MP. Assessing biological and chemical signatures related to
317 nutrient removal by floating islands in stormwater mesocosms. *Chemosphere.* 2012, 88(6), 736-743; DOI:
318 <https://doi.org/10.1016/j.chemosphere.2012.04.030>.
- 319 16. Yu, Z.; Bill, B.; Stenstrom, M.; Cohen, Y. Feasibility of a semi-batch vertical-flow wetland for onsite
320 residential gray water treatment. *Ecol. Eng.* 2015, 82, 311-322; DOI: <https://doi.org/10.1016/j.ecoleng.2015.04.087>.
- 321 17. Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed wetlands: A review on the role of radial oxygen loss in the
322 rhizosphere by macrophytes. *Water.* 2018, 10, 678; DOI: <https://doi.org/10.3390/w10060678>.

324 18. Hernández, ME.; Galindo-Zetina, M.; Hernandez-Hernández JC. Greenhouse gas emissions and pollutant
325 removal in treatment wetlands with ornamental plants under subtropical conditions. *Ecological Engineering*. 2018,
326 114: 88-95; DOI: <https://doi.org/10.1016/j.ecoleng.2017.06.001>.

327 19. Lai, W.; Zhang, Y.; Chen, Z. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland
328 plants. *Ecological Engineering*. 2012, 39: 24-30; DOI: <https://doi.org/10.1016/j.ecoleng.2011.11.010>.

329 20. Martínez, N.; Tejeda, A.; Del Toro, A., Sánchez, Zurita, F. Nitrogen removal in pilot-scale partially saturated
330 vertical wetlands with and without and internal source of carbon. *Sci. Total Environ.* 2018, 645: 524-532; DOI:
331 <https://doi.org/10.1016/j.scitotenv.2018.07.147>.

332 21. Braskerud, B.C. The influence of vegetation on sedimentation and resuspension of soil particles in small
333 constructed wetlands. *J. Environ. Qual.* 2001, 30: 1447-1457; DOI: 10.2134/jeq2001.3041447x.

334 22. Baptestini G.; Matos, A.; Martinez, M.; Borges, A.; Matos M. Hydraulic conductivity variability in horizontal
335 subsurface flow constructed wetlands. *J. Braz. Assoc. Agri. Eng.* 2017, 37(2): 333-342; DOI:
336 <http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n2p333-342/2017>

337 23. Stottmeister, U.; Wiebner, A.; Kuschk, P.; Kappelmer, U.; Kästner, M.; Bederski, O.; Müller, RA.; Moormann,
338 H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. *Biotechnol. Adv.* 2003,
339 22, 93-117; DOI: <https://doi.org/10.1016/j.biotechadv.2003.08.010>.

340 24. Tanner, CC. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient
341 uptake of eight emergent species. *Ecol Eng.* 1996, 7, 59-83; DOI: [https://doi.org/10.1016/0925-8574\(95\)00066-6](https://doi.org/10.1016/0925-8574(95)00066-6).

342 25. Liu, X.; Huang, S.; Tang, T.; Liu, X.; Scholz, M. Growth characteristic and nutrient removal capability of
343 plants in subsurface vertical flow constructed wetlands. *Ecol. Eng.* 2012, 44, 189-198; DOI:
344 <https://doi.org/10.1016/j.ecoleng.2012.03.011>.

345 26. Paulo, PL.; Begosso, L.; Pansonato, N.; Shrestha, RR.; Bonez, MA. Design and configuration criteria for
346 wetland systems treating greywater. *Water Sci Technol* 2009, 60(8), 2001-2007; DOI:
347 <https://doi.org/10.2166/wst.2009.542>.

348 27. Paulo, PL.; Azevedo, C.; Begosso, L.; Galbiati, AF.; Boncz, MA. Natural systems treating greywater and
349 blackwater on-site: integrating treatment, reuse and landscaping. *Ecol Eng.* 2013, 50, 95-100; DOI:
350 <https://doi.org/10.1016/j.ecoleng.2012.03.022>.

351 28. Sarmento, AP.; Borges, AC.; Matos AT. Effect of cultivated species and retention time on the performance of
352 constructed wetlands. *Environ Technol.* 2013, 35 (8), 961-965; DOI: <https://doi.org/10.1080/09593330.2012.724210>.

353 29. Prata, R.; Matos, A.; Cecon, P.; Monaco, P.; Pimenta, L. Sewage treatment in wetlands cultivated with yellow
354 lilly. *Eng. Agrícola.* 2013, 33, 1144-1155; DOI: <http://dx.doi.org/10.1590/S0100-69162013000600007> (In Portuguese).

