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Abstract: A number of experiments suggest that the elementary particles are non-local entities. A
dissipative self-organization, that treats particles as open systems may provide a better
understanding of the underlying phenomena than conservative models. The proposed toy model is
such an attempt.

We found that self-gravitation (although accompanied by self-diffusion) may not only be
compatible with the quantum phenomena but is perhaps the major reason for the existence of
quantum fields. According to the proposed model, fields/particles (resemble those of the Standard
Model) emerge from a dynamic self-organized medium (which we associate with vacuum dust)
from competition between self-gravitation and self-diffusion. These forces produce turbulence in
the form of vortices (which we call vacuum cells) that serve as the building blocks for fields and
particles. Field/particle features and symmetries are based on their internal (intracellular) dynamics
and vortex synchronization (intercellular dynamics).

This model allows for rough estimations of relative field coupling strengths, the quantity of charges
and flavors, the probabilities of quark transmutations, the dimensionality and the topologies of
phase spaces, and other Standard Model parameters that came not from the theory but rather
determined by experiment.

Keywords: particle physics; unification of forces; self-organization; coupling constants; quark
flavors; quark mixing amplitudes; quantum statistics; open systems; Feigenbaum universality;
synchronization

1. Introduction

Our model is built on the premise that the Universe is essentially a dynamic open system that is
far from thermodynamic equilibrium, and percolated by numerous energy flows. Our departure
point is the hypothetical vacuum dust, which plays the role of an active medium that gives birth to
fields/particles resembling those of the Standard Model (SM). Vacuum dust evolves under the
influence of two omnipresent competing forces: self-gravitation and self-diffusion. These forces
create antiparallel micro-flows. Under some conditions, these micro-flows lose tangential stability
and produce vortices (which we call vacuum cells), a phenomenon observed in numerous active
media and known as formation of Bénard cells [1].

A vacuum cell (vortex) is an open system, which exchanges dust particles with its neighbors and
unorganized vacuum. The latter two represent the external forces that tend to destroy cells.
Correspondingly, vacuum cell stability is the primary concern of this paper. Dynamically stable states
emerge when self-gravitation and self-diffusion balance each other. External forces may shift the
balance. However, after these perturbations subside, the vacuum cell asymptotically returns to its

original state. Hence, we call cellular stability asymptotic, and dynamic-equilibrium states attractors.
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Asymptotic stability liberates vacuum cells from the custody of fixed boundaries, conservation
principles, internal symmetries, and physical constants, which “protect” particles from disintegration
“by laws” in the conservative frameworks.

In the proposed dissipative framework, time is irreversible and cannot mix with “reversible”
space. They are separated from each other and represent a background without metrics. Local time
and space metrics are rather attributes that are carried by vacuum cells. Global and local symmetries
emerge when cells synchronize their dynamics. Relativistic time dilation emerges as an asymptotic
stability phenomenon.

The erratic character of infinitely many external perturbations acting on open cells implies that
a probabilistic framework is the only one possible. For the same reason, the model operates with
collective phenomenological parameters, such as generic charge y, strength of feedback loops expressed
as interchangeable parameters A and B, the Lyapunov exponent 1 as a measure of asymptotic
stability, energy &, chemical potential p, and others.

To describe cellular evolutions, we use discrete-time (stroboscopic) iterated maps rather than
differential equations. The approach allows us to account for complex phenomena like phase
transitions (abrupt changes of phase dimensionality and topology) with simple one-dimensional map
formalism. The downside of this simplification is our inability to describe the events between the
stroboscopic instants t,. However, this missing information is insignificant to the outcomes of the
model. It is sufficient to assume that cellular trajectories converging toward their attractors are

continuous and are sampled when they cross a selected Poincaré plane (Figure 1).

Attractor

Fixed Point p,

Figure 1. Discrete-time mapping of crossing points between cellular trajectories (black spirals) and
Poincaré plane (shown in blue). The asymptotic state (attractor) is indicated by the red closed curve.

2. Cellular Evolution

We define p as the probability that local vacuum dust at a given time t effectively converges.
Self-gravitation acts as a positive feedback: the bigger the p, the closer the dust particles come
together and the stronger their self-attraction. Under positive feedback, p increases with time (in
the simplest case) as p(t + At) « p(t)At. Correspondingly, self-diffusion acts as a negative
feedback: the closer the dust particles come together, the stronger their apparent repulsion. In the
simplest case p(t + At) « (1 — p(t))At.

We combine both actions in a single discrete-time one-dimensional iterated map

Pn+1 = Apn(1 — ), )
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where At = T = t, ;1 — t,; T is the cellular period; p,,; and p, are probabilities at time instants
tp+1 and t,, and A is the feedback amplification parameter. If 0 < A < 4, p, are non-negative and
smaller than 1.

The iterated map (1) describes vacuum dust evolution. It is known as a logistic map and is well
characterized [2-4]. It represents a wide class of iterated maps with unimodal iterated functions and,
like all of these maps, possess the Feigenbaum universality [4-7], which includes cascades of period-
doubling bifurcations and specific numerical relations to the fractal-type stability intervals (the
Feigenbaum numbers). One of these relations, the Feigenbaum delta, 6 = 4.669 ... , provides the
relative width of intervals between bifurcations, and plays an important role in our simulations.
The Feigenbaum universality downgrades the importance of the specific form of map (1) as any map
with a unimodal iteration function (having a single extremum) would provide identical or close to

identical results.

3. Generic Charges. Antimatter

We define a generic charge as
x=2p-—-1 (2

It inherits the probabilistic nature from probability p and occupies the domain |y| < 1.
Unlike probabilities, the generic charge can be positive, negative, or equal to zero, and represent
converging x > 0, diverging x < 0, or purely circular y = 0 cellular flows (Figure 2).

x>0 <0 yxy=0

Figure 2. Charge polarity assignment (the directions of radial flows are opposite to the directions of the

field lines adopted in electrodynamics).

