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Abstract: The open communication is an exigent need for future power system where the time delay 
is unavoidable. In order to secure the stability of the grid, the frequency must remain within its 
limited range which is achieved through the load frequency control. The load frequency control 
signals are transmitted through communication networks which induces time delay that could 
destabilize the power systems. So, in order to guarantee the stability the delay margin should be 
computed. In this paper, we present a new method for calculating the delay margin in load 
frequency control systems. The transcendental time delay characteristics equation is transformed to 
frequency dependant equation. The spectral radius is used to find the frequencies at which the roots 
crosses the imaginary axis. The crossing frequencies are determined through the sweeping test and 
the binary iteration algorithm. A one-area load frequency control system is chosen as case study. 
The effectiveness of the proposed method has been proved through comparing with the most recent 
published methods. The method shows its merit with less conservativeness and less computations. 
The PI controller gains are preferable to be chosen large to reduce the damping, however, the delay 
margin decreases with increasing the PI controller gains. 

Keywords: communication time delays; delay margin; delay dependent stability; load frequency 
control system; sweeping test 

 

1. Introduction 

For a stable power system operation, the loads and the demands must be matched in real time. 
This task is achieved through the load frequency control (LFC) system. The load frequency control is 
one of the classical power system control problems where the imbalance between the generation and 
the load is sensed through measuring the frequency. The LFC system must perform three main tasks: 
1) to maintain uniform frequency, 2) share the load between the generators, and 3) control the tie-line 
interchange schedule [1]. In order to achieve these tasks the Automatic Generation Control (AGC) 
signals are sent through dedicated communication links, and if this link fails the voice 
communication through telephone lines is used [2]. To guarantee uniform frequency in multi-area 
power system the area control error (ACE) and the generator control error (GCE) signals are 
distributed between the different areas [3]. Since the control signals are exchanged over 
communication network the time delay is inevitable especially if the open communications are 
adopted in the power system [4]. Time delays could arise in power systems for different reasons and 
their values depend on the type of the communication link, for example, telephone lines, fiber-optics, 
power lines, and satellites [5].  

The presence of the time delay could lead to poor system performance or at worst system 
instability. An extensive research has been carried out in the last decades to tackle the problems 
associated with the delay in the LFC system. The published research either focus on stabilization of 
the LFC system with the presence of the time delay or computing the delay margin required for 
system stability. The latter is the focus of this paper. The stabilization of the LFC system while 
considering the time delay has been studied by many researchers, the reader can refer to [6-15] and 
the references there in. 
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The delay margin is defined at the maximum time delay that the system can withstand without 
losing the stability. In the published research work two approaches are used to determine the delay 
margin; the first one is based on Lyapunov-Krasovskii theorem and the second approach is based on 
tracking the eigenvalues in the s-domain. The s-domain methods proved to give less conservative 
delay margins, however, they can only be applied to constant time delay. The simulation is used in 
[2] to investigate the impact of the time delay on the stability of the LFC system. Two types of the 
time delays are studied; the constant and the random. It has been found that the large number of 
packet loss or time delay lead to the LFC system instability, although, the authors do not consider 
computing the delay margin or stabilization of the LFC system with the presence of the delay. In [16], 
the delay margin for single-area and multi-area LFC system is computed through solving a set of 
linear matrix inequalities (LMIs). The LMIs are derived through solving Lyapunov-Krasovskii 
functional, replacing the time delay terms with Newton-Leibnitz formula and introducing free 
weighting matrices (FWMs) [17]. The introduction of the variable FWMs reduces the 
conservativeness of the delay margin values. The effect of the proportional integral (PI) controllers, 
KP and KI, on the delay margin is also investigated. In [18], an improved and less conservative 
criterion for calculating the delay margin is introduced. The Lyapunov-Krasovskii functional is used. 
To reduce the conservativeness of the method, Wirtinger inequality and Jenson Integral Inequality 
are used to bound the derivative of Lyapunov function. It is reported in [10, 19] that the number of 
decision variables are reduced compared to the number of decision variables in [16], and this will 
lead to less conservative results for the delay margin. 

