Surface modification of the bulk metallic glass
Zr_{46}Cu_{36.8}Ag_{9.2}Al_{8} triggered by millisecond laser irradiation

Alexandra A. Shlykova, Mikhail F. Gasanov
Department of Physics, Derzhavin Tambov State University, 392000 Tambov, Russia

Alexandr Nasedkin
Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Viktor A. Fedorov
Department of Physics, Derzhavin Tambov State University, 392000 Tambov, Russia

Abstract
Zirconium based bulk metallic glasses are industrially valuable materials which commercial market grows rapidly. Surface modification of these metallic glasses by high-intensity lasers is relatively new and costly treatment promising great advantages over classical surface processing methods. In this work we perform the case study of surface modification of Zr_{46}Cu_{36.8}Ag_{9.2}Al_{8} metallic glass by high-intensity millisecond laser beam. Our results suggest chemical deposition of atmospheric oxygen and nitrogen in the laser-melted surface area and its surroundings. Zirconium nitride layer was detected in the middle of laser-irradiated area. Nanocrystals embedded in the amorphous matrix were also formed on the surface. Overall, our findings suggest possibilities for improvement of mechanical characteristics of the studied metallic glass.

Keywords: Zirconium, bulk metallic glass, laser material processing, amorphous, nanocrystals, surface modification, glass transition

1. Introduction
Bulk metallic glasses (BMG) are relatively novel sort of materials attracting much of the attention because of their unique combination of mechanical properties. High strength and high elasticity of BMGs in combination with their corrosion resistance made those materials a prospective candidates for industrial applications [1,2,3,4,5]. Yet, the wide use of BMGs is heavily limited by their low glass transition temperatures. Much of the technological processing takes place at temperatures exceeding the glass transition temperature of the
BMGs: heating will inevitably result in partial crystallization and phase separation and following structural relaxation ultimately worsens crucial mechanical properties \[6, 7, 8, 9, 10\]. Future estimates place a large accent on combining several techniques for processing of BMGs \[11\].

Prospectively, laser material processing represent an alternative to the traditional welding \[12\]. Laser pulses could selectively influence surface of the material, whereas controllable duration of the pulse opens wide perspectives for adjustable damage in the irradiated area \[13\]. Thus, laser manipulations of amorphous alloys attract interest as industrial processing method. Such, powder coating by amorphous layers \[14, 15\], laser beam welding \[6, 8\], laser surface hardening by the knock waves \[16, 17\], laser microscopic treatment of the surface \[18\] and laser technologies for the preparation of the micro- and nano-structures were developed \[19\].

Particular focus in laser processing is given to the surface crack healing which should substantially increase the plastic flow limit. Plastic deformations in metallic glasses occurs by means of shear bands. A cluster of shear bands concentrated into a thin line leads to the intense friction heating, decrease in viscosity and following crack initiation \[20\]. Such clusters are normally formed about 10 nm below the surface which make them different from dislocations \[21\]. The primary shear band in the BMG could be stopped by e.g. the secondary bands in order to perform crack retardation \[22, 23\]. One of such methods is formation of crystal phases and composites on the surface. A very similar effect of crack retardation can be achieved with laser undercutting followed by release of thermo-elastic stresses.

The downside of the laser-based treatment is in induced penchant of the material toward fatigue damage \[24\]. Such, decrease of the micro-hardness induced by formation of the cracks in a grain-growth region is observed in the heat-affected area as a result of the laser heating \[7\]. On the contrary, the increase of both strength and plasticity is observed due to partial crystallization \[25\]. Moreover, heating leads to the surface oxidation of metallic glasses that, in turn, requires atmosphere monitoring during manufacturing process. However, the influence of the oxidation can be minimal and the sorption processes can improve the surface quality, decrease friction coefficient, increase surface micro-hardness and resistance to corrosion \[26\].

Millisecond-long laser pulses are among the most suitable for the laser surface processing. Lifetime of heat dissipation by the electrons is about \(10^{-12}, 10^{-13}\) s which is several orders of magnitude faster compared to the laser pulse duration. These conditions minimize ablation, and as a consequence, increase the quality of surface treatment due to the formation of more homogeneous melt layer. Thus, investigation of millisecond time-domain of laser pulses is interesting from the perspective of controllable variation of mechanical properties of BMGs \[27, 28\].

