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Abstract: A number of experiments suggest that the elementary particles are non-local entities. A 
dissipative self-organization, that treats particles as open systems may provide a better 
understanding of the underlying phenomena than conservative models. The proposed toy model is 
such an attempt. 

We found that self-gravitation (although accompanied by self-diffusion) may not only be 
compatible with the quantum phenomena but is perhaps the major reason for the existence of 
quantum fields. According to the proposed model, fields/particles (resemble those of the Standard 
Model) emerge from a dynamic self-organized medium (which we associate with vacuum dust) 
from competition between self-gravitation and self-diffusion. These forces produce turbulence in 
the form of vortices (which we call vacuum cells) that serve as the building blocks for fields and 
particles. Field/particle features and symmetries are based on their internal (intracellular) dynamics 
and vortex synchronization (intercellular dynamics).  

This model allows for rough estimations of relative field coupling strengths, the quantity of charges 
and flavors, the probabilities of quark transmutations, the dimensionality and the topologies of 
phase spaces, and other Standard Model parameters that came not from the theory but rather 
determined by experiment.  

Keywords: particle physics; unification of forces; self-organization; coupling constants; quark 
flavors; quark mixing amplitudes; quantum statistics; open systems; Feigenbaum universality; 
synchronization 

 

1. Introduction 

Our model is built on the premise that the Universe is essentially a dynamic open system that is 
far from thermodynamic equilibrium, and percolated by numerous energy flows. Our departure 
point is the hypothetical vacuum dust, which plays the role of an active medium that gives birth to 
fields/particles resembling those of the Standard Model (SM). Vacuum dust evolves under the 
influence of two omnipresent competing forces: self-gravitation and self-diffusion. These forces 
create antiparallel micro-flows. Under some conditions, these micro-flows lose tangential stability 
and produce vortices (which we call vacuum cells), a phenomenon observed in numerous active 
media and known as formation of Bénard cells [1].  

A vacuum cell (vortex) is an open system, which exchanges dust particles with its neighbors and 
unorganized vacuum. The latter two represent the external forces that tend to destroy cells. 
Correspondingly, vacuum cell stability is the primary concern of this paper. Dynamically stable states 
emerge when self-gravitation and self-diffusion balance each other. External forces may shift the 
balance. However, after these perturbations subside, the vacuum cell asymptotically returns to its 
original state. Hence, we call cellular stability asymptotic, and dynamic-equilibrium states attractors. 
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Asymptotic stability liberates vacuum cells from the custody of fixed boundaries, conservation 
principles, internal symmetries, and physical constants, which “protect” particles from disintegration 
“by laws” in the conservative frameworks.  

In the proposed dissipative framework, time is irreversible and cannot mix with “reversible” 
space. They are separated from each other and represent a background without metrics. Local time 
and space metrics are rather attributes that are carried by vacuum cells. Global and local symmetries 
emerge when cells synchronize their dynamics. Relativistic time dilation emerges as an asymptotic 
stability phenomenon.  

The erratic character of infinitely many external perturbations acting on open cells implies that 
a probabilistic framework is the only one possible.  For the same reason, the model operates with 
collective phenomenological parameters, such as generic charge 𝜒, strength of feedback loops expressed 
as interchangeable parameters 𝐴  and 𝐵 , the Lyapunov exponent 𝜆  as a measure of asymptotic 
stability, energy ℰ, chemical potential 𝜇, and others. 

To describe cellular evolutions, we use discrete-time (stroboscopic) iterated maps rather than 
differential equations. The approach allows us to account for complex phenomena like phase 
transitions (abrupt changes of phase dimensionality and topology) with simple one-dimensional map 
formalism.  The downside of this simplification is our inability to describe the events between the 
stroboscopic instants 𝑡௡. However, this missing information is insignificant to the outcomes of the 
model. It is sufficient to assume that cellular trajectories converging toward their attractors are 
continuous and are sampled when they cross a selected Poincaré plane (Figure 1).  

 
Figure 1. Discrete-time mapping of crossing points between cellular trajectories (black spirals) and 
Poincaré plane (shown in blue). The asymptotic state (attractor) is indicated by the red closed curve.   

 2. Cellular Evolution  

We define 𝑝 as the probability that local vacuum dust at a given time 𝑡 effectively converges.  
Self-gravitation acts as a positive feedback: the bigger the 𝑝, the closer the dust particles come 
together and the stronger their self-attraction.  Under positive feedback, 𝑝 increases with time (in 
the simplest case) as 𝑝(𝑡 + ∆𝑡) ∝ 𝑝(𝑡)∆𝑡.   Correspondingly, self-diffusion acts as a negative 
feedback: the closer the dust particles come together, the stronger their apparent repulsion. In the 
simplest case 𝑝(𝑡 + ∆𝑡) ∝ ൫1 − 𝑝(𝑡)൯∆𝑡. 

We combine both actions in a single discrete-time one-dimensional iterated map 

𝑝௡ାଵ = 𝐴𝑝௡(1 − 𝑝௡), (1)
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where ∆𝑡 =  𝒯 = 𝑡௡ାଵ − 𝑡௡; 𝒯 is the cellular period; 𝑝௡ାଵ and 𝑝௡ are probabilities at time instants 
𝑡௡ାଵ and 𝑡௡, and 𝐴 is the feedback amplification parameter. If 0 ≤ 𝐴 ≤ 4,  𝑝௡ are non-negative and 
smaller than 1.  

The iterated map (1) describes vacuum dust evolution. It is known as a logistic map and is well 
characterized [2-4]. It represents a wide class of iterated maps with unimodal iterated functions and, 
like all of these maps, possess the Feigenbaum universality [4-7], which includes cascades of period-
doubling bifurcations and specific numerical relations to the fractal-type stability intervals (the 
Feigenbaum numbers).  One of these relations, the Feigenbaum delta, 𝛿ி = 4.669 … , provides the 
relative width of intervals between bifurcations, and plays an important role in our simulations.  
The Feigenbaum universality downgrades the importance of the specific form of map (1) as any map 
with a unimodal iteration function (having a single extremum) would provide identical or close to 
identical results.  

3. Generic Charges. Antimatter  

We define a generic charge as 

𝜒 = 2𝑝 − 1. (2)

It inherits the probabilistic nature from probability 𝑝 and occupies the domain |𝜒| ≤ 1.  
Unlike probabilities, the generic charge can be positive, negative, or equal to zero, and represent 

converging 𝜒 > 0, diverging  𝜒 < 0, or purely circular 𝜒 = 0 cellular flows (Figure 2).   

 
Figure 2. Charge polarity assignment (the directions of radial flows are opposite to the directions of the 

field lines adopted in electrodynamics). 

 

For aesthetic reasons, we also substitute parameter 𝐴 with parameter 𝐵: |𝐵| ≤ 1 

𝐵 =
𝐴

2
− 1. (3)

With substitutions (2) and (3), the original map takes the form 

𝜒௡ାଵ = ℒ(𝜒௡, 𝐵), (4)

with iteration function 

ℒ(𝜒, 𝐵) = 𝐵 − (1 + 𝐵)𝜒ଶ. (5)

Reversing all cellular radial microflows represents the operation of charge conjugation 
(transition from matter to anti-matter). In the proposed model, it is irrelevant for time inversion, 
which is a prohibited symmetry in dissipative systems (time inversion would convert asymptotic 
stability into chaos). Rather, it permutes self-gravitation and self-diffusion. The charge-conjugated 
map  

−𝜒௡ାଵ = ℒ(−𝜒௡, 𝐵) = ℒ(𝜒௡, 𝐵) (6)

describes the evolution of anti-cells, which are also field/particle building blocks in the model.  
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Map (6) is a mirror copy of the map (4), where all charges are replaced with their conjugated 
copies.  It has the same behavior as map (5), including stability, winding numbers, and positions of 
superattractors and bifurcation points in 𝐵-space. The combined evolution map is 

𝜒௡ାଵ = ±ℒ(𝜒௡, 𝐵), (7)

where plus and minus signs refer to cells and anti-cells respectively.   