In [20], the direct method for computing the delay margin is presented. Rekasius substitution is 
used to eliminate the transcendency in the characteristic equation and to convert it to polynomial. 
The imaginary roots for positive delays are tracked and then Routh-Hurwitz criterion is used to 
determine the time delay margin. However the results of the delay margin reported in [20] are less 
conservative than the results of the method reported in [16], the drawback of the method in [20] is 
the increased complexity in the case of multiple time delay systems. In [21] the set of the PI controller 
parameters of single-area LFC system that satisfies the stability with a given time delay is determined. 
In [22] an exact method for computing the delay margin is introduced. The transcendental equation 
is transformed to normal polynomial in jω. The analysis is carried out in the frequency domain 
without any approximations which reduces the conservativeness of the results. The exponential 
terms are eliminated and the transcendental equation is converted to frequency dependant equation 
where the number of frequencies that cross the imaginary access are finite. 

Determining the delay margin is crucial for LFC system operation. In the event of 
communication failure the fault counter counts for a specified period before the LFC mechanism is 
suspended [16]. This period is usually selected to be very conservative which is determined from 
experience.  The delay margin is also very important in determining the upper bound for the 
sampling time and aiding the control designer in the tuning [3, 8]. In this paper, we present a method 
for computing the delay margin for LFC system. Relative to the methods reported in the literature, 
the proposed method has a simple structure and easy to follow while giving accurate values of the 
delay margin which is very important in practice. In the next sections the dynamic model of single-
area LFC system is briefly described. Then the stability analysis of the LFC system is analyzed in the 
frequency domain. The sweeping test and the binary iteration are used to compute the delay margin. 
A single area LFC system is chosen as a case study. The results of the delay margin using the proposed 
method are compared with the results of the most recent published research. 

2. Dynamic model of one-area LFC system with time delay  

The one-area LFC system is shown in Fig. 1. When an imbalance between the generation occurs 
the frequency will deviate. In order to reset the frequency deviation to zero an integral control is 
required as shown in Fig. 1. The main assumption is that all the generators are equipped with non-
reheat turbines. The state-space linear model of one-area LFC system is expressed as [16]: 
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The parameters are defined as: ΔPd is the load deviation, ΔPm is the generator mechanical output 
deviation, ΔPv is the valve position deviation, Δf is the frequency deviation. M is the moment of 
inertia, D is the generator damping coefficient, Tg is the time constant of the governor, Tch is the time 
constant of the turbine, R is the speed drop, and β is the frequency bias factor. For one-area LFC 
system, the area control error ACE is given as [16]: 

fACE                     (2) 
 

 
Figure 1. Dynamic model of one-area LFC scheme 

The AGC has two components; the first is updated every 5 minutes for economical dispatch and 
the second is updated in the order of 1-5 seconds. The latter signal delay is the one considered in the 
paper. Stabilizing the system with conventional PI controller given as: 

 ACEKACEKtu Ip)(
              (3) 

where KP is the proportional gain, KI is the integral gain and ∫ ACE  is the integration of the 
area control error. With the PI controller, the closed-loop system is expressed as follows: 

dd PFtxAtAxtx  )()()(        (4) 
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The time delay, τ, is composed of transducer delay, analog-to-digital conversion delay, 
processing delay, multiplexing delay and the delay in the communication link [5]. This time delay 
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can be constant in dedicated communication links and time varying if open communication is used 
[16]. Setting ΔPd to zero, the single-area LFC system becomes a linear time delay system, then (4) 
becomes:  

)()()(  txAtAxtx d
           (5) 

To find the maximum delay margin, d , we transform (5) using Laplace transform and the 
characteristics equation becomes: 

0  s
deAAsI            (6) 

Equation (6) is a transcendental equation and have been the subject of the research for many 
years. The system is asymptotically stable for a given delay if all the roots of (6) lie on the left half 
plane. The free delay system is assumed to be stable and all the roots are on the left half plane. For 
some value of the delay one or more roots will cross the imaginary excess. One of the approaches is 
to replace s with jω and perform the analysis in the frequency domain. 