BMGs containing zirconium is a wide class of materials used for protective and structural elements in aggressive environments \[29, 30, 31, 29\]. Additionally, zirconium-based materials has a number of unique properties, one of which is high biocompatibility, thus enabling their use in medical applications \[32, 33\].
This work has been devoted to follow surface modification of the bulk metallic glass Zr$_{46}$Cu$_{36.8}$Ag$_{9.2}$Al$_8$ upon millisecond laser irradiation. The process and formed structures have been characterized by combination of optical microscopy, X-ray diffraction and nanoindentation as well as computational modeling.

2. RESULTS

2.1. Nanocrystals are formed upon melting

Electron micrographs show two areas: the crater formed upon laser melting and the bare surface clearly separated by the border (Figure 1a and b). The inner area is roughly equal to the size of the laser spot. Taking into account the energy of the pulse, melting would definitely take place in this area. Surface morphology (Figure 1b) suggests that the outer ring is a flow shear area.

Figure 1: Micrographs of the surface in the laser-melted area. a) The crater, b) the area of the thermo-plastic shears magnified from figure (a). Plots c) and d) show nanocrystals from the center of the crater.

High-resolution imaging revealed nanocrystals in the center of the crater showed in Figure 1c and d. In order to further characterize the surface, we performed X-ray diffraction (XRD) measurements. The XRD spectrum showed a combination of both diffuse and crystalline forms (Figure 2) indicating that the nanocrystals are embedded in the amorphous matrix on the surface. Observed
XRD peaks were fit with numerous diffraction patterns in order to identify chemical composition of the nanocrystals. The fitting by peak position and intensity identified Zr$_2$Cu, Zr$_7$Cu$_{10}$, ZrO$_2$ and ZrO crystallines. The latter two are typically formed during oxidation of zirconium amorphous alloys [37, 38].

Figure 2: X-ray diffraction pattern collected from the center of the crater. The spectrum is a combination of diffuse and crystalline signals. Diffraction peaks for Zr$_2$Cu, Zr$_7$Cu$_{10}$, ZrO and ZrO$_2$ are assigned.

2.2. Surface composition

Chemical composition measured along the radius confirms the large quantities of surface oxygen present in the crater (Figure 3). Oxygen concentration increases to the border of the welding zone. Additionally, large quantity of the nitrogen was identified in the center of the crater. The sum of oxygen and nitrogen along the radius is approximately constant (50 %) in the crater.

2.3. Temperature and heat flow

To evaluate temperature and heat flow in the crater we have performed corresponding simulations. From simulations we determined that spontaneous temperature rise exceeds the melting temperature of the sample as far as 350 μm from the center of the laser spot. That value is larger than the value 220-240 μm that could be extracted from the raw image by assuming the shear bands form on the border of the melting zone (Figure 1a and b). The temperature profile from simulation is shown in Figure 4a. By following the isotherm on the border of the crater Figure 4b, we have identified that the melting area extend up to 60 μm below surface at the center of the crater. Surface temperature as a function of time and distance from the center of the crater is shown in Figure 4b.
Figure 3: **Surface composition measured along the radius of the crater.** Top plot shows settings from instrument setup. Points where chemical composition was measured are located 30 µm from each other. b) Element distribution along the radius of the crater.

Figure 4: **Temperature distribution in the sample.** a) The snapshot of temperature distribution in the sample taken at the end of laser pulse. The top of the plot (z=1) corresponds to the surface of the sample. The radius of laser spot was 300 µm. b) Temperature profile as function of time and distance from the sample. The origin corresponds to the center of the crater and offset by $t = -1$ ms prior to the laser pulse.
3. DISCUSSION

High fractions of oxygen and nitrogen absorbed on the surface point to chemical deposition on the surface. Indeed, fraction of the oxygen absorbed into zirconium matrix at high temperatures could be significant. Due to the high surface activity and high affinity of oxygen to zirconium, absorbed oxygen could consist up to 29 wt.% at 2173 K. Oxygen penetrates easily into the zirconium lattice and fills the octahedral discontinuities, decreased the chemical mobility of zirconium. As a result the relative mobility of silver and aluminum increased since some zirconium is participating in chemical reactions with oxygen. Overall, the atomic mobility at crystallization is decreased and the relative impurity index increases.

Diffraction pattern shows crystalline formation of ZrO and ZrO$_2$ alongside with crystals detected by electron microscopy. It is anticipated that the high temperatures of the sample short after the laser pulse (Figure 4b) lead to the large absorption of molecular oxygen and following chemical reactions with metals of the sample, upon which the significant fraction of oxygen is bound to the oxides on the surface.

Additionally to the oxygen, there is significant fraction of the nitrogen detected only in the center of the crater. Similarly to the oxygen, the nitrogen is expected to be chemically bound to the modified surface of the sample. Nitrogen is less chemically active compared to the oxygen, as a consequence it would react with metals at higher temperatures compared to the latter one.