4. Bifurcation Diagram. Cellular Phases. Circular Time Diagrams (CTD) 

A bifurcation diagram is a multivalued function 𝜒ஶ(𝐵) that depicts fixed points 𝜒ஶ  in 𝐵 -
space (Figure 3(a)).  

 
Figure 3. (a) Bifurcation diagram for cells (blue) and anti-cells (red); (b) Laypunov exponent 𝜆(𝐵) and 

normalized energy ℰ(𝐵)𝒯. 

 

The cellular portion is shown in blue, and the charge-conjugated (anti-cellular) portion is shown 
in red. Each branch corresponds to one attractor loop. The number of branches reflect the attractor 
winding numbers 𝒲 (Figure 4). At bifurcations, the number of branches double. Correspondingly, 
the number of attractor loops also doubles.   
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Figure 4. Attractors possessing one (𝒲 = 1), two (𝒲 = 2) and four (𝒲 = 4) loops. 𝑃 is the Poincaré plane. 

 
The abrupt changes in attractor topologies at bifurcations are followed by significant changes in 

cellular dynamics. This is reflected by dramatic changes of the iteration function, cellular phase space 
dimensionality, size and topology, the number of charges, asymptotic stability, chemical potentials, 
partition functions, restoring forces, etc. Therefore, we associate period-doubling bifurcations with 
cellular phase transitions. In this paper, we designate different phases (intervals between the 
bifurcations) by the letter 𝑗, 𝑗 = 0,1,2,3 … . Superattractors are other special points in the bifurcation 
diagram. These are states of the highest asymptotic stability. Each phase has its own superattractor. 
In the bifurcation diagram (Figure 3(a)), the superattractors are shown by small white circles. Due to 
their superstability, superattractors are states in which the vast majority of the vacuum cells prefer to 
dwell, the ground states.   

𝑃ℎ𝑎𝑠𝑒 0 (𝐵 < −0.5) is a special phase. Perhaps this phase is more relevant to cosmology. In 
𝑃ℎ𝑎𝑠𝑒 0 , the amplification parameter is 𝐴 < 1 , and it describes feedback-loop attenuation. Self-
gravitation and self-diffusion microflows penetrate each other with weak interactions and are 
incapable of vortex (vacuum cell) formation.  

The dust component, associated with matter, tends to disperse under prevailing self-diffusion.  
It disperses with acceleration when dust evolves toward the superattractor, 𝐵 = −1.  Its evolution 
supports the phenomenon of galaxies receding from each other, typically attributed to the positive 
cosmological constant Λ or dark energy. 

The dust component, associated with antimatter, under prevailing self-gravitation, evolves 
toward bifurcation at 𝐵 = −0.5. During its evolution it slows down the convergence rate, which 
becomes infinitively slow at the point of bifurcation. Below, we will see that time dilation is universal 
for vacuum cellular networks moving toward bifurcations. It is as universal as its relativistic 
counterpart. However, instead of gravitational collapse or formation of black holes, at bifurcation 
𝐵 = −0.5, the medium forms vacuum cells.  

This happens when the amplification parameter 𝐴 reaches a critical value 𝐴 = 1. The iteration 
feedback loops are amplified, and the medium becomes active. In active media, vortex formation is 
ubiquitous. It is observed in the form of various turbulent flows, such as atmospheric tornados, solar 
protuberances, or galaxy formations. Perhaps the most relevant to the proposed model are the 
Bénard-cells [1], formed in thermodynamically nonequilibrium gases and liquids. Vacuum cells 
(vortices) emerge when interactions between the competing antiparallel dust flows lose tangential 
stability and tangential fluctuations are amplified until they form circular flows. The vortices are 
dynamic (not thermodynamic) equilibrium states that possess asymptotic stability and evolve toward 
their attractors. The convergence rate toward attractors (which is a measure of their asymptotic 
stability) is different for each 𝐵, and maximal at the superattractor (𝐵 = 0).   

In 𝑃ℎ𝑎𝑠𝑒 1, an attractor represents a single closed loop in phase space (winding number 𝒲ଵ =

1, Figure 4) that implies 𝑈(1) symmetry. There are two branches in the bifurcation diagram, one for 
cells (blue) and the other for anti-cells (red). They cross each other at the superattractor 𝐵 = 0, where 
generic charge vanishes 𝜒ஶ = 0 (small white circle in the bifurcation diagram, Figure 3(a)). The 
superattractor collects the vast majority of cells, and on average, they are charge-neutral. We associate 
𝑃ℎ𝑎𝑠𝑒 1 cellular networks with the electromagnetic field. 

The next bifurcation at 𝐵 = 0.5 is a phase transition to 𝑃ℎ𝑎𝑠𝑒 2. Here, the cell dynamics become 
more complex. Iterated maps (7) lose stability and oscillate between two different charge states 
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depicted in the bifurcation diagram by two branches for cells and two branches for anti-cells. To 
avoid ambiguity, iteration function (5) is replaced with two double-iterated iteration functions having 
the same explicit form 

ℒ2(𝜒, 𝐵) = ℒ൫ℒ(𝜒, 𝐵)൯ = 𝐵 − (1 + 𝐵)(𝐵 − (1 + 𝐵)𝜒ଶ)ଶ, (8)

but initiated at different starting points. The first iteration starts at any point 𝜒଴,ଵ from the domain 
|𝜒| < 1. The second iteration does not have this freedom and starts at 𝜒଴,ଶ = ±ℒ(𝜒଴ଵ, 𝐵). Iteration 
functions (8) are second-degree polynomials in 𝜒ଶ that live in a complex two-dimensional phase 
space ℂଶ. The attractors acquire second loops (winding number 𝒲ଶ = 2, Figure 4). As in 𝑃ℎ𝑎𝑠𝑒 1, 
two branches (one cellular and one anti-cellular) cross each other at the superattractor (𝐵 ≈ 0.618) at 
a charge-neutral state (𝜒ஶ = 0, small white circle in Figure 3(a)), while the other two branches have 
complimentary charges (small purple circles in Figure 3 top).  

Two-loop attractors possess some spinorial features in the sense that they live in ℂଶ phase space 
and require two full rotations (720°) to return to their initial states. We call a vacuum cell spinorial if 
its attractor has two or more loops (𝒲 ≥ 2). Spinorial cells and anti-cells are particle building blocks. 
We associate 𝑃ℎ𝑎𝑠𝑒 2  cellular networks with the weak nuclear field, which possess 𝑆𝑈(2) 
symmetry. The superattractor 𝑃ℎ𝑎𝑠𝑒 2 charged states are associated with electron charge (cell) and 
positron charge (anti-cell). 

Below we will discuss spinorial cell synchronization patterns with the help of circular time 
diagrams (CTDs). CTDs represent the charge state a given vacuum cell (or anti-cell) belongs to. For 
𝑃ℎ𝑎𝑠𝑒 2 spinorial cells, CTDs are shown in Figure 5.  