3. Delay Margin Computation Using the Sweeping Test 

Time delay systems can be either delay-independent or delay dependent. The delay-dependent 
system is asymptotically stable for d  , marginally stable for d  , and unstable for d  . The 
delay independent system is asymptotically stable for any positive value of the time delay. For the 
single-area LFC system represented by (5) to be asymptotically stable independent of delay, we must 
have: 

0)det(   s
deAAsI        Cs , 0      (7) 

where C is the open right half plane. If (7) is satisfied then there are no positive roots for any 
value of the time delay. The delay dependent stability implies that for time delays less than the delay 
margin the system is asymptotically stable and all the roots are on the closed left half plane, and when 
the time delay exceeds the delay margin the system becomes unstable and some roots will be on the 
right half plane. In this manner, the roots will cross the imaginary axis when d  . We are 
interested in determining both the delay independent and delay-dependent conditions of the system. 
To simplify the analysis we replace s by j . Now, we turn our attention to find the delay that 
produce frequencies on the imaginary axis. Then system (5) is said to be asymptotically stable 
independent of delay if [23]: 

0)det(    j

d eAAIj       ),0(  , 0     (8) 
If (8) is not satisfied for some values of   then the system is delay-dependent stable. Now the 

problem is to find the crossing frequency, c  , where the roots crosses the imaginary axis. To find 
the crossing frequencies we use the spectral radius in the following definition. 

 
Definition 1 [24]: 
The spectral radius of two matrices pair is defined as: 

 0)det(min:),(  dd AAAA 
         (9) 

where )(Ai is the ith eigenvalue of the matrix A and ),( di AA  is the generalized eigenvalue 
of matrix pair A, and Ad. 

 
The computation of the delay margin is carried out in the   domain. To compute the 

maximum delay margin we adopt the sweeping test [25]. The sweeping test is very valuable tool 
especially with the advances in the computing capabilities of the today's computers. The seeping test 
is better for its simplicity with less computation and accurate results. To find the delay margin of the 
LFC system we use the following theorem. 
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Theorem 1:[24]  
For the system (5) stable at τd=0, i.e., A+Ad is stable and rank(Ad)=q, we define 
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Then iqid   1min: , and the system in (5) is stable for all ),0[ d   and becomes unstable at 

d  .  
Proof [23-26]: 
The system (5) is stable independent of the time delay if the following condition is satisfied: 

 1),(),(    j

dd eAAIjAAIj  for 0 , 0      (10) 

Condition (10) implies that the system is stable with 0 , that is, 0)det(  dAA . Now we 
assume that the system becomes unstable for some value of  . This means  d . Now, we 
assume that: 

0)det(    j

d eAAIj  ),0(             (11) 
This can be true for i

k  , and consequently at this condition: 
1),(  di AAIj  ni ,...,1              (12) 
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Corollary 1 [24]:  
The system (5) is stable independent of delay if and only if: 
(i) A is stable, 
(ii) A+Ad is stable, and 
(iii) ,1),(  dAAIj  0  

The three conditions in Corollary 1 represents the delay independent stability, where (i) states 
that the system is stable at 0 , (ii) the system is stable at   and (iii) the system is stable for 
every   in the range ),0[  .  

Theorem 1 determines both the delay independent and the delay dependent stability. First we 
can verify the delay independent stability by checking the following condition: 

1),(  dAAIj  ),0(   

If the above condition is satisfied then the system is stable independent of time delay and if it is 
not satisfied for some values of ω that makes 1),(  dAAIj  then we calculate the crossing 

frequencies using the algorithm in Fig. 2. Finally we compute the exact delay margin. The algorithm 
can be summarized as follows: 