355 30. Teodoro, A.; Boncz, M.; Júnior, A.; Paulo, P. Disinfection of greywater pretreated by constructed wetlands
356 using photo-Fenton: influence of pH on the decay of *Pseudomonas aeruginosa*. *J. Environ. Chem. Eng.* 2014, 2,
357 958-962; DOI: <http://dx.doi.org/10.1016/j.jece.2014.03.013>

358 31. Shi, L.; Wang, BZ.; Cao, XD.; Wang, J.; Lei, ZH.; Wang, ZR.; Liu, ZY.; Lu, BN. Performance of a
359 subsurface-flow constructed wetland in Southern China. *J Environ Sci.* 2004, 16(3), 476-481; Available online:
360 <https://content.iospress.com/articles/journal-of-environmental-sciences/jes16-3-27>. (accessed on 30 July 2018).

361 32. Li, G.; Wu, Z.; Cheng, S.; Liang, W.; He, F.; Fu, G.; Zhong, F. Application of constructed wetlands on
362 wastewater treatment for aquaculture ponds. *Wuhan University J Natur Sci* 2007, 12, 1131-1135; DOI:
363 <https://doi.org/10.1007/s11859-007-0116-7>.

364 33. Yang, Q.; Chen, Z.; Zhao, J.; Gu, B. Contaminant removal of domestic wastewater by constructed wetlands:
365 Effects of plant species. *J Integrat Plant Biol.* 2007, 49(4), 437-446; DOI:
366 <https://doi.org/10.1111/j.1744-7909.2007.00389.x>.

367 34. Zhang, ZH.; Rengel, Z.; Meney, K. Nutrient removal from simulated wastewater using *Canna indica* and
368 *Schoenoplectus validus* in mono- and mixedculture in wetland microcosms? *Water Air Soil Pollut.* 2007, 183(1-4),
369 95-105; DOI: <https://doi.org/10.1007/s11270-007-9359-3>.

370 35. Zhang, XB.; Liu, P.; Yang, YS.; Chen, WR. Phytoremediation of urban wastewater by model wetlands with
371 ornamental hydrophytes. *J Environ Sci (China).* 2007, 19(8), 902-909; Available online:

372 http://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=2007190802&year_id=2007&quarter_id=8&flag=1. (accessed on 25 july 2018).

374 36. Sun, LP.; Liu, Y.; Jin, H. Nitrogen removal from polluted river by enhanced floating bed grown canna. *Ecol Eng.* **2009**, *35*(1), 135–140; DOI: <https://doi.org/10.1016/j.ecoleng.2008.09.016>.

376 37. Cui, L.; Ouyang, Y.; Lou, Q.; Yang, F.; Chen, Y.; Zhu, W.; Luos, S. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. *Ecol Eng.* **2010**, *36*, 1083-1088; DOI: <https://doi.org/10.1016/j.ecoleng.2010.04.026>.

379 38. Zhang, S. ; Zhou, Q. ; Xu, D. ; He, F. ; Cheng, S. ; Liang, W. ; Du, C.; Wu, Z. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: Effects on water quality and zooplankton. *Polish J Environ Stud.* **2010**, *19*, 1063–1070; Available online: https://www.researchgate.net/profile/Shiyang_Zhang2/publication/268002624_Vertical-Flow_Constructed_Wetlands_Applied_in_a_Recirculating_Aquaculture_System_for_Channel_Catfish_Culture_Effects_on_Water_Quality_and_Zooplankton/links/0f31753ab7456f0f7900000.pdf. (accessed on 30 july 2018).

385 39. Qiu, Z.; Wang, M.; Lai, W.; He, F.; Chen, Z. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. *Hydrobiologia.* **2011**, *661*, 251–260; DOI: <https://doi.org/10.1007/s10750-010-0530-2>

388 40. Wen, L.; Hua, C.; Ping, Z.; Xiang, L. Removal of total phosphorus from septic tank effluent by the hybrid constructed wetland system. *Procedia Environ Sci.* **2011**, *10*, 2102-2107; DOI: <https://doi.org/10.1016/j.proenv.2011.09.328>.

391 41. Wu, H.; Zhang, J.; Li, P.; Zhang, J.; Xie, H.; Zhang, B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. *Ecol Eng.* **2011**, *37*, 560-568; DOI: <https://doi.org/10.1016/j.ecoleng.2010.11.020>.

394 42. Xie, X.; He, F.; Xu, D.; Dong, J.; Cheng, S.; Wu, Z. Application of large scale integrated vertical-flow constructed wetland in Beijing Olympic forest park: design, operation and performance. *Water Environ J.* **2012**, *26*,100-107; DOI: <https://doi.org/10.1111/j.1747-6593.2011.00268.x>

397 43. Chang, JJ.; Wu, SQ.; Dai, YD.; Liang, W.; Wu, ZB. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. *Ecol Eng.* **2012**, *44*, 152–159; DOI: <https://doi.org/10.1016/j.ecoleng.2012.03.019>.