 

Figure 5. 𝑃ℎ𝑎𝑠𝑒 2 circular time diagrams (CTDs). Spinorial cells are marked by black rims (left) and anti-

cells marked by red rims (right). The neutral states are represented by white sectors and the charged states 

by purple sectors. The diagrams rotate in time with cellular period 𝒯 . The current charge states are 

represented by top sectors. 

 

The next period-doubling bifurcation brings vacuum cells to 𝑃ℎ𝑎𝑠𝑒 3.  The iterated map with 
double-iterated iteration functions (8) lost stability and is replaced by four new iteration functions, 
this time four-times iterated the original one  

ℒ3(𝜒, 𝐵) = ℒ ൬ℒ ቀℒ൫ℒ(𝜒, 𝐵)൯ቁ൰ 

= 𝐵 − (1 + 𝐵)(𝐵 − (1 + 𝐵)(𝐵 − (1 + 𝐵)(𝐵 − (1 + 𝐵)𝜒ଶ)ଶ)ଶ)ଶ. 
(9)

The first iteration starts at any point 𝜒଴,ଵ from the domain |𝜒| < 1. The starting points for the 
other iterated functions are at 𝜒଴,௞ = ±ℒ൫𝜒଴,௞ିଵ, 𝐵൯, 𝑘 = 2, 3, 4.   

ℒ3s are eighth-degree polynomials in 𝜒ଶ and live in eight-dimensional complex space ℂ଼. The 
attractor winding number is 𝒲ଷ = 4. Two out of eight branches on the bifurcation diagram (one 
cellular and one anti-cellular) cross each other at the superattractor (𝐵 ≈ 0.7493) at a charge-neutral 
state (white circle). The other six (three cellular and three anti-cellular) are charged and depicted on 
the bifurcation diagram by the red, green, and blue circles. We associate 𝑃ℎ𝑎𝑠𝑒 3 cellular networks 
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with the strong nuclear field, which possess 𝑆𝑈(3)  symmetry and is mediated by eight gluons 
carrying three color charges and three conjugated color charges.  

CTDs for 𝑃ℎ𝑎𝑠𝑒 3 spinorial cells are shown in Figure 6. 

 

Figure 6. 𝑃ℎ𝑎𝑠𝑒 3 circular time diagrams for spinorial cells. Cells are marked by black rims (left) and anti-

cells are marked by red rims (right). Three color sectors represent charged states. The white sector state is 

neutral. Diagrams rotate in time counterclockwise with the period equal to the total cellular period 𝒯. The 

current charge state is represented by the top sectors. 

 

The direction of cellular evolution (order of charged states) is fixed. It is the same for cells and 
anti-cells, and cannot be reversed (due to time irreversibility): 

… 𝑤ℎ𝑖𝑡𝑒 → 𝑟𝑒𝑑 → 𝑔𝑟𝑒𝑒𝑛 → 𝑏𝑙𝑢𝑒 → 𝑤ℎ𝑖𝑡𝑒 … (10)

Correspondingly, diagrams rotate in time in one direction only (counterclockwise). This is 
crucial for the following discussion of quark mixing amplitudes and CKM-matrix features.  

The proposed model does not preclude the existence of cellular networks beyond 𝑃ℎ𝑎𝑠𝑒 3. 
However, at this time we are not ware of any natural objects that can be associated with them. Thus, 
they are beyond the scope of this paper. 

5. Asymptotic Stability. 𝝀-wells. Universal Time Dilation 

Asymptotic stability is a major characteristic of cellular dynamics. The Lyapunov exponent 𝜆 is 
a measure of asymptotic stability. We calculate the Lyapunov exponents using evolutionary 
trajectories 𝜒௡(𝐵) that are converging toward their attractors 𝜒ஶ(𝐵) as 

𝜆(𝐵) = lim
௡→ஶ

ቆ𝑙𝑛 ቤ
𝜒௡ାଵ(𝐵) − 𝜒௡(𝐵)

𝜒௡(𝐵) − 𝜒௡ିଵ(𝐵)
 ቤ ቇ . (11)

𝜆(𝐵) is shaped as a set of wells filling 𝐵-space between bifurcations (Figure 3(b)). 𝜆-well widths 
(phase space sizes) progressively decrease from phase to phase with the scaling factor quickly 
converging toward the universal constant 𝛿ி = 4.669 … (the Feigenbaum delta). 

At bifurcations, 𝜆 = 0 and manifests conditional cellular stability. It is a state at the boundary 
between two different phases. To persist at a bifurcation, a cell needs to be isolated from the rest of 
the world, i.e. be conserved. Otherwise, any small perturbation will spontaneously break the state 
symmetry and move the cell to one or the other phase, to the states of higher stability (where 𝜆 is 
negative). Which phase a cell selects to remain in, depends on the perturbation (a spontaneously 
broken symmetry). All other states are asymptotically stable (𝜆 < 0). Superattractors possess the 
highest asymptotic stability (𝜆 → −∞).  

𝑃ℎ𝑎𝑠𝑒 1, 𝑃ℎ𝑎𝑠𝑒 2, and 𝑃ℎ𝑎𝑠𝑒 3 𝜆-wells have similar (but not identical) shapes. Their walls are 
almost logarithmic. 𝑃ℎ𝑎𝑠𝑒 2  and 𝑃ℎ𝑎𝑠𝑒 3  𝜆 -wells can be approximately described as elevated 
𝑃ℎ𝑎𝑠𝑒 1 𝜆-wells.  All three wells can be described as 

𝜆௝(∆𝐵) ≈ 𝑙𝑛|2∆𝐵| + (𝑗 − 1)𝑙𝑛𝛿ி , (12)
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where 𝑗 is the phase number, ∆𝐵 is the departure from superattractor 𝐵௝ௌ , and 

∆𝐵 = 𝐵 − 𝐵௝ௌ. (13)

Parameter 𝜆 is connected to the convergence time constant (a measure of cellular relaxation 
speed), which in 𝑃ℎ𝑎𝑠𝑒 𝑗 is  

𝜏௝(𝐵) = −
𝒯

𝜆௝(𝐵)
. (14)

where 𝒯 is the cellular (vortex) rotation period. Time constant 𝜏௝(𝐵) in 𝒯-units is shown in Figure 
7.  
 

 
Figure 7. Reduced convergence time constant 𝜏௝(𝐵) 𝒯⁄  

 
For intracellular dynamics, period 𝒯  is an internal unit of time. In synchronized cellular 

networks, 𝒯 is promoted to the universal time standard for the entire network. However, 𝒯 cannot 
be measured by just any imaginable clock because every device consists of several vacuum cells that 
cannot operate coherently until their intracellular relaxation is complete. The intracellular relaxation 
time limits the rate of ideal clocks. Therefore, clocks operate faster at superattractors and slow down 
near bifurcations. This time dilation applies to every device, field, and even elementary particles 
because (according to the proposed model) all of them, including leptons and quarks (see below), 
consists of at least two vacuum cells. This universality is in accordance with the universality of 
relativistic time dilation. 

6. Cellular Thermodynamics. 

𝜆-wells resemble potential wells of a bound system. We extend this similarity and define cellular 

energy as 
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ℰ =
𝜆

𝒯
 . (15)

In a system of units where 𝒯 = 1, energy ℰ(𝐵) = 𝜆(𝐵) (Figure 3(b)). 