Step 1: With the given system parameters, compute A and Ad. Using the sweeping test, check if 
the system is stable independent of delay or not, that is 1),(  dAAIj  for ),0(  . If for some 

values of  , 1),(  dAAIj , then proceed to step 2, otherwise the system is stable independent 

of the time delay. 
Step 2: Define a range ],[ 21  . At 1  the spectral radius 1),(  dAAIj  and at 2  the 

spectral radius 1),(  dAAIj . Now the crossing frequency, c , lies in the range from 1  to 2

, in other words ],[ 21  c . 
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Step 3: Use the binary iteration to find the crossing frequency, c , with a given error tolerance 

e  [27, 28]. We set 2/)( 21  new , if 1),(  dnew AAIj  then new 2 and if 

1),(  dnew AAIj  then new 1 . Now the search range is reduced every iteration until the desired 

accuracy is reached. 
Step 4: When the desired accuracy is reached we calculate i

k , the crossing angles,  through 
solving i

kj

d

i

ki eAAIj   ),( . Finally, i
k

i
knkd  /min

1 
  is the desired delay margin. 

4. Case Study: One-Area LFC system 

To compare the results of our proposed method with the published ones we use the same 
parameters in [16,18,22]. The parameters of the LFC system shown in Fig. 1 are given as: Tch=0.3, 
Tg=0.1, R=0.05, D=1.0, β=21.0 and M=10. Under open communication network the remote terminal 
unit (RTU) sends the signals to the central controller through the shared network, and then the 
controller sends the commands back. In most of the studies these two delays are aggregated into a 
single delay and this assumption is made in this paper. The ACE signals are updates every 2-4 s [10]. 
In power systems the data collection is in the order of 1−5 s [4]. The results of the delay margin with 
different values of the controller gains, KP and KI are shown in Table 1 along with the results of the 
methods in [16,18,22]. It should be noted that the method in [22] gives the most accurate reported 
delay margins. Table 1 shows clearly that the proposed method gives almost exactly as the results of 
the method reported in [22], however, the proposed method is simpler with less computations. 

 
Figure 2. The delay margin calculation algorithm  
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The delay margin as function of the integral gain for various values of the proportional gain with the proposed 

method and the method reported in [22] are shown in Figs 3-9. As can be seen the proposed method accurately 

determines the delay margin for the single-area LFC system. The relative error between the proposed method 

and the method published in [22] is very small. The average relative percentage error is 0.023867% which 

shows that the delay margin values are nearly exactly as the same reported in [22]. 

 

Table 1. The delay margin for different values of KP and KI 

 
τd, s KI 

KP Method 0.05 0.1 0.15 0.2 0.4 0.6 1.0 
0 Theorem.1 

[22] 
[18] 
[16] 

30.928 
30.915 
30.853 
27.927 

15.207 
15.201 
15.172 
13.778 

9.961 
9.960 
9.942 
9.056 

7.338 
7.335 
7.323 
6.692 

3.382 
3.382 
3.377 
3.124 

2.042 
2.042 
2.040 
1.910 

0.923 
0.923 
0.922 
0.886 

.05 Theorem.1 
[22] 
[18] 
[16] 