400 44. Gao, J.; Wang, W.; Guo, X.; Zhu, S. Nutrient removal capability and growth characteristics of iris sibirica in subsurface vertical flow constructed wetlands in winter. *Ecol Eng.* **2014**, *70*, 351-361; DOI: <https://doi.org/10.1016/j.ecoleng.2014.06.006>.

403 45. Li, J.; Liu, X.; Yu, Z.; Yi, X.; Ju, Y.; Huang, J.; Liu, R. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate. *Water Sci Technol.* **2014**, *70*(4), 620-626; DOI: Available online: <https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnln=02731223&AN=97456645&h=cspE3Yp1FT7Z%2b0L2W35da%2fEuUxoalBsN2ZCvbYjk%2bw%2fRNmEf4yID97zVeiXT5aIdoP7AUS0QmaxQoiq%2fTsvtUg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlnNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrnln%3d02731223%26AN%3d97456645>. (accessed on 02 August 2018).

411 46. Gao, J.; Zhang, J.; Ma, N.; Wang, W.; Ma, C.; Zhang, R. Cadmium removal capability and growth characteristics of *iris sibirica* in subsurface vertical flow constructed wetlands. *Ecol Eng.* **2015**, *84*, 443-450; DOI: <https://doi.org/10.1016/j.ecoleng.2015.07.024>.

414 47. Hu, Y.; He, F.; Ma, L.; Zhang, Y.; Wu, Z. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems. *Bioresour Technol.* **2016**, *207*, 339-345; DOI: <https://doi.org/10.1016/j.biortech.2016.01.106>.

417 48. Wang, W.; Ding, Y.; Ullman, J.; Ambrose, R.; Wang, Y.; Song, X.; Zhao, Z. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios. *Environ Sci Pollut Res.* **2016**, *23*, 9012-9018; DOI: <https://doi.org/10.1007/s11356-016-6115-5>.

420 49. Morales, G.; López, D.; Vera, I.; Vidal, G. Humedales construidos con plantas ornamentales para el tratamiento de materia orgánica y nutrientes contenidos en aguas servidas. *Theoria.* **2013**, *22*(1), 33-46; Available Online: <http://revistas.ubiobio.cl/index.php/RT/article/view/1188>.

423 50. Burgos, V.; Araya, F.; Reyes-Contreras, C.; Vera, I.; Vidal, G. Performance of ornamental plants in mesocosm
424 subsurface constructed wetlands under different organic sewage loading constructed wetlands under different
425 organic sewage loading. *Ecol Eng.* **2017**, *99*, 246-255; DOI: <https://doi.org/10.1016/j.ecoleng.2016.11.058>.

426 51. Leiva A.; Núñez R.; Gómez G.; López D.; Vidal G. Performance of ornamental plants in monoculture and
427 polyculture horizontal subsurface flow constructed wetlands for treating wastewater. *Ecol. Eng.* **2018**, *120*:
428 116-125; DOI: <https://doi.org/10.1016/j.ecoleng.2018.05.023>.

429 52. Gutiérrez-Mosquera, H.; Peña-Varón, M. Eliminación de nitrógeno en un humedal construido
430 subsuperficial, plantado con *Heliconia psittacorum*. *Tecnología Ciencias del agua.* **2011**, *11*(3), 49-60; Available
431 online: http://www.scielo.org.mx/scielo.php?pid=S2007-2422201100030004&script=sci_arttext. (accessed on
432 13 August 2018)

433 53. Madera-Parra, CA.; Peña-Salamanca, EJ.; Peña, MR.; Rousseau, DPL.; Lens PN. Phytoremediation of landfill
434 leachate with *Colocasia esculenta*, *Gynerum sagittatum* and *Heliconia psittacorum* in Constructed Wetlands. *Int J*
435 *Phytoremed.* **2015**, *17*, 16-24; DOI: <https://doi.org/10.1080/15226514.2013.828014>.

436 54. Marrugo-Negrete, J.; Ortega-Ruiz, J.; Navarro-Frómata, A.; Enamorado-Montes, G.; Urango-Cárdenas, I.;
437 Pinedo-Hernández, J.; Durango-Hernández, J.; Estrada-Martínez, A. Remoción de cipermetrina presente en el
438 baño de ganado utilizando humedales construidos. *Corpoica Cienc Tecnol Agrop.* **2016**, *17*(2), 203-216.

439 55. Toro-Vélez, AF.; Madera-Parra, CA.; Peñón-Varón, MR.; Lee, WY.; Bezares-Cruz, JC.; Walker, WS.;
440 Cárdenas-Henao, H.; Quesada-Calderón, S.; García-Hernández, H.; Lens, PNI. BPA and NP removal from
441 municipal wastewater by tropical horizontal subsurface constructed wetlands. *Sci Total Environ.* **2016**, *542*,
442 93-101.