For aesthetic reasons, we also substitute parameter A with parameter B:[B| <1

A
B=o-1 3)

With substitutions (2) and (3), the original map takes the form
Xn+1 = LOn, B), 4)
with iteration function
L(x,B) =B —(1+B)y~ (5)
Reversing all cellular radial microflows represents the operation of charge conjugation
(transition from matter to anti-matter). In the proposed model, it is irrelevant for time inversion,
which is a prohibited symmetry in dissipative systems (time inversion would convert asymptotic

stability into chaos). Rather, it permutes self-gravitation and self-diffusion. The charge-conjugated

map
—Xn+1 = L(=Xn B) = L(Yn, B) (6)

describes the evolution of anti-cells, which are also field/particle building blocks in the model.
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Map (6) is a mirror copy of the map (4), where all charges are replaced with their conjugated
copies. It has the same behavior as map (5), including stability, winding numbers, and positions of

superattractors and bifurcation points in B-space. The combined evolution map is
Xn+1 = 2L, B), )

where plus and minus signs refer to cells and anti-cells respectively.
4. Bifurcation Diagram. Cellular Phases. Circular Time Diagrams (CTD)

A bifurcation diagram is a multivalued function y.(B) that depicts fixed points y, in B-

space (Figure 3(a)).
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Figure 3. (a) Bifurcation diagram for cells (blue) and anti-cells (red); (b) Laypunov exponent A(B) and
normalized energy £(B)T.

The cellular portion is shown in blue, and the charge-conjugated (anti-cellular) portion is shown
in red. Each branch corresponds to one attractor loop. The number of branches reflect the attractor
winding numbers W (Figure 4). At bifurcations, the number of branches double. Correspondingly,

the number of attractor loops also doubles.
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Figure 4. Attractors possessing one (W = 1), two (W = 2) and four (W = 4)loops. P is the Poincaré plane.

The abrupt changes in attractor topologies at bifurcations are followed by significant changes in
cellular dynamics. This is reflected by dramatic changes of the iteration function, cellular phase space
dimensionality, size and topology, the number of charges, asymptotic stability, chemical potentials,
partition functions, restoring forces, etc. Therefore, we associate period-doubling bifurcations with
cellular phase transitions. In this paper, we designate different phases (intervals between the
bifurcations) by the letter j, j = 0,1,2,3 ... . Superattractors are other special points in the bifurcation
diagram. These are states of the highest asymptotic stability. Each phase has its own superattractor.
In the bifurcation diagram (Figure 3(a)), the superattractors are shown by small white circles. Due to
their superstability, superattractors are states in which the vast majority of the vacuum cells prefer to
dwell, the ground states.

Phase 0 (B < —0.5) is a special phase. Perhaps this phase is more relevant to cosmology. In
Phase 0, the amplification parameter is A <1, and it describes feedback-loop attenuation. Self-
gravitation and self-diffusion microflows penetrate each other with weak interactions and are
incapable of vortex (vacuum cell) formation.

The dust component, associated with matter, tends to disperse under prevailing self-diffusion.
It disperses with acceleration when dust evolves toward the superattractor, B = —1. Its evolution
supports the phenomenon of galaxies receding from each other, typically attributed to the positive
cosmological constant A or dark energy.

The dust component, associated with antimatter, under prevailing self-gravitation, evolves
toward bifurcation at B = —0.5. During its evolution it slows down the convergence rate, which
becomes infinitively slow at the point of bifurcation. Below, we will see that time dilation is universal
for vacuum cellular networks moving toward bifurcations. It is as universal as its relativistic
counterpart. However, instead of gravitational collapse or formation of black holes, at bifurcation
B = —0.5, the medium forms vacuum cells.

This happens when the amplification parameter A reaches a critical value A = 1. The iteration
feedback loops are amplified, and the medium becomes active. In active media, vortex formation is
ubiquitous. It is observed in the form of various turbulent flows, such as atmospheric tornados, solar
protuberances, or galaxy formations. Perhaps the most relevant to the proposed model are the
Bénard-cells [1], formed in thermodynamically nonequilibrium gases and liquids. Vacuum cells
(vortices) emerge when interactions between the competing antiparallel dust flows lose tangential
stability and tangential fluctuations are amplified until they form circular flows. The vortices are
dynamic (not thermodynamic) equilibrium states that possess asymptotic stability and evolve toward
their attractors. The convergence rate toward attractors (which is a measure of their asymptotic
stability) is different for each B, and maximal at the superattractor (B = 0).

In Phase 1, an attractor represents a single closed loop in phase space (winding number W, =
1, Figure 4) that implies U(1) symmetry. There are two branches in the bifurcation diagram, one for
cells (blue) and the other for anti-cells (red). They cross each other at the superattractor B = 0, where
generic charge vanishes y,, = 0 (small white circle in the bifurcation diagram, Figure 3(a)). The
superattractor collects the vast majority of cells, and on average, they are charge-neutral. We associate
Phase 1 cellular networks with the electromagnetic field.

The next bifurcation at B = 0.5 is a phase transition to Phase 2. Here, the cell dynamics become

more complex. Iterated maps (7) lose stability and oscillate between two different charge states
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depicted in the bifurcation diagram by two branches for cells and two branches for anti-cells. To
avoid ambiguity, iteration function (5) is replaced with two double-iterated iteration functions having

the same explicit form
£2(x,B) = L(L(x,B)) =B — (1 + B)(B — (1 + B)x?)?, (8)

but initiated at different starting points. The first iteration starts at any point x,; from the domain
|x| < 1. The second iteration does not have this freedom and starts at x,, = +L(¥,1, B). Iteration
functions (8) are second-degree polynomials in y? that live in a complex two-dimensional phase
space C2. The attractors acquire second loops (winding number W, = 2, Figure 4). As in Phase 1,
two branches (one cellular and one anti-cellular) cross each other at the superattractor (B =~ 0.618) at
a charge-neutral state (x., = 0, small white circle in Figure 3(a)), while the other two branches have
complimentary charges (small purple circles in Figure 3 top).