31.851 
31.875 
31.498 
27.874 

15.687 
15.681 
15.647 
14.061 

10.277 
10.279 
10.258 
9.284 

7.573 
7.575 
7.561 
6.866 

3.502 
3.501 
3.496 
3.215 

2.122 
2.122 
2.119 
1.974 

0.970 
0.970 
0.969 
0.927 

0.1 Theorem.1 
[22] 
[18] 
[16] 

32.769 
32.751 
30.415 
27.038 

16.127 
16.119 
15.765 
13.682 

10.575 
10.571 
10.547 
9.220 

7.793 
7.794 
7.777 
6.941 

3.610 
3.610 
3.604 
3.290 

2.194 
2.194 
2.191 
2.029 

1.012 
1.012 
1.011 
0.963 

0.2 Theorem.1 
[22] 
[18] 
[16] 

34.198 
34.226 
28.010 
25.114 

16.860 
16.856 
14.597 
12.760 

11.060 
11.062 
10.107 
8.617 

8.160 
8.162 
7.821 
6.535 

3.792 
3.792 
3.784 
3.320 

2.313 
2.313 
2.309 
2.108 

1.079 
1.079 
1.077 
1.016 

0.4 Theorem.1 
[22] 
[18] 
[16] 

35.802 
35.834 
22.457 
20.364 

17.661 
17.658 
11.835 
10.426 

11.596 
11.594 
8.287 
7.065 

8.559 
8.559 
6.505 
5.384 

3.981 
3.980 
3.718 
2.832 

2.426 
2.426 
2.419 
1.912 

1.118 
1.118 
1.116 
1.017 

0.6 Theorem.1 
[22] 
[18] 
[16] 

34.906 
34.922 
16.033 
14.618 

17.198 
17.195 
8.624 
7.477 

11.280 
11.278 
6.209 
5.157 

8.311 
8.312 
4.997 
3.958 

3.826 
3.826 
3.038 
2.130 

2.281 
2.281 
2.178 
1.475 

0.947 
0.947 
0.964 
0.827 

1.0 Theorem.1 
[22] 
[18] 
[16] 

0.595 
0.596 
0.594 
0.546 
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Figure 3. The delay margin as function of the integral gain, KI with KP=0 

 

Figure 4. The delay margin as function of the integral gain, KI with KP=0.05 

 

Figure 5. The delay margin as function of the integral gain, KI with KP=0.1 
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Figure 6. The delay margin as function of the integral gain, KI with KP=0.2 

 

Figure 7. The delay margin as function of the integral gain, KI with KP=0.4 

 

Figure 8. The delay margin as function of the integral gain, KI with KP=0.6 
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Figure 9. The delay margin as function of the integral gain, KI with KP=1.0 

Case I (KP=0 and KI=0.4): In [22] it is reported that the delay margin with KP=0 and KI=0.4 is 3.382 
s, with the proposed method it is 3.382 s. The proposed method gives accurate values of the delay 
margin as the method reported in [22]. The proposed method give less conservative results than the 
LMI methods reported in [16,18]. To validate the results, simulations with Matlab/Simulink are 
carried out. The frequency response of the LFC system with KP=0 and KI=0.4 for different values of 
the time delay is shown in Fig. 10. A 0.1 p.u change in the load occurs at 10 s. Fig. 10 shows the 
frequency response with 3.3 s, 3.382 s and 3.4 s, and it is clear that the system is stable with 3.3 s and 
unstable with 3.4 s. From the simulation the system is marginally stable with 3.384 s. The percentage 
error with the simulation based delay margin is 0.071%. For this system we have only one generalized 
eigenvalue. The spectral radius as function  of ω is shown in Fig. 11. From Fig. 11 the crossing 
frequency is 0.4025 rad/s, solving (14), we have θ = 1.3678 rad which makes the delay margin equals 
3.382 s. From Fig. 10 the oscillating frequency is 0.4025 rad/s which proves the validity of the results. 

 

Figure 10. The frequency response for different values of the time delay with KP=0 and KI=0.4 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

K
I

 m
ax

 (
s)

 

 

Theorem 1

The Method in [1]

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

0

2

4

6

8

10
x 10

-3

Time, (seconds)

F
re

qu
en

cy
 D

ev
ia

tio
n,

 
f,

(p
.u

)

 

 

 = 3.300 s

 =3.382

 = 3.400 s

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0146.v1

Peer-reviewed version available at Energies 2018, 11, 3460; doi:10.3390/en11123460

http://dx.doi.org/10.20944/preprints201810.0146.v1
http://dx.doi.org/10.3390/en11123460


 

 

Figure 11. The spectral radius as function of ω for KP=0 and KI=0.4 

Case II (KP=0.6 and KI=0.6): In [22] it is reported with KP=0.6 and KI=0.6 that the delay margin is 
2.281 s, while with our method it is 2.281 s. The frequency response with different delays is shown in 
Fig. 12. The system is stable with 2.1 s, however it becomes unstable with 2.4 s which is larger than 
the delay margin. The simulation based delay margin is 2.282 s. The crossing frequency is 0.8015  
rad/s , solving (14) for θ then; θ = 1.8283 rad. Fig. 13 shows the spectral radius as function of ω for 
KP=0.6 and KI=0.6. 