From (12) and (15), the energy in 𝑃ℎ𝑎𝑠𝑒 𝑗 (𝑗 = 1,2,3) is described as 

ℰ௝(∆𝐵) =
𝑙𝑛|2∆𝐵| + (𝑗 − 1)𝑙𝑛𝛿ி

𝒯
   (16)

or 

ℰ௝(∆𝐵) =
𝑙𝑛|2∆𝐵|

𝒯
  + 𝜇௝ = ℰଵ(∆𝐵) + 𝜇௝  , (17)

where we define cellular chemical potential in 𝑃ℎ𝑎𝑠𝑒 𝑗 as 

𝜇௝ =
(𝑗 − 1)𝑙𝑛𝛿ி

𝒯
. (18)

A perturbation can kick a cell from one evolutionary trajectory to another, including trajectories 

that belong to a different attractor basin. The higher the ambience temperature, the frequently the 

trajectory switches occur. We define the system temperature 𝜃 as reciprocal to the average time 𝑡ఏ  

a cell spends at a single evolutionary trajectory 

𝜃 =
1

𝑡ఏ

 . (19)

Using definitions (15) – (19), we can estimate cellular distribution across energies.  

Evolution at a new trajectory can start at any state (𝜒଴ , 𝐵) and proceed toward its attractor with 

time constant provided by equation (13). Using (17), the time constant is 

𝜏௝(∆𝐵) = −൫ℰଵ(∆𝐵) + 𝜇௝൯
ିଵ

. (20)

We define distance ∆𝜒௡  from a fixed point 𝜒ஶ after the 𝑛-th iteration as  

∆𝜒௡ = |𝜒௡ − 𝜒ஶ|. (21)

During a cell’s evolution along a single trajectory, it exponentially decreases with time (iteration 

steps) as shown in Figure 8 for three different 𝐵-values and different starting points 𝜒଴.  
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Figure 8. ∆𝜒-evolution for different parameters 𝐵 (different colors) and different starting points 𝜒଴ . 

 

All trajectories belonging to the same parameter 𝐵 but starting at different initial points are 

covered by an envelope ∆Χ(𝐵, 𝑡)  (Figure 9), which shrinks exponentially with the same time 

constant as the trajectories it embraces 

∆Χ(𝐵, 𝑡) ∝ 𝑒𝑥𝑝 ቀ𝑡൫ℰଵ(|∆𝐵|) + 𝜇௝൯ቁ. 

 

Figure 9. Evolution of envelope ∆Χ(𝐵, 𝑡)  that enfolds 𝜒(𝑡)  trajectories belonging to the same 

parameter 𝐵.  

 

(22)

At temperature 𝜃, the average evolutionary time is 𝑡 = 𝑡ఏ, and trajectories converging toward 

attractor 𝐵 are inside interval ∆Χఏ(𝐵) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0150.v1

http://dx.doi.org/10.20944/preprints201810.0150.v1


 

∆Χఏ(𝐵) ∝ 𝑒𝑥𝑝 ቆ
ℰଵ(∆𝐵) + 𝜇௝

𝜃
ቇ. (23)

Assuming uniform trajectory distribution inside the envelope ∆Χఏ, the probability 𝑤 to find a 

cell inside a small fixed interval 2𝜖 is   

𝑤(𝐵, 𝜃) ∝
𝜖

∆Χఏ(𝐵)
 . (24)

Assuming that cells belong to a single phase, after substitution of (23) into (24), we obtain the 

cellular partition function.  In 𝑃ℎ𝑎𝑠𝑒 𝑗 this probability is 

𝑤௝(∆𝐵, 𝜃) =
1

𝑁௝(𝜃)
𝑒𝑥𝑝 ቆ−

ℰଵ(∆𝐵) + 𝜇௝

𝜃
ቇ, (25)

where the normalization factor is 

𝑁௝(𝜃) = න 𝑒𝑥𝑝 ቆ−
ℰଵ(∆𝐵) + 𝜇௝

𝜃
ቇ 𝑑∆𝐵 .

𝐵𝑗𝑅

𝐵𝑗𝐿

 (26)

Integral (26) is taken across 𝑃ℎ𝑎𝑠𝑒 𝑗, from the left-sided bifurcation 𝐵௝௅ through the right-sided 

bifurcation 𝐵௝ோ . Partition functions (25) have the form of a Boltzmann distribution (although cells are 

bound states thus energies are negative). To escape infinite values, we limit the relaxation time to 

values 𝜏 ≳ 𝒯 3⁄ , that corresponds to 95%-convergence during one cellular period. Respectively, the 

Lyapunov exponents are 𝜆 ≳ −3 , and energies are ℰ ≳ −3 𝒯⁄ .  

We define the critical temperature of cell dissociation 𝜃௖  as the temperature when cellular 

evolution time at a single trajectory becomes as short as the cellular period  

𝜃௖ = 𝒯ିଵ . (27)

A few examples of cellular distributions across energies for different temperatures in different 

phases are shown in Figure 10. Departure from the critical temperature quickly narrows the partition 

function, which starts to resemble Dirac’s delta-function.  

Even at moderate temperatures, the vast majority of cells are located at the superattractors. 

This is the reason why generic charges are quantized and their superattractor values become physical 

constants.    
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Figure 10. Cellular distributions at high temperatures 

 

Most time cells spend at superattractors (ground sates). A cell briefly departed from a 

superattractor state (Figure 11(b)) can be compared to a virtual particle briefly departed from a mass 

shell (Figure 11(a)).  

 

 
Figure 11. Feynman-like self-interaction diagrams for: (a) particle; (b) cell.  

 

To extend this parallel, we introduce restoring forces acting on excited cells and pushing them 

toward the superattractors. The strength of the restoring forces plays the role of the coupling 

constants in the processes encoded in Figure 11(b). The restoring forces (in 𝑃ℎ𝑎𝑠𝑒 𝑗) are defined as  

ℱ௝ = −
𝜕ℰ௝

𝜕∆𝐵
 . (28)

By taking the derivative of (17), (28) can be written as 

ℱ௝ = −
1

𝒯∆𝐵
 . (29)

The restoring forces are strongest at the superattractors and monotonically soften when a cell 

departs from a superattractor, thus resembling asymptotic stability of color forces.  

From (17) and (29), the dependence of restoring forces on energy or the Lyapunov exponent, in 

𝑃ℎ𝑎𝑠𝑒 𝑗 is  

ℱ௝ ≈ ∓
2𝛿ி

௝ିଵ
𝑒𝑥𝑝൫−ℰ௝𝒯൯

𝒯
= ∓

2𝛿ி
௝ିଵ

𝑒𝑥𝑝൫−𝜆௝൯

𝒯
 , (30)

where the force is directed toward the corresponding superattractor (by the proper selection of its 

sign “+” or “–“). According to (30), at a fixed energy, the restoring forces in different phases relate to 

each other as  

ℱଵ: ℱଶ: ℱଷ ≈ 1: 𝛿ி: 𝛿ி
ଶ ≈ 1: 4.67: 21.8 , (31)

where 𝛿ி  is the Feigenbaum delta. 

For comparison, the relation among the SM field coupling constants at energy ~80𝐺𝑒𝑉 − 90𝐺𝑒𝑉 

is 

𝛼: 𝛼௪: 𝛼௦ ≈ 1: 4.32: 15.1 . (32)

The numbers on the right side of (32) are obtained using CODATA source [8]:  
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𝛼(𝑚௓) ≈ 1/128 ≈ 0.00781 ; 𝑠𝑖𝑛ଶ𝜃ௐ(𝑚ௐ 𝑚௓⁄ ) =
ఈ

ఈೢ
≈ 0.231 ; 𝛼௦(𝑚௓) ≈ 0.1182 ; 𝑚௓ ≈ 91.2 𝐺𝑒𝑉/𝑐ଶ ; 

𝑚ௐ ≈ 80.4 𝐺𝑒𝑉/𝑐ଶ. 