Two-loop attractors possess some spinorial features in the sense that they live in €*> phase space
and require two full rotations (720°) to return to their initial states. We call a vacuum cell spinorial if
its attractor has two or more loops (W = 2). Spinorial cells and anti-cells are particle building blocks.
We associate Phase 2 cellular networks with the weak nuclear field, which possess SU(2)
symmetry. The superattractor Phase 2 charged states are associated with electron charge (cell) and
positron charge (anti-cell).

Below we will discuss spinorial cell synchronization patterns with the help of circular time
diagrams (CTDs). CTDs represent the charge state a given vacuum cell (or anti-cell) belongs to. For

Phase 2 spinorial cells, CTDs are shown in Figure 5.

w=2

Cells = Anti-Cells

e oS

Figure 5. Phase 2 circular time diagrams (CTDs). Spinorial cells are marked by black rims (left) and anti-
cells marked by red rims (right). The neutral states are represented by white sectors and the charged states
by purple sectors. The diagrams rotate in time with cellular period 7. The current charge states are

represented by top sectors.

The next period-doubling bifurcation brings vacuum cells to Phase 3. The iterated map with
double-iterated iteration functions (8) lost stability and is replaced by four new iteration functions,

this time four-times iterated the original one

L3, B) = L (L (L(L()(,B))))

=B-(1+B)(B-(1+B)B-1+B)([B-1+B)xHH?»>

©)

The first iteration starts at any point o, from the domain |y| < 1. The starting points for the
other iterated functions are at yq, = iL(XO,k—er)/ k=234

L3s are eighth-degree polynomials in y? and live in eight-dimensional complex space C8. The
attractor winding number is W; = 4. Two out of eight branches on the bifurcation diagram (one
cellular and one anti-cellular) cross each other at the superattractor (B = 0.7493) at a charge-neutral
state (white circle). The other six (three cellular and three anti-cellular) are charged and depicted on

the bifurcation diagram by the red, green, and blue circles. We associate Phase 3 cellular networks
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with the strong nuclear field, which possess SU(3) symmetry and is mediated by eight gluons
carrying three color charges and three conjugated color charges.

CTDs for Phase 3 spinorial cells are shown in Figure 6.

w=4

Cells Anti-Cells
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Figure 6. Phase 3 circular time diagrams for spinorial cells. Cells are marked by black rims (left) and anti-
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cells are marked by red rims (right). Three color sectors represent charged states. The white sector state is
neutral. Diagrams rotate in time counterclockwise with the period equal to the total cellular period T. The

current charge state is represented by the top sectors.

The direction of cellular evolution (order of charged states) is fixed. It is the same for cells and

anti-cells, and cannot be reversed (due to time irreversibility):

..white - red — green — blue — white ... (10)

Correspondingly, diagrams rotate in time in one direction only (counterclockwise). This is
crucial for the following discussion of quark mixing amplitudes and CKM-matrix features.

The proposed model does not preclude the existence of cellular networks beyond Phase 3.
However, at this time we are not ware of any natural objects that can be associated with them. Thus,

they are beyond the scope of this paper.
5. Asymptotic Stability. A-wells. Universal Time Dilation

Asymptotic stability is a major characteristic of cellular dynamics. The Lyapunov exponent A is
a measure of asymptotic stability. We calculate the Lyapunov exponents using evolutionary
trajectories y,(B) that are converging toward their attractors y.(B) as
Xn+1(B) — xn(B) ) 1)
In(B) = xn-1(B)
A(B) isshaped as a set of wells filling B-space between bifurcations (Figure 3(b)). A-well widths

A(B) = lim <ln
n-oo

(phase space sizes) progressively decrease from phase to phase with the scaling factor quickly
converging toward the universal constant §p = 4.669 ... (the Feigenbaum delta).

At bifurcations, 4 = 0 and manifests conditional cellular stability. It is a state at the boundary
between two different phases. To persist at a bifurcation, a cell needs to be isolated from the rest of
the world, i.e. be conserved. Otherwise, any small perturbation will spontaneously break the state
symmetry and move the cell to one or the other phase, to the states of higher stability (where 4 is
negative). Which phase a cell selects to remain in, depends on the perturbation (a spontaneously
broken symmetry). All other states are asymptotically stable (4 < 0). Superattractors possess the
highest asymptotic stability (1 — —o0).

Phase 1, Phase 2, and Phase 3 A-wells have similar (but not identical) shapes. Their walls are
almost logarithmic. Phase 2 and Phase 3 A-wells can be approximately described as elevated

Phase 1 A-wells. All three wells can be described as

4;(AB) ~ In|28B| + (j — Dindy, 12)
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where j is the phase number, AB is the departure from superattractor Bjs, and
AB = B — Bjs. (13)

Parameter A is connected to the convergence time constant (a measure of cellular relaxation

speed), which in Phasej is

7;(B) = - (14)

4 (B)
where T is the cellular (vortex) rotation period. Time constant 7;(B) in T-units is shown in Figure
7.

(] i N o
QL QL QL \5)
%) %] %) %]
S S S ©
< < < S
AL A A A
I - - - ~—"—A
100 !
&~
<
~
=
s
2 10r1 7
o
O
Q
£
=
3
c 17 )
Q
o
Q
>
C
S
0.1
-1 -0.5 0 0.5 1

Parameter B

Figure 7. Reduced convergence time constant 7;(B)/T

For intracellular dynamics, period 7" is an internal unit of time. In synchronized cellular
networks, T is promoted to the universal time standard for the entire network. However, ' cannot
be measured by just any imaginable clock because every device consists of several vacuum cells that
cannot operate coherently until their intracellular relaxation is complete. The intracellular relaxation
time limits the rate of ideal clocks. Therefore, clocks operate faster at superattractors and slow down
near bifurcations. This time dilation applies to every device, field, and even elementary particles
because (according to the proposed model) all of them, including leptons and quarks (see below),
consists of at least two vacuum cells. This universality is in accordance with the universality of

relativistic time dilation.