443 56. León, C.; Cháves, D. Tratamiento de residual vacuno utilizando microalgas, la lenteja de agua *Lemna*
444 *aequinoctiales* y un humedal subsuperficial en Costa Rica. *Rev Latinoam Biotecn Amb Alga.* **2010**, *1*(2), 155-177;
445 DOI: <https://doi.org/10.1016/j.scitotenv.2015.09.154>.

446 57. Abou-Elela, S.; Hellal, M. Municipal wastewater treatment using vertical flow constructed wetlands planted
447 with Canna, Phragmites and Cypress. *Ecol Eng.* **2012**, *47*, 209-213; Available online:
448 <http://www.solabia.org/ojs3/index.php/RELBAA/article/view/22>. (accessed on 13 August 2018)

449 58. Abou-Elela, S.; Golinielli, G.; Abou-Taleb, E.; Hellal, M. Municipal wastewater treatment in horizontal and
450 vertical flows constructed wetlands. *Ecol Eng.* **2013**, *61*, 460-468; DOI:
451 <https://doi.org/10.1016/j.ecoleng.2013.10.010>.

452 59. Choudhary, AK.; Kumar, S.; Sharma, C. Removal of chlorinated resin and fatty acids from paper mill
453 wastewater through constructed wetland. *World Acad Sci Eng Technol.* **2010**, *80*, 67-71; Available online:
454 <https://pdfs.semanticscholar.org/5c68/29075154522d7f2486c7f96ed897d796b2b6.pdf>. (accessed on 08 August
455 2018).

456 60. Yadav, A.; Dash, P.; Mohanty, A.; Abbassi, R.; Mishra, B. Performance assessment of innovative
457 constructed wetland-microbial fuel cell for electricity production and dye removal. *Ecol Eng.* **2012**, *47*, 126-131;
458 DOI: <https://doi.org/10.1016/j.ecoleng.2012.06.029>

459 61. Saumya, S.; Akansha, A.; Rinaldo, J.; Jayasri, MA.; Suthindhiran, K. Construction and evaluation of
460 prototype subsurface flow wetland planted with *Heliconia angusta* for the treatment of synthetic greywater. *J*
461 *Cleaner Product.* **2015**, *91*, 235-240; DOI: <https://doi.org/10.1016/j.jclepro.2014.12.019>.

462

463 62. Ojoawo, S.; Udayakuman, G.; Naik, P. Phytoremediation of phosphorus and nitrogen with Canna x
464 generalis reeds in domestic wastewater through NMAMIT constructed wetlands. *Aquatic procedia.* **2015**, *4*,
465 349-356; DOI: <https://doi.org/10.1016/j.aqpro.2015.02.047>.

466 63. Haritash, AK.; Sharma, A.; Bahel, K. The potential of *Canna lily* for wastewater treatment under Indian
467 conditions. *Int J Phytoremed.* **2015**, *17*(10), 999-1004; DOI: <https://doi.org/10.1080/15226514.2014.1003790>.

468 64. Patil, YM.; Munavalli, GR. Performance evaluation of and integrated on-site greywater treatment system in a
469 tropical region. *Ecol Eng.* **2016**, *95*, 492-500; DOI: <https://doi.org/10.1016/j.ecoleng.2016.06.078>

470 65. Singh, M.; Srivastava, R. Horizontal subsurface flow constructed wetland for heavy metal removal from
471 domestic wastewater. *Environ Progress Sustain Energy.* **2016**, *35*(1), 125-132; DOI:
472 <https://doi.org/10.1002/ep.12214>.

473 66. Gill, LW.; O'Luanaigh, N. Nutrient removal from on-site wastewater in horizontal subsurface flow
474 constructed wetlands in Ireland. *Water Pract Techn.* **2011**, *6*(3), 1-2; DOI:
475 <https://doi.org/10.1016/j.ecoleng.2010.06.002>.

476 67. Macci, C.; Peruzzi, E.; Doni, S.; Iannelli, R.; Masciandaro, G. Ornamental plants for micropollutant removal
477 in wetland systems. *Environ Sci Pollut Res.* **2015**, *22*, 2406-2415; DOI: <https://doi.org/10.1007/s11356-014-2949-x>.

478 68. Kimani, RW.; Mwangi, BM.; Gichuki, CM. Treatment of flower farm wastewater effluents using constructed
479 wetlands in lake Naivasha Kenya. *Indian J Sci Technol.* **2012**, *5*, 1870-1878; Available Online:
480 <http://repository.embuni.ac.ke/handle/123456789/80>. (accessed on 08 December 2018)

481 69. Belmont, MA.; Metcalfe, CD. Feasibility of using ornamental plants (*Zantedeschia aethiopica*) in subsurface
482 flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants
483 – a laboratory-scale study. *Ecol Eng.* **2003**, *21*, 233-247; DOI: <https://doi.org/10.1016/j.ecoleng.2003.10.003>.