 

When temperature increases above the critical value 𝜃௖ , vacuum cells dissociate. On a back 

process of condensation, the relative probability  𝑊௞  𝑊௟⁄  of finding a cell in 𝑃ℎ𝑎𝑠𝑒 𝑘 or 𝑃ℎ𝑎𝑠𝑒 𝑙 is 

determined by the  

 𝑊௞

 𝑊௟

= 𝑒𝑥𝑝 ൬
𝜇௟ − 𝜇௞

𝜃௖

൰ =  𝛿ி
௟ି௞ , (33)

In a two-component system, the total probability obeys unitary condition 

 𝑊௟ +  𝑊௞ = 1 . (34)

This allows us to represent the probabilities 𝑊௞  and  𝑊௟  as trigonometric functions of a single 

parameter, which we call mixing angle 𝛾௞௟  

൜
𝑊௞ = 𝑠𝑖𝑛ଶ𝛾௞௟

 𝑊௟ = 𝑐𝑜𝑠ଶ𝛾௞௟

 . (35)

Correspondingly, 

𝑡𝑎𝑛ଶ𝛾௞௟ = 𝑒𝑥𝑝 ൬
𝜇௟ − 𝜇௞

𝜃௖

൰ . (36)

Specifically, for the 𝑃ℎ𝑎𝑠𝑒 1/𝑃ℎ𝑎𝑠𝑒 2 mixture, the mixing angle 

𝛾ଶଵ = 𝑎𝑡𝑎𝑛൫ඥ 𝑊ଶ  𝑊ଵ⁄ ൯ = 𝑎𝑡𝑎𝑛൫𝛿ி
ିଵ/ଶ൯   ≈ 24.8°, (37)

which is close to the Weinberg mixing angle  𝜃ௐ ≈ 28.7°  [9] that reflects the relative inputs of 

electromagnetic and weak forces in the combined electro-weak interactions. 

7. Intercellular Dynamics. Synchronization  

Synchronization [10, 11] is a ubiquitous dissipative phenomenon observed in all types of active 

systems: natural and artificial, organic and inorganic, in mechanical, chemical, and electronic 

oscillators that are similar and dissimilar to one another, with different structures, organizations, and 

waveforms, including chaotic waveforms. Vacuum cells are open systems that couple to their 

neighbors via dust particle exchanges. As coupled self-sustained oscillators (rotators), they tend to 

synchronize their dynamics. Before synchronization, their rotation periods are different.  

Synchronization bring them to the same period 𝒯, which becomes a time-scale standard for the entire 

synchronized network.  

 Synchronization is a phase transition, which not only creates a unified time scale, but provides 

temporal coherency to the medium (crucial for quantum theory). As a phase transition, synchronization 

creates a new order parameter, the phase differences between vacuum cells 𝜓ఈఉ = 𝜑ఈ − 𝜑ఉ , which 

plays the role similar to a vector potential in a gauge field. Synchronization is a nonlinear process, 

which includes positive feedback loops and facilitates the transformation of cellular partition 

function (25) into quantum distributions.  

 To illustrate synchronization between two vacuum cells (designated as 𝛼-cell and 𝛽-cell), we 

use the Adler phase-difference equation [12], which we converted to a discrete-time iterated map: 
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𝜓௡ାଵ = 𝜓௡ − δ𝜔𝒯 + Κ𝑠𝑖𝑛𝜓௡ , (38)

where δ𝜔 is the difference between cellular natural frequencies δ𝜔 = 𝜔ఈ − 𝜔ఉ; 𝜔ఈ = 𝒯ఈ
ିଵ  and 𝜔ఉ =

𝒯ఉ
ିଵ  are natural frequencies that characterize cells before synchronization; 𝜓௡ = 𝜑௡

ఈ − 𝜑௡
ఉ  is the 

intercellular phase difference after the 𝑛-th iteration step and 𝐾 is the coupling strength between 

the cells. Because both cells converge to the same period, the iteration time interval can be associated 

with any of the coupled cells, for example, 𝛼-cell. The corresponding cellular phase is set to 𝜑௡
ఈ ≡ 0. 

Phase-difference dynamics are illustrated in Figure 12. The phase entrainment indicates that 𝜓௡ 

converges toward a fixed point 𝜓ஶ = 𝜓. This occurs when |δ𝜔𝒯| < 𝐾. Within the phase-entrainment 

interval, the correspondence between the old parameter δ𝜔 and the new order parameter 𝜓 is one-

to-one. 

 

Figure 12. Phase differences 𝜓௡ after 𝑛 iteration steps 

 

Synchronization is a dissipative process that possess asymptotic stability. We calculate the 

Lyapunov exponent 𝜆 in a similar fashion to (11), where parameter 𝐵 is replaced by parameter 𝜓: 

𝜆(𝜓) = lim
௡→ஶ

ቆ𝑙𝑛 ቤ
𝜓௡ାଵ(𝜓) − 𝜓௡(𝜓)

𝜓௡(𝜓) − 𝜓௡ିଵ(𝜓)
 ቤ ቇ . (39)

We simulate functions 𝜆௝(𝜓)  and ℰ௝(𝜓)  assuming that 1) coupling constants in different 

phases 𝐾௝  are proportional to the intracellular restoring forces ℱ௝ in the corresponding phases (see 

(31)), and 2) intracellular coupling is strong in 𝑃ℎ𝑎𝑠𝑒 3 (𝐾ଷ ≲ 1). The simulation results for 𝐾ଵ =

𝛿ி
ିଶ,  𝐾ଶ = 𝛿ி

ିଵ, and  𝐾ଷ = 0.999 are shown in Figure 13.  
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Figure 13. 𝜆௝(𝜓)-wells and normalized 𝒯ℰ௝(𝜓) potential wells for synchronized couples belonging to 

different phases. 

 

As in the intracellular case, the graphs are shaped as potential wells with their minima at the 

superattractors. Here couples operate in unison (𝜓 = 0). The well shapes are qualitatively different 

between the weak intercellular coupling (𝑃ℎ𝑎𝑠𝑒 1 and 𝑃ℎ𝑎𝑠𝑒 2) and the strong intercellular coupling 

(𝑃ℎ𝑎𝑠𝑒 3). In 𝑃ℎ𝑎𝑠𝑒 3, the well shape is similar to that of the intracellular dynamics previously shown 

in Figure 3(b). 

We compare the 𝑃ℎ𝑎𝑠𝑒 3 intercellular and intracellular barriers in Figure 14.  

 

Figure 14. Comparison of 𝑃ℎ𝑎𝑠𝑒 3 intracellular (blue) and intercellular (red) potential barriers. Simulated 

points are shown by symbols. Logarithmic curves are shown by solid lines. 

 
The intercellular (synchronization) potential barrier ℰ௦௬௡௖௛(𝛽)  is drawn in red and the 

intracellular potential barrier ℰ௖௘௟௟(𝛽) is drawn in blue. Parameter 𝛽 is the normalized departure 

from a superattractor. It is defined as 

𝛽 =

⎩
⎨

⎧ 2
𝐵 − 𝐵ଷௌ

𝐵ଷோ − 𝐵ଷ௅

          (𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟)

2
𝜓

𝜋
                            (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟)

 , (40)
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where 𝐵ଷௌ , 𝐵ଷ௅ , and 𝐵ଷோ  are positions of the 𝑃ℎ𝑎𝑠𝑒 3 superattractor, the left bifurcation, and the 

right bifurcation, respectively. At superattractors, 𝛽 = 0, and at bifurcations, 𝛽 = ±1. The well walls 

are approximated by logarithmic curves (solid lines in Figure 14). According to these data, when 

coupling between cells is strong, the coupling energy is comparable to the total internal energy of 

both cells 

ℰ௦௬௡௖௛ ≈ 2ℰ௖௘௟௟  . (41)

We will use (41) for estimating of quark transmutation probabilities. 