As an attempt to characterize the chemistry of occurring reactions, we calculated activation energy for oxygen and nitrogen deposition. This was based on the highest surface temperature obtained from theoretical modeling. The Arrhenius plot of concentration versus inverse temperature shows nearly linear dependence, which allows us to suggest purely activation character of occurring reactions (Figure 5). Activation energies of chemical deposition calculated from Arrhenius plots are 44±14 kJ/mol for nitrogen and 2.2±0.9 kJ/mol for oxygen deposition, based on 95 % confidence interval estimates.

Fraction of copper and zirconium in the sample allows to suggest that only these two metals can form significant quantities of nitrides and oxides detected on the surface. Copper nitride Cu$_3$N has low content of the nitrogen, thus its occurrence in the center of the crater can not explain high nitrogen content. On the other hand, activation energy for nitrogen deposition correlates with previously reported value 37.4 kJ/mol for nitridation of the bulk zirconium sample [41]. Zirconium nitride can also form by oxidizing ZrO$_2$ films. However, high activation energy of this reaction (240±10 kJ/mol [42]) prevents it from being dominant in our case.

Although the fraction of oxygen is significant on the periphery and outside the crater, the composition of oxides in this area is unclear. Determined activation energy is too low compared to respective values for zirconium oxide (110-198 kJ/mol [43]), copper oxide (40-111 kJ/mol [44]) and aluminium oxide (156 kJ/mol [45]) formed from surface oxidation of corresponding metals. The decrease in activation energy was previously observed for copper oxide due
Figure 5: Arrhenius plot of the chemical deposition. The left hand side plot shows the whole range of distances measured experimentally. Dashed line roughly indicate the border of the crater. The right hand side plot shows magnified center of the crater. The dashed line shows linear fit of the oxygen concentration in the center of the crater.

to the formation of non-protective whisker layer [44]. Yet, the value observed in this work (2.2±0.9 kJ/mol) is at least one order of magnitude lower, thus, unravelling exact mechanism of oxidation and significant lowering of activation energy requires further investigation.

From the practical perspective, laser treatment of the surface is most interesting in preventing formation and transmission of shear bands that are the main reason for worsening mechanical characteristics of bulk metallic glasses. Formation of nanocrystals is one of the methods to prevent transmission of shear band [26, 27, 44, 45, 51, 52]. Detection of the crystallines in this work is one of the aspects indicating potential for industrial applications. Additional measurement of microhardness of the sample in the laser-melt area gives a value of ≈6 GPa, which is around the hardness of the bare metallic glass. The relative inexpensiveness of the laser treatment procedure employed in this work and no special sample environment will allow us to hope that our results will particularly contribute to the wider adaptation of laser-based surface treatments.

4. Conclusion

We have investigated the surface of Zr\textsubscript{46}Cu\textsubscript{36.8}Ag\textsubscript{9.2}Al\textsubscript{8} bulk metallic glass modified by millisecond laser pulse. The surface of the sample analysed by means of optical and electron microscopy and X-ray diffraction combined with computer modeling. We have detected the uptake of nitrogen by the surface in the center of laser-formed crater and uptake of oxygen by the large area inside and outside the crater. Activation energy for nitrogen deposition suggest the formation of the zirconium nitride in the center of the crater. Chemical origin
of oxides remain unclear. Some of these crystals are most probably formations of ZrO$_2$ which fingerprints are probed by diffraction pattern.

Crystallization observed in the center of the crater pave ways for improvement of mechanical properties of this specific metallic glass by e.g. localization of transmitting shear bands in order to prevent premature mechanical damage. Taking into account economical aspects of millisecond laser maintenance and cost, we believe that this study presents some interest for industrial applications.

5. Acknowledgements

We are thankful to the Swedish National Infrastructure for Computing (SNIC) for providing access to computer resources at Chalmers Centre for Computational Science and Engineering (C3SE). We are also grateful to Vitaly A. Khonie (Voronezh State Pedagogical University, Russia) for differential scanning calorimetry measurements and analysis. The work was partially supported by the Russian Foundation for Basic Research, project number RFBR 15-42-03206.