484 70. Belmont, MA.; Cantellano, E.; Thompson, S.; Williamson, M.; Sánchez, A.; Metcalfe, CD. Treatment of
485 domestic wastewater in a pilot scale natural treatment system in central Mexico. *Ecol Eng.* **2004**, *23*, 299-311;
486 DOI: <https://doi.org/10.1016/j.ecoleng.2004.11.003>.

487

488 71. Orozco, C.; Cruz, A.; Rodríguez, M.; Pohlan, A. Humedal subsuperficial de flujo vertical como sistema de
489 depuración terciaria en el proceso de beneficiado de café. *Hig Sanid Ambient.* **2006**, *6*, 190-196; Available Online:
490 [http://www.salud-publica.es/secciones/revista/revistaspdf/bc51015a2fc8ef6_Hig.Sanid.Ambient.6.190-196\(2006\).pdf](http://www.salud-publica.es/secciones/revista/revistaspdf/bc51015a2fc8ef6_Hig.Sanid.Ambient.6.190-196(2006).pdf). (accessed on 13 July 2018).

492 72. Zurita, F.; De Anda, J.; Belmont, M. Performance of laboratory-scale wetlands planted with tropical
493 ornamental plants to treat domestic wastewater. *Water Qual Res J Canada.* **2006**, *41*(4), 410-417; DOI:
494 <https://doi.org/10.2166/wqrj.2006.044>.

495 73. Zurita, F.; Belmont, M.; De Anda, J.; Cervantes-Martínez, J. Stress detection by laser-induced fluorescence in
496 *Zantedeschia aethiopica* planted in subsurface-flow treatment wetlands. *Ecol Eng.* **2008**, *33*, 110-118; DOI:
497 <https://doi.org/10.1016/j.ecoleng.2008.02.004>.

498 74. Ramírez-Carrillo, HF.; Luna-Pabello, VM.; Arredondo-Figueroa, JL. Evaluación de un humedal artificial de
499 flujo vertical intermitente, para obtener agua de buena calidad para la acuicultura. *Rev Mex Ing Quím.* **2009**, *8*(1),
500 93-99; Available Online: http://www.scielo.org.mx/scielo.php?pid=S1665-27382009000100009&script=sci_arttext&tlang=en. (accessed on
502 13 August 2018).

503 75. Zurita, F.; De Anda, J.; Belmont, M. Treatment of domestic wastewater and production of commercial
504 flowers in vertical and horizontal subsurface-flow constructed wetlands. *Ecol Eng.* **2009**, *35*(5), 861-869; DOI:
505 <https://doi.org/10.1016/j.ecoleng.2008.12.026>.

506 76. Zurita, F.; Del Toro-Sánchez, C.; Gutierrez-Lomelí, M.; Rodríguez-Sahagún, A.; Castellanos-Hernández, O.;
507 Ramírez-Martínez, G.; White, J. Preliminary study on the potential of arsenic removal by subsurface flow
508 constructed mesocosms. *Ecol Eng.* **2012**, *47*, 101-104; DOI: <https://doi.org/10.1016/j.ecoleng.2012.06.018>.

509 77. Castañeda, AA.; Flores, HE. Tratamiento de aguas residuales domésticas mediante plantas macrófitas
510 típicas en Los Altos de Jalisco, México. *Paakat Rev Tecn Soc.* **2013**, *3*(5), 126-134; Available Online:
511 <https://dialnet.unirioja.es/servlet/articulo?codigo=5815442>. (accessed on 13 July 2018).

512 78. Zurita, F.; White, J. Comparative study of three two-stage hybrid ecological wastewater treatment systems
513 for producing high nutrient, reclaiming water for irrigation reuse in developing countries. *Water.* **2014**, *6*,
514 213-228; DOI: [10.3390/w6020213](https://doi.org/10.3390/w6020213)

515 79. Hallack, M.; Payan, JC.; Mungaray, A.; López, A.; González, M.; Castañón, MC.; Pérez-Banuet, M.
516 Implementación y evaluación de un sistema de tratamiento de agua residual natural a través de humedales
517 construidos en el norte de México. In *Gestión de humedales españoles y Mexicanos: Apuesta conjunta por*
518 su futuro. (coord.). Sastre A., Díaz I and Ramírez J. *Universidad de Alcalá.* **2015**; I.S.B.N.: 978-84-16599-15-8.
519 Available Online: <http://www.redalyc.org/pdf/370/37012012004.pdf>. (accessed on 13 November 2018).