In 𝑃ℎ𝑎𝑠𝑒 1 and 𝑃ℎ𝑎𝑠𝑒 2 , the well bottoms are parabolic (Figure 13 left and center), which 

implies linearity of the restoring forces and synchronized network elasticity. We define intercellular 
restoring forces 𝒻௝ similarly to their intracellular counterparts (28)  

𝒻௝ = −
𝜕ℰ௝

𝜕𝜓
 . (42)

and calculated functions 𝒻௝(𝜓) (Figure 15).  

 

 
Figure 15. Restoring forces 𝒻௝(𝜓) in potential wells attributed to different phases imply cellular network 
elasticity in 𝑃ℎ𝑎𝑠𝑒 1 and 𝑃ℎ𝑎𝑠𝑒 2 and asymptotic freedom in 𝑃ℎ𝑎𝑠𝑒 3. 

 

In 𝑃ℎ𝑎𝑠𝑒 1 and 𝑃ℎ𝑎𝑠𝑒 2, near superattractors (𝜓~0), the restoring forces linearly increase with 

departure from superattractors and saturate near the bifurcations (𝜓~ ±𝜋 2⁄ ). In these two intervals, 

at fixed phase differences 𝜓 = 𝑐𝑜𝑛𝑠𝑡, the restoring forces are related as follows  

𝒻ଵ: 𝒻ଶ ≈ 𝐾ଵ: 𝐾ଵ ≈ 1: 𝛿ி . (43)

In 𝑃ℎ𝑎𝑠𝑒 3  (strong coupling), the restoring force behaves quite differently. The interval of 

linearity (if any) is very narrow (it disappears when the coupling parameter is exactly 𝐾ଷ = 1). When 

departing from the superattractor, 𝒻ଷ  almost immediately reaches its large and sharp maximum 

then quickly decays, mimicking the phenomenon of color-force asymptotic freedom.  

The intercellular dynamics discussed above are extendable to synchronized cellular networks, 

where each cell is surrounded by several others.  In this case, ℰ and 𝒻 correspondingly become 

tensors.   

Synchronized cellular networks also possess quantum features. During synchronization, each 

coupled cell forces its neighbors to operate at its pace. After iterative “negotiations”, the cells come 

to a trade-off period. The restoring forces push cells to operate not only with the same period but also 

at the same phase (in unison). If two or more cells from a cell neighborhood operate at the same 
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phases, they multiply their efforts to force other cells to operate at the same phase. This nonlinearity 

implies a positive feedback: the more cells in a network operate at a given phase, the higher the 

probability to find another cell at the same phase. As a result, the random distribution across phases 

spontaneously breaks and a discrete set of superattractors emerges at positions of seed states, as 

schematically is shown in Figure 16.  
 

 
Figure 16. Synchronization positive feedback transforms random cellular distribution into quantum 

distribution. 

 

Synchronization alters the Boltzmann-like partition function (25). Synchronization can occur 

according to several scenarios. Below, we will consider two of them: a case of phase entrainment 

(qualitatively described above) and a case of oscillation quenching [10, 13, 14]. Which scenario occurs 

in a network depends on details that are beyond the scope of this paper. Below, we substitute phase 

differences with energies.  

Phase-entrainment scenario. Let us consider a group of cells, some of which have been 

synchronized at states with energy ℰ  ( ℰ -state). The reminders have similar but nonidentical 

energies. The synchronized cells force the other cells to move to the ℰ-state. Let us assign the initial 

probability of finding a cell at the ℰ-state to be 𝑤, and the resulting probability to be 𝑤ା. In a simplest 

case, the probability to get a new cell to the same state is proportional to the number of cells at this 

state 𝜅ା𝑤ା, where 𝜅ା is the proportionality coefficient. The total number of new cells is 𝜅ା𝑤ା𝑤, and 

the total number of all cells at the ℰ-state after the new cells have been added is 

𝑤ା = 𝑤(1 + 𝜅ା𝑤ା) . (44)

The " + "  signs in (44) indicate that synchronization occurs according to the phase-entrainment 

scenario.  

After solving equation (44) for 𝑤ା, 

𝑤ା =
1

1
𝑤

− 𝜅ା

 , (45)

and substituting (25) in (45), the altered partition function takes on the form of the Bose-Einstein 

distribution 
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𝑤ା,௝(ℰ, 𝜃) =
𝜅ା

ିଵ

(𝜅ା𝐶଴)ିଵ𝑒𝑥𝑝 ൬
ℰଵ + 𝜇௝

𝜃
൰ − 1

 . (46)

Oscillation (rotation) quenching scenario. According to this scenario, cellular interactions result 

in the mutual annihilation of circular flows, resulting in the disappearance of coupled cells from the 

network. This phenomenon is also known as amplitude death or oscillation cessation [10, 13, 14].  

Here, the competition occurs between the network cells and their environment, which tends to 

destroy the network. In this case, the positive feedback of synchronization means that the higher the 

number of cells which are mutually annihilated, the weaker the network, and the higher the chance 

that a different cell will also fails to withstand this environment.   

To find the cellular distribution under the oscillation quenching scenario, we use equations 

similar to (44) but with all the " + " signs replaced with " − " signs 

𝑤ି = 𝑤(1 − 𝜅ି𝑤ି) . (47)

After solving (47) for 𝑤ି 

𝑤ି =
1

1
𝑤

+ 𝜅ି

 , (48)

and substituting (25) in (48), the altered partitions function takes on the form of the Fermi-Dirac 

distribution 

𝑤ି,௝(ℰ, 𝜃) =
𝜅ି

ିଵ

(𝜅ି𝐶଴)ିଵ𝑒𝑥𝑝 ൬
ℰଵ + 𝜇௝

𝜃
൰ + 1

 . (49)

According to the above scenarios, positive feedback stemming from synchronization converts 

the original distribution of independent cells into quantum distributions. Unlike in the case of 

quantum statistics, quantization from synchronization does not require cellular identity.   

8. Synchronized Spinorial Cells as Particle Building Blocks 

Spinorial cells (𝑃ℎ𝑎𝑠𝑒 2 and 𝑃ℎ𝑎𝑠𝑒 3) occupy different charge states during each cellular period 

(as illustrated by the attractor-loop diagram in Figure 17). The white loops represent quasi-neutral 

states, the purple loop represents electrically charged states, and red, green, and blue loops represent 

color-charged states. The charge states are ordered in time. Color-charge states always follow the 

same sequence: … → 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 → 𝑟𝑒𝑑 → 𝑔𝑟𝑒𝑒𝑛 → 𝑏𝑙𝑢𝑒 → 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 →… in one direction.  
 

 
Figure 17. Attractor loop diagrams. Charge-color code is the same as in Figures 3, 5, and 6 
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Below, we will neglect small cellular departures from superattractors, and describe connected 

spinorial couples as in-phase synchronized and out-of-phase synchronized, only keeping in mind their 

loops. Examples are shown in Figure 18.  

 
Figure 18. Spinorial cells represented by circular time diagrams (CTD): (a) in-phase synchronized; (b) out-

of-phase synchronized.  

 

We assume that out-of-phase synchronized spinorial couples are stable, while in-phase 

synchronized couples are nonstable. Below is the explanation.  