6. Cellular Thermodynamics.

A-wells resemble potential wells of a bound system. We extend this similarity and define cellular

energy as
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A
2 15
€= (15)
In a system of units where T = 1, energy £(B) = A(B) (Figure 3(b)).
From (12) and (15), the energy in Phase j (j = 1,2,3) is described as
In|2AB| + (j — 1)Iné,
T
or
In|2AB)|
§OB) == + ;= E;(0B) + 4, (17)
where we define cellular chemical potential in Phase j as
j — 1)Iné
W = % (18)

A perturbation can kick a cell from one evolutionary trajectory to another, including trajectories
that belong to a different attractor basin. The higher the ambience temperature, the frequently the
trajectory switches occur. We define the system temperature € as reciprocal to the average time t,

a cell spends at a single evolutionary trajectory

6= (19)

Using definitions (15) — (19), we can estimate cellular distribution across energies.
Evolution at a new trajectory can start at any state (x,,B) and proceed toward its attractor with

time constant provided by equation (13). Using (17), the time constant is
7,(AB) = —(&,(AB) + ;). (20)
We define distance Ay,, from a fixed point ., after the n-th iteration as
Axn = |)n = Xool. 2D

During a cell’s evolution along a single trajectory, it exponentially decreases with time (iteration

steps) as shown in Figure 8 for three different B-values and different starting points yx,.
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Figure 8. Ay-evolution for different parameters B (different colors) and different starting points y, .

All trajectories belonging to the same parameter B but starting at different initial points are
covered by an envelope AX(B,t) (Figure 9), which shrinks exponentially with the same time

constant as the trajectories it embraces

AX(B, t) « exp (t(Sl(lABl) + uj)).
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W(B, 9) = m X exp <_T>

0 Time, t

Figure 9. Evolution of envelope AX(B,t) that enfolds x(t) trajectories belonging to the same

parameter B.

At temperature 6, the average evolutionary time is t = ty, and trajectories converging toward

attractor B are inside interval AXy(B)
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(23)

€.(AB) + y;
ne)

AXg(B) o exp <

Assuming uniform trajectory distribution inside the envelope AXg, the probability w to find a

cell inside a small fixed interval 2¢ is

w(B,0) «

€
A, (B) @4

Assuming that cells belong to a single phase, after substitution of (23) into (24), we obtain the

cellular partition function. In Phase j this probability is

1 E1(AB) + y;
w;(AB,6) = Wexp (— — ) (25)
where the normalization factor is
B .
R E,(AB) + u;
N;(0) = f exp (—% dAB . (26)
BjL

Integral (26) is taken across Phase j, from the left-sided bifurcation Bj;; through the right-sided
bifurcation Bjg. Partition functions (25) have the form of a Boltzmann distribution (although cells are
bound states thus energies are negative). To escape infinite values, we limit the relaxation time to
values 7 2 T'/3, that corresponds to 95%-convergence during one cellular period. Respectively, the
Lyapunov exponents are 1 £ —3 , and energies are € = —3/7.

We define the critical temperature of cell dissociation 6, as the temperature when cellular

evolution time at a single trajectory becomes as short as the cellular period

0, =71, 7)

A few examples of cellular distributions across energies for different temperatures in different
phases are shown in Figure 10. Departure from the critical temperature quickly narrows the partition
function, which starts to resemble Dirac’s delta-function.

Even at moderate temperatures, the vast majority of cells are located at the superattractors.
This is the reason why generic charges are quantized and their superattractor values become physical

constants.
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Figure 10. Cellular distributions at high temperatures

Most time cells spend at superattractors (ground sates). A cell briefly departed from a
superattractor state (Figure 11(b)) can be compared to a virtual particle briefly departed from a mass
shell (Figure 11(a)).

On-Shell On-Shell

Particle

(a)

At At
Superattractor Superattractor
Off-Super- \

Cell attractor

(b)
Figure 11. Feynman-like self-interaction diagrams for: (a) particle; (b) cell.
To extend this parallel, we introduce restoring forces acting on excited cells and pushing them

toward the superattractors. The strength of the restoring forces plays the role of the coupling

constants in the processes encoded in Figure 11(b). The restoring forces (in Phase j) are defined as

0&;
s = —— . 28
Fi JdAB (28)
By taking the derivative of (17), (28) can be written as
1
s = —— . 29
Fi TAB @9

The restoring forces are strongest at the superattractors and monotonically soften when a cell
departs from a superattractor, thus resembling asymptotic stability of color forces.

From (17) and (29), the dependence of restoring forces on energy or the Lyapunov exponent, in
Phasej is
265_1exp(—8j7‘) 261{_1exp(—/1j)

, (30)
T T

+

Fi=+

where the force is directed toward the corresponding superattractor (by the proper selection of its

"

sign “+” or “~*). According to (30), at a fixed energy, the restoring forces in different phases relate to

each other as
FriFy:Fy = 1:6p: 857 ~ 1:4.67:21.8, (31)
where 6 is the Feigenbaum delta.
For comparison, the relation among the SM field coupling constants at energy ~80GeV —90GeV
is
aa,a; = 1:432:15.1. (32)

The numbers on the right side of (32) are obtained using CODATA source [8]:
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a(my) =~ 1/128 = 0.00781; sin?6,,(my, /my;) = ai ~ 0.231; ay(my) ~ 0.1182; m; =~ 91.2 GeV /c?;
my, =~ 80.4 GeV /c?.
When temperature increases above the critical value 6., vacuum cells dissociate. On a back

process of condensation, the relative probability W, /W, of finding a cell in Phase k or Phasel is

determined by the

Wi = /’lk) -k
—_—= = 6
w, ~ P ( 0, B (33)

In a two-component system, the total probability obeys unitary condition
W+ W,=1. (34)

This allows us to represent the probabilities W, and W, as trigonometric functions of a single

parameter, which we call mixing angle y;;

Wy = sin®yy
. 35
{VVI = cos?yy 35)
Correspondingly,
tan?y,, = exp ('ul ; Mk) . (36)

[

Specifically, for the Phase 1/Phase 2 mixture, the mixing angle
Vo1 = atan(,/ W,/ Wl) = atan((SF_l/Z) ~ 24.8°, (37)

which is close to the Weinberg mixing angle 6, ~ 28.7° [9] that reflects the relative inputs of

electromagnetic and weak forces in the combined electro-weak interactions.