520 80. Méndez-Mendoza, A.; Bello-Mendoza, R.; Herrea-López, D.; Mejía-González, G.; Calixto-Romo, A.
521 Performance of constructed wetlands with ornamental plants in the treatment of domestic wastewater under

522 the tropical climate of south Mexico. *Water Practice Tecnol.* 2015, 10(1), 110-123; DOI:
523 <https://doi.org/10.2166/wpt.2015.013>

524 81. Merino-Solís, M.; Villegas, E.; de Anda, J.; López-López, A. The effect of the hydraulic retention time on the
525 performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland.
526 *Water.* 2015, 7, 1149-1163; DOI: <https://doi.org/10.3390/w7031149>

527 82. Zurita, F.; Carreón-Álvarez, A. Performance of three pilot-scale hybrid constructed wetlands for total
528 coliforms and *Escherichia coli* removal from primary effluent – a 2-year study in subtropical climate. *J Water
529 Health.* 2015, 13(2), 446-458; DOI: <https://doi.org/10.2166/wh.2014.135>

530 83. Garzón, M.; González, J.; García, R. Evaluación de un sistema de tratamiento doméstico para reúso de agua
531 residual. *Rev. Int. Cont. Amb.* 2016, 32(2), 199-211; DOI: <http://dx.doi.org/10.20937/RICA.2016.32.02.06>

532 84. Hernández, ME. Humedales ornamentales con participación comunitaria para el saneamiento de aguas
533 municipales en México. *RINDERESU.* 2016, 1(2), 1-12; DOI: Available Online:
534 <http://rinderesu.com/index.php/rinderesu/article/view/16>. Access ed on 17 September 2018

535 85. López-Rivera, A.; López-López, A.; Vallejo-Rodríguez, R.; León-Becerril, E. Effect of the organic loading rate
536 in the stillage treatment in a constructed wetland with *Canna indica*. *Environ Progress Sust Energy.* 2016, 35(2),
537 411-415. <https://doi.org/10.1002/ep.12249>

538 86. Tejeda, A.; Torres-Bojorges, A.; Zurita, F. Carbamazepine removal in three pilot-scale hybrid wetlands
539 planted with ornamental species. *Ecol Eng.* 2017, 98, 410-417; DOI: <https://doi.org/10.1016/j.ecoleng.2016.04.012>

540 87. Marín-Muñiz, J.L.; García-González, M.C.; Ruelas-Monjardín, L.C.; Moreno-Casasola, P. Influence of
541 different porous media and ornamental vegetation on wastewater pollutant removal in vertical subsurface flow
542 wetland microcosms. *Environ. Eng. Sci.* 2018, 35 (2), 88-94; DOI: <https://doi.org/10.1089/ees.2017.0061>

543 88. Sandoval-Herazo, L.C.; Alvarado-Lassman, A.A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.;
544 Zamora-Castro, S.A.; Effects of the use of ornamental plants and different substrates in the removal of
545 wastewater pollutants through microcosms of constructed wetlands. *Sustainability.* 2018, 10, 1594; DOI:
546 <https://doi.org/10.3390/su10051594>

547 89. Singh, S.; Haberl, R.; Moog, O.; Shrestha, RR.; Shrestha, P.; Shrestha, R. Performance of an anaerobic baffled
548 reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—a model for DEWATs.
549 *Ecol Eng.* 2009, 35(5), 654–660; DOI: <https://doi.org/10.1016/j.ecoleng.2008.10.019>

550 90. Calheiros, CS.; Rangel, OSS.; Castro, PKL. Constructed wetland systems vegetated with different plants
551 applied to the treatment of tannery wastewater. *Water Res.* 2007, 41, 1790–1798; DOI:
552 <https://doi.org/10.1016/j.watres.2007.01.012>

553 91. Calheiros, C.; Bessa, V.; Mesquita, R.; Brix, H.; Rangel, A.; Castro, P. Constructed wetlands with a
554 polyculture of ornamental plants for wastewater treatment at a rural tourism facility. *Ecol Eng.* 2015, 79, 1-7;
555 DOI: <https://doi.org/10.1016/j.ecoleng.2015.03.001>

556 92. García, M.; Soto, F.; González, JM.; Bécaries, E. A comparison of bacterial removal efficiencies in constructed
557 wetlands and algae-based systems. *Ecol. Eng.* 2008, 32(3), 238–243; DOI:
558 <https://doi.org/10.1016/j.ecoleng.2007.11.012>

559 93. Ansola, G.; González, JM.; Cortijo, R.; de Luis, E. Experimental and full-scale pilot plant constructed
560 wetlands for municipal wastewaters treatment. *Ecol. Eng.* 2003, 21(1), 43–52; DOI:
561 <https://doi.org/10.1016/j.ecoleng.2003.08.002>

562 94. Weragoda, SK.; Jinadasa, KBSN.; Zhang, DQ.; Gersberg, RM.; Tan, SK.; Ng, WJ. Tropical application of
563 floating treatment wetlands. *Wetlands* 2012, 32(5), 955–961; DOI: <https://doi.org/10.1007/s13157-012-0333-5>