6. Materials and Methods

6.1. Sample preparation and structure control

Composite alloy Zr$_{46}$Cu$_{36.8}$Ag$_{9.2}$Al$_8$ (99.995 %) was produced at the Institute of Solid State Physics Russian Academy of Sciences, Chernogolovka, Moscow District. Metals were melt by induction heating, then melt jet quenched in the copper bath with constant cooling rate 200 K/s controlled by digitalized thermocouples. Temperature distribution inside the bath was homogeneous. Produced bulk metallic glass melt ($2 \times 5 \times 60$ mm3) was quality-controlled by X-ray diffraction (wavelength 0.5668 Å) at the synchrotron radiation facility at Kurchatov Institute, Moscow. The raw sample piece was further cut by diamond blade to the smaller sample pieces ($2 \times 5 \times 3$ mm3) and further mechanically polished.

Structure of the cut sample before the laser irradiation was monitored by X-ray diffractometer Rigaku Ultima IV CuKa. X-ray reflectivity from the laser-affected area were performed by diffractometer Diffray 401 CrKa.

6.2. Differential scanning calorimetry

The glass transition temperature (T_g) and the temperature of crystallization (T_c) were defined by differential scanning calorimetry (DSC) measurements at Mettler-Toledo DSC1 instrument. Calorimetry scans were performed at constant heating rate of 20 K/min. Figure 6 shows DSC scans with subsequent analysis.
6.3. Laser irradiation

Surface of the sample was irradiated by single impulse of Nd:YAG laser operating at the wavelength $\lambda = 1064$ nm. Duration of the pulse was 3 ms and the total energy delivered to the sample was 3 ± 0.3 J. Radius of the laser spot on sample was 300 μm obtained after calibration and focusing of the laser.

6.4. Electron microscopy

Micrographs of the surface and radial distribution of chemical elements were collected by high-resolution field-emission electron microscope Zeiss Ultra-55 plus equipped with energy-dispersive X-ray (EDX) analysis unit.

6.5. Heat transfer simulations

The modeling was performed in COMSOL Multiphysics 5.2 simulation package. We used non-stationary thermal conductivity equation for heat transfer calculations:

$$C_p \frac{\partial T}{\partial t} - \lambda \Delta T + L \frac{\partial g}{\partial t} = \alpha AI_0 e^{\frac{x^2+y^2}{r^2}} - \alpha \phi(t)$$

where C_p is heat capacity, λ - thermal conductivity, L - enthalpy of fusion, g - proportion of hard phases, α - absorption coefficient, T - flow temperature, A - emissivity, x and y - coordinates on the surface of the sample such that the origin corresponds to the center of the laser spot, $\phi(t)$ - temporal profile of the laser beam intensity and τ - duration of the pulse. The heat source emulating laser pulse followed Beer–Lambert–Bouguer law. The model takes into account
Symbol	Name	Value	Reference
λ | Thermal conductivity | 5.3 W/(m·K) | [51]
ρ | Density | 7177 kg/m3 | [51]
C_p | Heat capacity | $C_p(T)$ J/(kg·K) | [51]
L | Enthalpy of fusion | 91 J/g | [51]
A | Emissivity | 0.13 1/T | [52]
T_g | Glass transition temperature | 715 K | This work (DSC)
T_c | Crystallization temperature | 757 K | This work (DSC)
T_S | Solidus temperature | 1091 K | [51]
T_L | Liquidus temperature | 1228 K | [51]
$T_{S\rightarrow L}$ | Solidus-liquidus range | 137 K | [51]

Table 1: Parameters of the sample.

Temperature dependence of the heat capacity. Latent heat of fusion was also included into calculations.

The sample was assumed to be infinite because of the small size of the heat-affected area compared to the sample dimensions. Gaussian distribution was assumed for the profile of energy in the laser spot. Parameters of the simulation are summarized in Table 1.

References

URL http://dx.doi.org/10.1080/09500830500080474

URL https://dx.doi.org/10.1080/0951192X.2012.749530

URL http://dx.doi.org/10.1002/adem.201200308
[13] E. Williams, E. Brousseau, Nanosecond laser processing of Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ with single pulses, Journal of Materials Processing Technology 232 (Supplement C) (2016) 34 – 42. doi:https://doi.org/10.1016/j.jmatprotec.2016.01.023

URL http://dx.doi.org/10.1038/nmat1536

URL http://dx.doi.org/10.1063/1.2884584

URL https://doi.org/10.1002/adma.201002148

URL http://dx.doi.org/10.1038/srep21929

[26] M. Zhang, D. Yao, Z. Cao, P. Li, P. Zhou, X. Wang, Influence of oxidation on the performance of Zr_{55}Cu_{30}Al_{10}Ni_{5} bmg, Intermetallics 79 (Supplement C) (2016) 20 – 27. doi:https://doi.org/10.1016/j.intermet.2016.08.007