7. Intercellular Dynamics. Synchronization

Synchronization [10, 11] is a ubiquitous dissipative phenomenon observed in all types of active
systems: natural and artificial, organic and inorganic, in mechanical, chemical, and electronic
oscillators that are similar and dissimilar to one another, with different structures, organizations, and
waveforms, including chaotic waveforms. Vacuum cells are open systems that couple to their
neighbors via dust particle exchanges. As coupled self-sustained oscillators (rotators), they tend to
synchronize their dynamics. Before synchronization, their rotation periods are different.
Synchronization bring them to the same period 7', which becomes a time-scale standard for the entire
synchronized network.

Synchronization is a phase transition, which not only creates a unified time scale, but provides
temporal coherency to the medium (crucial for quantum theory). As a phase transition, synchronization
creates a new order parameter, the phase differences between vacuum cells Y% = ¢® — @#, which
plays the role similar to a vector potential in a gauge field. Synchronization is a nonlinear process,
which includes positive feedback loops and facilitates the transformation of cellular partition
function (25) into quantum distributions.

To illustrate synchronization between two vacuum cells (designated as a-cell and S-cell), we

use the Adler phase-difference equation [12], which we converted to a discrete-time iterated map:
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Yny1 = Pp — 8T + Ksinyy, , (38)

where 8w is the difference between cellular natural frequencies 8w = w, — wg; Wy = T, * and wp =
Tﬁ_l are natural frequencies that characterize cells before synchronization; ¥, = @5 — <pff is the
intercellular phase difference after the n-th iteration step and K is the coupling strength between
the cells. Because both cells converge to the same period, the iteration time interval can be associated
with any of the coupled cells, for example, a-cell. The corresponding cellular phase is set to ¢5; =
Phase-difference dynamics are illustrated in Figure 12. The phase entrainment indicates that 1,
converges toward a fixed point ¥, = . This occurs when [§wT’| < K. Within the phase-entrainment
interval, the correspondence between the old parameter §w and the new order parameter 1 is one-

to-one.
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Old (before synchronization) parameter, w7

Figure 12. Phase differences 1, after n iteration steps

Synchronization is a dissipative process that possess asymptotic stability. We calculate the

Lyapunov exponent A in a similar fashion to (11), where parameter B is replaced by parameter :

¢n+1 (Il)) - 1l)n(1l))
nCD) — Tmn (D) ) ©9)

We simulate functions A;(1) and &;(1) assuming that 1) coupling constants in different

A@) = lim (ln

phases K; are proportional to the intracellular restoring forces F; in the corresponding phases (see
(31)), and 2) intracellular coupling is strong in Phase 3 (K3 < 1). The simulation results for K; =

8r %, K,=6:",and K;=0.999 are shown in Figure 13.
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Figure 13. 1;(¥)-wells and normalized T&;(¥) potential wells for synchronized couples belonging to
different phases.

As in the intracellular case, the graphs are shaped as potential wells with their minima at the
superattractors. Here couples operate in unison (1 = 0). The well shapes are qualitatively different
between the weak intercellular coupling (Phase 1 and Phase 2) and the strong intercellular coupling
(Phase 3).In Phase 3, the well shape is similar to that of the intracellular dynamics previously shown
in Figure 3(b).

We compare the Phase 3 intercellular and intracellular barriers in Figure 14.

0
Esynch = 2Ece

5 2f |
=
20
[
£ Int llul
= Intracellular ntercellular
2 AL eT~mnip| ET ~ 2In|BH
£
o]
z

6 i

-1 0 1

Normalized Well Width,

Figure 14. Comparison of Phase 3 intracellular (blue) and intercellular (red) potential barriers. Simulated

points are shown by symbols. Logarithmic curves are shown by solid lines.

The intercellular (synchronization) potential barrier &gy,c,(f) is drawn in red and the

intracellular potential barrier £.,,;(8) is drawn in blue. Parameter f is the normalized departure

from a superattractor. It is defined as

B — Bss ,
2——— (intracellular)
ﬁ — B3R - BSL

=1 , (40)
(2 p (intercellular)
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where Bsg, B3y, and Bsp are positions of the Phase 3 superattractor, the left bifurcation, and the
right bifurcation, respectively. At superattractors, § = 0, and at bifurcations, f = +1. The well walls
are approximated by logarithmic curves (solid lines in Figure 14). According to these data, when
coupling between cells is strong, the coupling energy is comparable to the total internal energy of
both cells

Esyncn = 2&celr - (41)

We will use (41) for estimating of quark transmutation probabilities.

In Phasel and Phase 2, the well bottoms are parabolic (Figure 13 left and center), which

implies linearity of the restoring forces and synchronized network elasticity. We define intercellular

restoring forces #; similarly to their intracellular counterparts (28)
0&;

$; = —W. (42)

and calculated functions #;(1) (Figure 15).
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Figure 15. Restoring forces #;(1) in potential wells attributed to different phases imply cellular network
elasticity in Phase 1 and Phase 2 and asymptotic freedom in Phase 3.

In Phase 1 and Phase 2, near superattractors (1)~0), the restoring forces linearly increase with
departure from superattractors and saturate near the bifurcations ()~ +m/2). In these two intervals,

at fixed phase differences 1 = const, the restoring forces are related as follows

$1:F, = Ki: Ky = 1: 6 . (43)

In Phase 3 (strong coupling), the restoring force behaves quite differently. The interval of
linearity (if any) is very narrow (it disappears when the coupling parameter is exactly K; = 1). When
departing from the superattractor, #; almost immediately reaches its large and sharp maximum
then quickly decays, mimicking the phenomenon of color-force asymptotic freedom.