564 95. Chyan, JM.; Lu, CC.; Shiu, RF.; Bellotindos, L. Purification of landscape water by using an innovative
565 application of subsurface flow constructed wetlands. *Environ. Sci. Pollut. Res.* 2016, 23, 535-545; DOI:
566 <https://doi.org/10.1007/s11356-015-5265>

567 96. Chyan, JM.; Jhu, YX.; Chen, I.; Shiu, R. Improvement of nitrogen removal by external aeration and
568 intermittent circulation in a subsurface flow constructed wetland of landscape garden ponds. *Proc Saf Environ
569 Prot.* 2016, 104, 587-597; DOI: <https://doi.org/10.1016/j.psep.2016.02.016>

570 97. Sirianuntapiboon, S.; Jitvimolnimit, S. Effect of plantation pattern on the efficiency of subsurface flow
571 constructed wetland (SFCW) for sewage treatment. *Afr J Agric Res.* **2007**, *2*, 447–454; DOI: 10.5897/AJAR

572 98. Sohsalam, P.; Englande, A.; Sirianuntapiboon, S. Seafood wastewater treatment in constructed wetlands:
573 Tropical case. *Bioresour Technol.* **2008**, *99*, 1218-1224; DOI: <https://doi.org/10.1016/j.biortech.2007.02.014>

574 99. Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical subsurface flow
575 constructed wetlands planted with Canna and Heliconia. *Ecol Eng.* **2009**, *35*(2), 248–257; DOI:
576 <https://doi.org/10.1016/j.ecoleng.2008.04.018>

577 100. Kantawanichkul, S.; Karnchanawong, S.; Jing, SH. Treatment of fermented fish production wastewater by
578 constructed wetland system in Thailand. *Chiang Maij Sci.* **2009**, *36*(2), 149–157; DOI: Available Online:
579 <http://www.thaiscience.info/journals/Article/CMJS/10905526.pdf>. Access ed on 20 September 2018.

580 101. Brix, H.; Koottatep, T.; Fryd, O.; Laugesen CH. The flower and the butterfly constructed wetland system at
581 Koh Phi Phi – system design and lessons learned during implementation and operation. *Ecol Eng.* **2011**, *37*(5),
582 729–735; DOI: <https://doi.org/10.1016/j.ecoleng.2010.06.035>

583 102. Torit, J.; Siangdung, W.; Thiravetyan, P. Phosphorus removal from domestic wastewater by *Echinodorus*
584 *cordifolius* L. *J Environ Sci Health, Part A.* **2012**, *47*, 794-800; DOI: <https://doi.org/10.1016/j.ecoleng.2010.06.035>

585 103. Tunçsiper, B. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland
586 system. *Desalination.* **2009**, *247*(1–3), 466–475; DOI: <https://doi.org/10.1016/j.desal.2009.03.003>

587 104. Neralla, S.; Weaver, RW.; Lesikar, BJ.; Persyn, RA. Improvement of domestic wastewater quality by
588 subsurface flow constructed wetlands. *Bioresour Technol.* **2000**, *75* (1), 19–25; DOI:
589 [https://doi.org/10.1016/S0960-8524\(00\)00039-0](https://doi.org/10.1016/S0960-8524(00)00039-0)

590 105. Polomski, RF.; Bielenberg, DG.; Whitwell, T. Nutrient Recovery by Seven Aquatic Garden Plants in a
591 Laboratory-scale Subsurface-constructed Wetland. *Hortscience.* **2007**, *42*(7), 1674–1680; DOI: Available online:
592 <http://hortsci.ashpublications.org/content/42/7/1674.short>. Access on 12 July 2018

593 106. Zachritz, WH.; Hanson, AT.; Saucedo, JA.; Fitzsimmons, KM. Evaluation of submerged surface flow (SSF)
594 constructed wetlands for recirculating tilapia production systems. *Aquacult Eng.* **2008**, *39*, 16–23; DOI:
595 <https://doi.org/10.1016/j.aquaeng.2008.05.001>

596 107. Chen, Y.; Bracy, R.; Owings, A. Nitrogen and phosphorous removal by ornamental and wetland plants in a
597 greenhouse recirculation research system. *HortScience.* **2009**, *44*(6), 1704–1711; DOI: Available online:
598 <http://hortsci.ashpublications.org/content/44/6/1704.short>. Access ed on 14 July 18.