A quickly charge-flickering 𝑃ℎ𝑎𝑠𝑒 2 cell immersed into a 𝑃ℎ𝑎𝑠𝑒 1 (electromagnetic) network 

creates strong dynamic perturbations in the network. Regular cells surrounding the spinorial cell 

cannot follow these abrupt single-period charge changes. The situation is even more unstable, when 

two in-phase synchronized spinorial cells are immersed in the network. However, if the 𝑃ℎ𝑎𝑠𝑒 2 

couple synchronizes out-of-phase (e.g. when one cell is charged and the other is neutral or vice versa), 

the amplitude of charge oscillation during a single period becomes much smaller. From the 

perspective of the surrounding cells, it appears as though a fixed-value charge is moving back and 

forth in space at very short distances. In comparison with perturbations imposed by a single spinorial 

cell, this perturbation is mild and does not destroy the network. The network responds to these types 

of perturbations by inducing currents which circulate around the couple and the corresponding 

magnetic moments. The apparent charge “motion” is not bound by the speed of light. We associate 

out-of-phase synchronized 𝑃ℎ𝑎𝑠𝑒 2 couples with first-generation leptons.  

For a 𝑃ℎ𝑎𝑠𝑒 3 couple, the only way to achieve an apparently steady-state charge, is when the 

couple consists of one cell and one anti-cell. In time averaging, such a couple is neutral. Now, the 

only way to escape the couple’s self-annihilation is for the cell and anti-cell to be synchronized out-
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of-phase. We associate out-of-phase synchronized 𝑃ℎ𝑎𝑠𝑒 3  cell-anti-cell couples with quarks. 

Quarks are electrically neutral and carry only color charges and flavors.  

A benefit of this assignment is that we avoid the problem of fractional electric charges, which are 

empirically unobservable.  

Correspondingly, hadrons (which can carry electrical charges) should consist of both quarks 

and leptons. In the proposed model, leptons carry electric charges. They also have up/down flavors. 

Quarks carry (𝑢/𝑑 𝑐/𝑠 𝑡/𝑏) combined flavors (i.e. 𝑢-flavor and 𝑑-flavor are the same) and no 

electric charges. Combined quark flavors are associated with different synchronization patterns of 

their components. Flavor assignments for leptons and quarks are shown in Figure 19 with use of 

CTDs. Flavor 𝑥/𝑦 , corresponding to the in-phase synchronized quark, is unstable and only 

accounted for as a virtual state.  

 

 
Figure 19. Flavor assignments: (a) Leptons; (b) Quarks. 

 

The SM quark flavors can be recovered as a direct (Cartesian) product of quark 

(𝑢/𝑑 𝑐/𝑠 𝑡/𝑏)-flavors and lepton ൬ 𝑢𝑝±

𝑑𝑜𝑤𝑛
൰-flavors:  

ቀ
𝑢 𝑐 𝑡
𝑑 𝑠 𝑏

ቁ
ௌெ

= (𝑢/𝑑 𝑐/𝑠 𝑡/𝑏) × ൬ 𝑢𝑝±

𝑑𝑜𝑤𝑛
൰. (50)

Synchronized couples are bound states. The links between the cells are characterized by 
restoring forces 𝒻௝(𝜓) and energies ℰ௝(𝜓), and play the role of field mediators: photons (𝑃ℎ𝑎𝑠𝑒 1), 

vector bosons (𝑃ℎ𝑎𝑠𝑒 2), and gluons (𝑃ℎ𝑎𝑠𝑒 3). In the former two cases, the links are elastic and the 

corresponding networks support elastic waves at small excitations.  

In-phase synchronized links resemble solid-state massless acoustic phonons, while out-of-phase 

synchronized links resemble massive optical phonons. The 𝑃ℎ𝑎𝑠𝑒 1 network (electromagnetic) may 

carry only acoustic (massless) mediators, while stable spinorial clusters (particles) may carry only 

optical (massive) mediators.  

Links between spinorial cells are inseparable from their host couples and are naturally localized 

inside the spinorial clusters (particles).  

9. Quark Flavor Changes  

Quarks and gluons of the proposed model are quite dynamic. The gluon charge-states follow 

the charge-states of their host cells. Here is an example of a charge cycle for one of the quark flavors: 
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         Cell:      … → 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 → 𝑟𝑒𝑑 → 𝑔𝑟𝑒𝑒𝑛 → 𝑏𝑙𝑢𝑒 → 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 → ⋯

Anti − cell:     … → 𝑟𝑒𝑑 → 𝑔𝑟𝑒𝑒𝑛 → 𝑏𝑙𝑢𝑒 → 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 → 𝑟𝑒𝑑 → ⋯

Gluon: … → ቀ
𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑟𝑒𝑑
ቁ → ൬

𝑟𝑒𝑑
𝑔𝑟𝑒𝑒𝑛

൰ → ቀ
𝑔𝑟𝑒𝑒𝑛
𝑏𝑙𝑢𝑒

ቁ → ቀ
𝑏𝑙𝑢𝑒

𝑛𝑒𝑢𝑡𝑟𝑎𝑙
ቁ → ቀ

𝑛𝑒𝑢𝑡𝑟𝑎𝑙
𝑟𝑒𝑑

ቁ → ⋯
 

 

When a quark flavor changes, its synchronization pattern also changes. Figure 20 shows all of 

the possibilities for one of the couple components changing its charge states while the other 

component remains intact.  The direction of rotation is fixed and the same for cells and anti-cells. 

Each flavor-change step corresponds to CTD rotation across one-sector (90 degrees) on the cellular 

side (black circle on the left) or on the anti-cellular side (red circle on the right).  

 

Figure 20. Quark flavor changes represented as CTD rotations: (a) on cell side; (b) on anti-cell side. Each 

flavor, with the exclusion of the unstable 𝑥/𝑦, can be a starting point or an ending point.  

 

Quark flavor changes can be associated with the following virtual process. A quark couple is 

briefly elevated to the level of dissociation. When the cells return, they have different synchronization 

patterns. The longer they stay at the elevated level, the bigger the changes in the synchronization 

patterns.    

The probability of staying at the dissociation level exponentially decays with time  

𝑤 ≈ 𝑒𝑥𝑝(−ℰ௔Δ𝑡) , (51)

where ℰ௔  is the activation energy, and Δ𝑡 is the time spent at the elevated level. The activation 

energy (Figure 21) is the total internal energy of the couple, and consists of two cellular energies 
2ℰ௖௘௟௟~2𝜇ଷ and the synchronization energy, which according to (41), is equal to ℰ௦௬௡௖ ~2ℰ௖௘௟௟~2𝜇ଷ. 

From (18), the chemical potential is 𝜇ଷ = 2𝒯ିଵ𝑙𝑛𝛿ி, and the activation energy is 

ℰ௔ = 8𝒯ିଵ𝑙𝑛𝛿ி. (52)

Probability 𝑤 and probability amplitude 𝑉 are correspondingly  

𝑤 ≈ 𝑒𝑥𝑝(−8𝒯ିଵΔ𝑡𝑙𝑛𝛿ி) = 𝛿ி
ି଼𝒯షభ୼௧ , (53)

and 

𝑉 = 𝑤ଵ/ଶ = 𝛿ி
ିସ𝒯షభ୼௧ (54)
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Figure 21. (a) Cellular chemical potential; (b) Quark activation energy 

 

Below we estimate the probabilities 𝑤  and amplitudes 𝑉  of quark transmutations. For 

simplicity, we will only account for the shortest paths to get from one flavor to another, which 

correspond to the highest probabilities and amplitudes, while preserving unidirectional CTD 

rotations (due to time irreversibility). The shortest paths can be described as situations when one 

quark component (cell or anti-cell) continues to rotate at its original pace (in synchrony with other 

quarks and leptons in the cluster) while the other component is frozen. The temporal phase delay for 

the frozen component is 8𝜋Δ𝑡/𝒯. Each 2𝜋-phase delay implies a leap to the neighboring attractor 

loop (or one CTD sector rotation). Two examples are shown in Figure 22. The process resembles 

quantum tunneling through temporal barriers rather than spatial barriers. 