The intercellular dynamics discussed above are extendable to synchronized cellular networks,
where each cell is surrounded by several others. In this case, £ and # correspondingly become
tensors.

Synchronized cellular networks also possess quantum features. During synchronization, each
coupled cell forces its neighbors to operate at its pace. After iterative “negotiations”, the cells come
to a trade-off period. The restoring forces push cells to operate not only with the same period but also

at the same phase (in unison). If two or more cells from a cell neighborhood operate at the same
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phases, they multiply their efforts to force other cells to operate at the same phase. This nonlinearity
implies a positive feedback: the more cells in a network operate at a given phase, the higher the
probability to find another cell at the same phase. As a result, the random distribution across phases
spontaneously breaks and a discrete set of superattractors emerges at positions of seed states, as

schematically is shown in Figure 16.

Synchronization

Random
Distribution

Discrete
Distribution

time

Seed states
(spontaneously emergent superattractors)
are shown in red

Figure 16. Synchronization positive feedback transforms random cellular distribution into quantum

distribution.

Synchronization alters the Boltzmann-like partition function (25). Synchronization can occur
according to several scenarios. Below, we will consider two of them: a case of phase entrainment
(qualitatively described above) and a case of oscillation quenching [10, 13, 14]. Which scenario occurs
in a network depends on details that are beyond the scope of this paper. Below, we substitute phase
differences with energies.

Phase-entrainment scenario. Let us consider a group of cells, some of which have been

synchronized at states with energy £ (&-state). The reminders have similar but nonidentical
energies. The synchronized cells force the other cells to move to the E-state. Let us assign the initial
probability of finding a cell at the &-state to be w, and the resulting probability to be w,. In a simplest
case, the probability to get a new cell to the same state is proportional to the number of cells at this
state x,w,, where k, isthe proportionality coefficient. The total number of new cells is x,w,w, and

the total number of all cells at the &-state after the new cells have been added is
wy =w(l +r,wy). (44)

The "+ " signs in (44) indicate that synchronization occurs according to the phase-entrainment
scenario.

After solving equation (44) for w,,

1
W+ =7 ' (45)

——K
w +

and substituting (25) in (45), the altered partition function takes on the form of the Bose-Einstein

distribution
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-1

(. Co)~texp (—Sl ;Hj) ~1 (46)

Ky

W+J(S, 9) =

Oscillation (rotation) quenching scenario. According to this scenario, cellular interactions result
in the mutual annihilation of circular flows, resulting in the disappearance of coupled cells from the

network. This phenomenon is also known as amplitude death or oscillation cessation [10, 13, 14].
Here, the competition occurs between the network cells and their environment, which tends to
destroy the network. In this case, the positive feedback of synchronization means that the higher the
number of cells which are mutually annihilated, the weaker the network, and the higher the chance
that a different cell will also fails to withstand this environment.

To find the cellular distribution under the oscillation quenching scenario, we use equations

similar to (44) but with all the " +" signs replaced with " —" signs
wo=w(l-x_w.). 47)
After solving (47) for w_
1
R 9

and substituting (25) in (48), the altered partitions function takes on the form of the Fermi-Dirac
distribution

K__l

w_;(€,0) = : .
' (k_Cy)~texp (#) +1 (49)

According to the above scenarios, positive feedback stemming from synchronization converts
the original distribution of independent cells into quantum distributions. Unlike in the case of

quantum statistics, quantization from synchronization does not require cellular identity.

8. Synchronized Spinorial Cells as Particle Building Blocks

Spinorial cells (Phase 2 and Phase 3) occupy different charge states during each cellular period
(as illustrated by the attractor-loop diagram in Figure 17). The white loops represent quasi-neutral
states, the purple loop represents electrically charged states, and red, green, and blue loops represent
color-charged states. The charge states are ordered in time. Color-charge states always follow the

same sequence: ... = neutral —» red — green — blue — neutral —... in one direction.

Phase 1 Phase 2 Phase 3

W, =1 W, =2 W, =4

Figure 17. Attractor loop diagrams. Charge-color code is the same as in Figures 3, 5, and 6
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Below, we will neglect small cellular departures from superattractors, and describe connected
spinorial couples as in-phase synchronized and out-of-phase synchronized, only keeping in mind their

loops. Examples are shown in Figure 18.
w, =2 W, =4

In-Phase

Cell Cell Cell Anti-Cell

(@)

0L
synchronized % O_Q

Cell Cell Cell Anti-Cell

Out-of-Phase

Figure 18. Spinorial cells represented by circular time diagrams (CTD): (a) in-phase synchronized; (b) out-

of-phase synchronized.

We assume that out-of-phase synchronized spinorial couples are stable, while in-phase
synchronized couples are nonstable. Below is the explanation.

A quickly charge-flickering Phase 2 cell immersed into a Phase 1 (electromagnetic) network
creates strong dynamic perturbations in the network. Regular cells surrounding the spinorial cell
cannot follow these abrupt single-period charge changes. The situation is even more unstable, when
two in-phase synchronized spinorial cells are immersed in the network. However, if the Phase 2
couple synchronizes out-of-phase (e.g. when one cell is charged and the other is neutral or vice versa),
the amplitude of charge oscillation during a single period becomes much smaller. From the
perspective of the surrounding cells, it appears as though a fixed-value charge is moving back and
forth in space at very short distances. In comparison with perturbations imposed by a single spinorial
cell, this perturbation is mild and does not destroy the network. The network responds to these types
of perturbations by inducing currents which circulate around the couple and the corresponding
magnetic moments. The apparent charge “motion” is not bound by the speed of light. We associate
out-of-phase synchronized Phase 2 couples with first-generation leptons.

For a Phase 3 couple, the only way to achieve an apparently steady-state charge, is when the
couple consists of one cell and one anti-cell. In time averaging, such a couple is neutral. Now, the

only way to escape the couple’s self-annihilation is for the cell and anti-cell to be synchronized out-
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of-phase. We associate out-of-phase synchronized Phase 3 cell-anti-cell couples with quarks.
Quarks are electrically neutral and carry only color charges and flavors.