599 108. Konnerup, D.; Trang, NTD.; Brix, H. Treatment of fishpond water by recirculating horizontal and vertical
600 flow constructed wetlands in the tropics? *Aquaculture* **2011**, *313*(1–4), 57–64; DOI:
601 <https://doi.org/10.1016/j.aquaculture.2010.12.026>

602 109. McKinlay, RG.; Kasperek, K. Observations on decontamination of herbicide polluted water by marsh plant
603 system. *Water Res.* **1999**, *33*, 505–511; DOI: [https://doi.org/10.1016/S0043-1354\(98\)00244-9](https://doi.org/10.1016/S0043-1354(98)00244-9)

604 110. Gersberg, RM.; Elkins, BV.; Lyon, SR.; Goldman, CR. Role of aquatic plants in wastewater treatment by
605 artificial wetlands. *Water Res* **1986**, *20*(3), 363–368; DOI: <https://doi.org/10.1016/B978-0-08-040784-5.50035-8>

606 111. Duarte, A.; Canais-Seco, T.; Peres, J.; Bentes, I.; Pinto, J. Sustainability indicators of subsurface flow
607 constructed wetlands in Portuguese small communities. *WSEAS trans Environ Develop.* **2010**, *9*(6), 625–634; DOI:
608 <http://hdl.handle.net/1822/16373>

609 112. Patra, B.; Acharya, L.; Mukherjee, AK.; Panda, MK.; Panda, CP. Molecular characterization of ten cultivars
610 of Canna lilies (Canna Linn.) using PCR based molecular markers (RAPDs and ISSRs). *Int J Integr Biol.* **2008**, *2*,
611 129–137; Available Online: https://www.researchgate.net/profile/Pratap_Panda/publication/26516984_Molecular_characterization_of_ten_cultivars_of_Canna_lilies_Canna_Linn_using_PCR_based_molecular_markers_RAPDs_and_ISSRs/links/09e41505a02434ad4b00000.pdf. Access on 13 August 2018

615 113. Gupta, A.; Maurya, R.; Roy, RK.; Sawant, S.; Yadav, H. AFLP based genetic relationship and population
616 structure analysis of Canna-An ornamental plant. *Sci. Hortic.* **2013**, *154*, 1–7; DOI:
617 <https://doi.org/10.1016/j.scienta.2013.02.005>.

618 114. Kulig, M.; Wronski, M.; Ostafin, K. The characteristics of flowers, and of clumps of selected iris species and
619 varieties, from the *Limniris* section. *Horticul. Landsc. Architect.* **2013**, *34*, 3-12; DOI: Available Online:
620 <https://mrec.ifas.ufl.edu/grapes/genetics/Selected-Publications/B%20%20PlantSci%20Promoter%208-4-12.pdf>.
621 Access On: 20 September 2018.

622 115. Kulig, M. Characteristics of flowers of selected iris species and varieties from *Limniris* section. *EJPAU* **2012**,
623 *15*(1), #04. <http://www.ejpau.media.pl/volume15/issue1/art-04.html>

624 116. Kress, WJ. The diversity and distribution of *Heliconia* (Heliconiaceae) in brazil). *Acta Bot Bras.* **1990**, *4*(1),
625 159-167; DOI: Available Online: http://www.ejpau.media.pl/volume15/issue1/index_stitle_sabs.html. Access
626 on 28 July 18.

627 117. Maas, PJM. Renealmia (Zingiberaceae - Zingiberoideae); Costoideae (Zingiberaceae). *Fl. Neotropica Monogr*
628 **1977**, *18*, 1-218; DOI: <https://www.jstor.org/stable/4393712>.

629 118. Bogner, J.; Nicolson, DH. A revised classification of Araceae with dichotomous keys. *Willdenowia* **1991**, *21*,
630 35-50; DOI: <https://www.jstor.org/stable/3996587>

631 119. Rodríguez, M.; Brisson, J. Pollutant removal efficiency of native versus exotic common reed (*Phragmites*
632 *australis*) in North American treatment wetlands. *Ecol Eng.* **2015**, *74*, 364-370; DOI:
633 <https://doi.org/10.1016/j.ecoleng.2014.11.005>

634 120. Zhang, D.; Jinadasa, K.; Gersberg, R.; Liu, Y.; Ng, W.; Tan, S. Application of constructed wetlands for
635 wastewater treatment in developing countries – A review of recent developments. *J Environ Manag.* **2014**, *141*,
636 116-131; DOI: <https://doi.org/10.1016/j.jenvman.2014.03.015>

637 121. Zhang, D.; Jinadasa, K.; Gersberg, R.; Liu, Y.; Tan, S.; Ng, W. Application of constructed wetlands for
638 wastewater treatment in tropical and subtropical regions (2000-2013). *J Environ Sci.* **2015**, *30*, 30-46; DOI:
639 <https://doi.org/10.1016/j.jes.2014.10.013>

640 122. Frazer-Williams, R. A review of the influence of design parameters on the performance of constructed
641 wetlands. *J Chem Eng.* **2010**, *25*(1), 29-42; DOI: <http://dx.doi.org/10.3329/jce.v25i0.7237>

642 123. Machado, A. I.; Beretta, M.; Fragoso, R.; Duarte, E. Overview of the state of the art of constructed wetlands
643 for decentralized wastewater management in Brazil. *J. Environ. Manage.* **2017**, *187*, 560-570; DOI:
644 <https://doi.org/10.1016/j.jenvman.2016.11.015>