  

 
Figure 22. Examples of quark flavor change as temporal barrier tunneling: (a) through 1/4 period barrier 

(from 𝑢/𝑑 to 𝑐/s); (b) through 3/4 period barrier (from 𝑡/𝑏 to 𝑢/d). 
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Figure 23. All possible quark flavor changes. Starting flavors are at the top of each diagram. The probability 

amplitudes 𝑉 are outlined by rectangles at the corresponding ending flavors. CTD rotations: (a) and (c) 

on anti-cell side; (b) and (d) on cell side.  

 

Quark flavor rotations for all starting and ending flavors are shown in Figure 23. Starting flavors 

are at the top of each diagram. Anti-cell CTD rotation diagrams are on the left, while cell CTD rotation 

diagrams are on the right. Diagram in Figure 23(c) corresponds to an unstable starting flavor. The 

probability amplitudes calculated using (54) are outlined by rectangles at the corresponding ending 

flavors.  

Quark flavor changes from Figure 23 are shown as a 4 × 4 matrix in Figure 24(a).  

 

 

Figure 24. Quark flavor change probability amplitudes in matrix representations: (a) original 4 × 4 

matrix; (b) 3 × 3 matrix without the unstable 𝑥/𝑦 flavors; (c) Cabibbo–Kobayashi–Maskawa matrix. In 

(b) and (c), numbers are rounded. 
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Row and column designations represent starting/ending flavors. Probability amplitudes are 

shown as matrix elements at cross-sections of the corresponding rows and columns. The matrix has 

appearance of the Klein four-group 𝑉ସ Cayley table. After removing the third row and third column 

(shown in pink in Figure 24(a)), which correspond to the unstable starting/ending flavor 𝑥/𝑦, and 

reducing the main diagonal elements to satisfy row/column unitarity, we obtain a 3 × 3 matrix 

shown in Figure 24(b). For comparison, the Cabibbo–Kobayashi–Maskawa (CKM) matrix [15] with 

empirically obtained quark mixing amplitudes is shown in Figure 24 (c).   

10. Particles  

Despite having only two cells and two anti-cells in our particle building kit, their rich dynamics 

and diversity of synchronization patterns allows us to synthesize the entire family of “elementary” 

particles, which resemble those described by the Standard Model. A few examples are shown in 

Figures 25-27. The particles are represented by CTDs. Synchronization patterns are different for 

different particles. All links represent out-of-phase synchronizations.  

Leptons are built from 𝑃ℎ𝑎𝑠𝑒 2 cells/anti-cells (Figure 25). First-generation leptons possess two 

cells (electron), two anti-cells (positron), or combination cell and anti-cell (neutrino) Figure 25(a). 

Second-generation leptons (Figure 25(b)) also have one neutral couple (cell and anti-cell), and third-

generation leptons (Figure 25(c)), have two neutral couples. Adding neutral couples does not affect 

the electric charge pattern, but does increase the particle internal energies (masses).   

 

 
 

Figure 25. Lepton family: (a) first generation; (b) second generation; (c) third generation 

 
Mesons are synthesized by replacing one neutral 𝑃ℎ𝑎𝑠𝑒 2 couple with one neutral 𝑃ℎ𝑎𝑠𝑒 3 

couple (quark) in second-generation leptons. A meson octet resembling the Eightfold Way group of 
real (SM) mesons [9] is shown in Figure 26. Due to the significantly richer dynamics of 𝑃ℎ𝑎𝑠𝑒 3 cells, 
this replacement essentially increases the number of different particles.  
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Figure 26. “Eightfold Way” meson octet 

Baryons are synthesized by replacing two neutral 𝑃ℎ𝑎𝑠𝑒 2 couples with two quarks in third-
generation leptons. The number of particles again increases. A baryon octet resembling the Eightfold 
Way group of real baryons [9] is shown in Figure 27.   

 
 

Figure 27. “Eightfold Way” baryon octet 
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CTDs may also illustrate nuclear reactions, as the example shown in Figure 29. 

 

Figure 29. Reaction 𝑛 → 𝑝 + 𝑒ି + 𝜈෤௘ represented by cellular circular time diagrams. The anti-neutrino in 

the right portion of the equation is replaced by the neutrino in the left portion.  

When a number of vacuum cells synchronize, they form a coherent network. Phase differences 

𝜓, restoring forces 𝒻 and energies ℰ become tensors parameterized by their links. An example of a 

cell surrounded by six other cells of a different nature and with different synchronization patterns is 

shown in Figure 30(a). The same cellular cluster half-period later is shown in Figure 30(b).  

 

Figure 30. (a) Link parametrization for a cellular cluster comprising a 𝑃ℎ𝑎𝑠𝑒 3 cell (diagram centers) 

surrounded by six other cells of a different nature and with different synchronization patterns; (b) the same 

cluster half-period later.  

 

The six links are parameterized by their directions (𝜇 = 01, 02, 03, … 06), cell types (𝑐 = 0 for 

cells, 𝑐 = 1  for anti-cells), 𝑃ℎ𝑎𝑠𝑒𝑠 𝑗  ( 𝑗 = 1, 2, 3 ), and attractor loop numbers ( 𝑙 = 0, 1, 2, 3 ). 

Parameters  𝜇 , 𝑐, 𝑗, and 𝑙 are different for different depending on the types of the adjacent cells and 

their synchronization patterns. For links comprising at least one 𝑃ℎ𝑎𝑠𝑒 2 cell but no 𝑃ℎ𝑎𝑠𝑒 3 cells, 

parameter 𝑙 changes each half-period. For links comprising at least one 𝑃ℎ𝑎𝑠𝑒 3 cell, parameter 𝑙 

changes each quarter-period.  

From a bird’s eye view, vacuum cellular networks look like continuous media. The natural way 

to describe their dynamics would be to use fiber bundle construction on space-time manifold where 

the orientation 𝜇  is replaced by spatial and temporal coordinates, and the intracellular and 

intercellular dynamics are elevated to the fiber spaces.  
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11. Conclusion  

We have described a potential scenario for the emergence of coherent, dynamically rich cellular 

networks in a gravitation-diffusion driven vacuum. The network patterns belonging to different 

phases emulate electromagnetic, weak, and strong nuclear fields, while spinorial cell inclusions in 

the electromagnetic network imitate leptons and quarks.   

The proposed model provides an explanation for the origin of various quantum phenomena that 

have not been solved by current theory. This model is causal, strictly obeying time irreversibility. It 

describes global symmetries (like universal time scale, “relativistic” time dilation, spatial quantum 

coherency, quantum statistics) as phenomena that emerge with and are inseparable from cellular 

vacuum networks as their carriers.     

The model also allows for rough estimations of relative field strengths, quark transmutation 

amplitudes, the quantity of field charges, and quark flavors in fair agreement with experimental data.   

The proposed model belongs to the Feigenbaum universality and is based on the ubiquitous 

phenomenon of synchronization. Therefore, the main results and numerical estimations are 

generalizable and not sensitive to the details of the model such as the selection of an explicit form of 

an iteration function.  
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