A benefit of this assignment is that we avoid the problem of fractional electric charges, which are
empirically unobservable.

Correspondingly, hadrons (which can carry electrical charges) should consist of both quarks
and leptons. In the proposed model, leptons carry electric charges. They also have up/down flavors.
Quarks carry (u/d c/s t/b) combined flavors (i.e. u-flavor and d-flavor are the same) and no
electric charges. Combined quark flavors are associated with different synchronization patterns of
their components. Flavor assignments for leptons and quarks are shown in Figure 19 with use of
CTIDs. Flavor x/y, corresponding to the in-phase synchronized quark, is unstable and only

accounted for as a virtual state.

@>) G @/d c/s x/y t/b)
up + up - u/d ¢/s
T T 88 80
down down t/b _
T @ VD

(a) (b)

Figure 19. Flavor assignments: (a) Leptons; (b) Quarks.

The SM quark flavors can be recovered as a direct (Cartesian) product of quark

+
(u/d c/s t/b)-flavors and lepton (up )-ﬂavors:
down

@22):detmwww. (50)

sM down

Synchronized couples are bound states. The links between the cells are characterized by
restoring forces #;(y) and energies &;(1), and play the role of field mediators: photons (Phase 1),
vector bosons (Phase 2), and gluons (Phase 3). In the former two cases, the links are elastic and the
corresponding networks support elastic waves at small excitations.

In-phase synchronized links resemble solid-state massless acoustic phonons, while out-of-phase
synchronized links resemble massive optical phonons. The Phase 1 network (electromagnetic) may
carry only acoustic (massless) mediators, while stable spinorial clusters (particles) may carry only
optical (massive) mediators.

Links between spinorial cells are inseparable from their host couples and are naturally localized

inside the spinorial clusters (particles).

9. Quark Flavor Changes

Quarks and gluons of the proposed model are quite dynamic. The gluon charge-states follow

the charge-states of their host cells. Here is an example of a charge cycle for one of the quark flavors:
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Cell: ... - neutral - red - green — blue = neutral - ---
Anti —cell: ... > red —» green - blue — neutral - red - -+

rewral) L (10 ) () = (e ) = () -

Gluon: ... » (

When a quark flavor changes, its synchronization pattern also changes. Figure 20 shows all of

the possibilities for one of the couple components changing its charge states while the other
component remains intact. The direction of rotation is fixed and the same for cells and anti-cells.
Each flavor-change step corresponds to CTD rotation across one-sector (90 degrees) on the cellular

side (black circle on the left) or on the anti-cellular side (red circle on the right).

Figure 20. Quark flavor changes represented as CTD rotations: (a) on cell side; (b) on anti-cell side. Each

flavor, with the exclusion of the unstable x/y, can be a starting point or an ending point.

Quark flavor changes can be associated with the following virtual process. A quark couple is
briefly elevated to the level of dissociation. When the cells return, they have different synchronization
patterns. The longer they stay at the elevated level, the bigger the changes in the synchronization
patterns.

The probability of staying at the dissociation level exponentially decays with time

w =~ exp(—E,AL), (51)

where €, is the activation energy, and At is the time spent at the elevated level. The activation
energy (Figure 21) is the total internal energy of the couple, and consists of two cellular energies
2&cen~2u3 and the synchronization energy, which according to (41), is equal to Esype ~2Ecen~2U3.

From (18), the chemical potential is p; = 27 ~*Indp, and the activation energy is
&, = 8T 1Iné,. (52)
Probability w and probability amplitude V are correspondingly
w ~ exp(—8T ~1Ating;) = 5787 At (53)
and

V=wl2= 5;47—1“ (54)
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Ea~4 13
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(a

Figure 21. (a) Cellular chemical potential; (b) Quark activation energy

Below we estimate the probabilities w and amplitudes V of quark transmutations. For
simplicity, we will only account for the shortest paths to get from one flavor to another, which
correspond to the highest probabilities and amplitudes, while preserving unidirectional CTD
rotations (due to time irreversibility). The shortest paths can be described as situations when one
quark component (cell or anti-cell) continues to rotate at its original pace (in synchrony with other
quarks and leptons in the cluster) while the other component is frozen. The temporal phase delay for
the frozen component is 8mAt/T. Each 2m-phase delay implies a leap to the neighboring attractor
loop (or one CTD sector rotation). Two examples are shown in Figure 22. The process resembles

quantum tunneling through temporal barriers rather than spatial barriers.

c/s g u/d u/d % g t/b

At = T/4 At = 3T /4
Wu/d,c/s 2 5F_2 Wt/b,u/d o~ 61"_2
Vu/d,c/s &~ ‘SF_1 Vt/b,u/d ~ 6F_1

(a) (b)

Figure 22. Examples of quark flavor change as temporal barrier tunneling: (a) through 1/4 period barrier
(from u/d to c/s); (b) through 3/4 period barrier (from t/b to u/d).
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Figure 23. All possible quark flavor changes. Starting flavors are at the top of each diagram. The probability
amplitudes V are outlined by rectangles at the corresponding ending flavors. CTD rotations: (a) and (c)

on anti-cell side; (b) and (d) on cell side.

Quark flavor rotations for all starting and ending flavors are shown in Figure 23. Starting flavors
are at the top of each diagram. Anti-cell CTD rotation diagrams are on the left, while cell CTD rotation
diagrams are on the right. Diagram in Figure 23(c) corresponds to an unstable starting flavor. The
probability amplitudes calculated using (54) are outlined by rectangles at the corresponding ending
flavors.

Quark flavor changes from Figure 23 are shown as a 4 X 4 matrix in Figure 24(a).

Unitarity Conditions CKM-Matrix

u/d | c/s | x t/b Vi =XVi=1
/ ) /y / i i Z} y Down-Type Quarks

wid | 1 |67t 6572 8,73 wid | o= || &b d | s | b

u/d 10.977 |0.214 || 0.010

c/s |87 1 |63 | 6572 u  10.974|0.225 | 0.004

R}
5
xfy | 6,2 | 6,73 1 |2 | €/ 0214|0976 [10.046( S| . |45550.973|0.081
o
=
t/b | 6:73 | 672 O 1 t/b 10.010|0.046 [|0.999| S| t |0.009|0.0400.999
(a) (b) (c)

Figure 24. Quark flavor change probability amplitudes in matrix representations: (a) original 4 X 4
matrix; (b) 3 X 3 matrix without the unstable x/y flavors; (c) Cabibbo-Kobayashi-Maskawa matrix. In

(b) and (c), numbers are rounded.
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Row and column designations represent starting/ending flavors. Probability amplitudes are
shown as matrix elements at cross-sections of the corresponding rows and columns. The matrix has
appearance of the Klein four-group V, Cayley table. After removing the third row and third column
(shown in pink in Figure 24(a)), which correspond to the unstable starting/ending flavor x/y, and
reducing the main diagonal elements to satisfy row/column unitarity, we obtain a 3 X 3 matrix
shown in Figure 24(b). For comparison, the Cabibbo-Kobayashi-Maskawa (CKM) matrix [15] with

empirically obtained quark mixing amplitudes is shown in Figure 24 (c).

10. Particles

Despite having only two cells and two anti-cells in our particle building kit, their rich dynamics
and diversity of synchronization patterns allows us to synthesize the entire family of “elementary”
particles, which resemble those described by the Standard Model. A few examples are shown in
Figures 25-27. The particles are represented by CTDs. Synchronization patterns are different for
different particles. All links represent out-of-phase synchronizations.

Leptons are built from Phase 2 cells/anti-cells (Figure 25). First-generation leptons possess two
cells (electron), two anti-cells (positron), or combination cell and anti-cell (neutrino) Figure 25(a).
Second-generation leptons (Figure 25(b)) also have one neutral couple (cell and anti-cell), and third-
generation leptons (Figure 25(c)), have two neutral couples. Adding neutral couples does not affect

the electric charge pattern, but does increase the particle internal energies (masses).

Figure 25. Lepton family: (a) first generation; (b) second generation; (c) third generation

Mesons are synthesized by replacing one neutral Phase 2 couple with one neutral Phase 3
couple (quark) in second-generation leptons. A meson octet resembling the Eightfold Way group of
real (SM) mesons [9] is shown in Figure 26. Due to the significantly richer dynamics of Phase 3 cells,

this replacement essentially increases the number of different particles.
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Figure 26. “Eightfold Way” meson octet

Baryons are synthesized by replacing two neutral Phase 2 couples with two quarks in third-
generation leptons. The number of particles again increases. A baryon octet resembling the Eightfold

Way group of real baryons [9] is shown in Figure 27.
Quark flavors
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Figure 27. “Eightfold Way” baryon octet
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CTDs may also illustrate nuclear reactions, as the example shown in Figure 29.

G- &

Figure 29. Reaction n —» p + e~ + ¥, represented by cellular circular time diagrams. The anti-neutrino in

the right portion of the equation is replaced by the neutrino in the left portion.

When a number of vacuum cells synchronize, they form a coherent network. Phase differences
Y, restoring forces # and energies £ become tensors parameterized by their links. An example of a
cell surrounded by six other cells of a different nature and with different synchronization patterns is

shown in Figure 30(a). The same cellular cluster half-period later is shown in Figure 30(b).

Orientationu = 1,2,..N
Phase j=1,2,3
Cell/Anti-Cell ¢ = 0,1
Timet, =n7/4; n=0,1,2,..
Loop (charge type) I, = 0,1,2,3; [ < 2/71 -1

u:05
j:31 u:02
w0401 ji31
f ¢:00
: :10
111 103
J::33
c:01
@0 l:10
j:3 u: 06
c:00 J:33
1:10 c:00
1:14

(a) (b)

Figure 30. (a) Link parametrization for a cellular cluster comprising a Phase 3 cell (diagram centers)
surrounded by six other cells of a different nature and with different synchronization patterns; (b) the same

cluster half-period later.

The six links are parameterized by their directions (u = 01,02, 03, ...06), cell types (c = 0 for
cells, ¢ =1 for anti-cells), Phasesj (j=1,2,3), and attractor loop numbers (1=0,1,2,3).
Parameters p,c,j, and [ are different for different depending on the types of the adjacent cells and
their synchronization patterns. For links comprising at least one Phase 2 cell but no Phase 3 cells,
parameter [ changes each half-period. For links comprising at least one Phase 3 cell, parameter [
changes each quarter-period.

From a bird’s eye view, vacuum cellular networks look like continuous media. The natural way
to describe their dynamics would be to use fiber bundle construction on space-time manifold where
the orientation u is replaced by spatial and temporal coordinates, and the intracellular and

intercellular dynamics are elevated to the fiber spaces.
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11. Conclusion

We have described a potential scenario for the emergence of coherent, dynamically rich cellular
networks in a gravitation-diffusion driven vacuum. The network patterns belonging to different
phases emulate electromagnetic, weak, and strong nuclear fields, while spinorial cell inclusions in
the electromagnetic network imitate leptons and quarks.

The proposed model provides an explanation for the origin of various quantum phenomena that
have not been solved by current theory. This model is causal, strictly obeying time irreversibility. It
describes global symmetries (like universal time scale, “relativistic” time dilation, spatial quantum
coherency, quantum statistics) as phenomena that emerge with and are inseparable from cellular
vacuum networks as their carriers.

The model also allows for rough estimations of relative field strengths, quark transmutation
amplitudes, the quantity of field charges, and quark flavors in fair agreement with experimental data.

The proposed model belongs to the Feigenbaum universality and is based on the ubiquitous
phenomenon of synchronization. Therefore, the main results and numerical estimations are
generalizable and not sensitive to the details of the model such as the selection of an explicit form of

an iteration function.
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