Case III (KP=0.05 and KI=0.05): In [22] it is reported with KP=0.05,KI=0.05 that the delay margin is 
31.875 s, while with our method it is 31.8509 s. The frequency response with different delays is shown 
in Fig. 14. The system is stable with 31.8509 s, however it becomes unstable with 33 s which is larger 
than the delay margin. The simulation based delay margin is 31.88 s. The relative percentage error is 
0.0438%. The crossing frequency is 0.0502  rad/s , solving (14) for θ then θ = 1.596 rad. Fig. 15 shows 
the spectral radius as function of ω for KP=0.05 and KI=0.05. 

 

Figure 12. The frequency response for different values of the time delay with KP=0.6 and KI=0.6 
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Figure 13. The spectral radius as function of ω for KP=0.6 and KI=0.6 

 

Figure 14. The frequency response for different values of the time delay with KP=0.05 and KI=0.05 

The delay margin for different values of the PI controller gains is shown in Fig. 16. The delay 
margin dependence on KI, and KP showed similar behavior as in [16,18,22]. Additionally, the crossing 
frequencies and crossing angles are shown in Table 2 and 3 respectively. The variation of the crossing 
angle and the crossing frequency gives more details on the dependence of the delay margin on KP 
and KI. From Fig. 16 the delay margin decreases with increasing KI if KP is kept constant. The delay 
margin increases as KP increase in the range KP<0.4, then the delay decreases as KP becomes larger 
than 0.4. This is the same behavior observed in [16,18,22]. The delay margin becomes large for small 
values of KP and KI. 

  

Table 2. The crossing angle with different values of KP and KI 

 

θ KI 
KP 0.05 0.1 0.15 0.2 0.4 0.6 1.0 
0 1.546 1.521 1.496 1.471 1.368 1.257 0.989 

0.05 1.596 1.571 1.546 1.521 1.418 1.307 1.041 
0.1 1.646 1.621 1.596 1.571 1.468 1.358 1.092 
0.2 1.747 1.722 1.696 1.671 1.567 1.456 1.187 
0.4 1.956 1.929 1.902 1.875 1.765 1.647 1.349 
0.6 2.184 2.153 2.123 2.092 1.968 1.828 1.419 
1.0 1.435 1.413 1.390 1.365 1.262 1.152 0.934 

 
From Table 3, the LFC system oscillate with lower frequencies for small values of KP and KI. The 

LFC system tends to oscillate with higher frequency with large values of KP and KI. 
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Figure 15. The spectral radius as function of ω for KP=0.05 and KI=0.05  

 
Figure 16. The delay margin with different values of KP and KI 

 

 Table 3. The crossing frequency with different values of KP and KI 

Ω KI 
KP 0.05 0.1 0.15 0.2 0.4 0.6 1.0 
0 0.0500 0.1000 0.1502 0.2005 0.4045 0.6153 1.0714 

0.05 0.0501 0.1002 0.1505 0.2009 0.4050 0.6161 1.0732 
0.1 0.0502 0.1005 0.1509 0.2016 0.4067 0.6187 1.0784 
0.2 0.0511 0.1021 0.1534 0.2048 0.4133 0.6295 1.1004 
0.4 0.0546 0.1092 0.1640 0.2191 0.4434 0.6789 1.2065 
0.6 0.0626 0.1252 0.1882 0.2518 0.5143 0.8015 1.4981 
1.0 2.4102 2.4120 2.4151 2.4193 2.4462 2.4861 2.5867 

 

The delay margins, crossing angles and the crossing frequencies with different values of KI when 
KP=0 are shown in Table 4. It is interesting to observe that the crossing frequency with KP=0 
numerically equals KI. As KP is made larger than 0.2, the crossing frequency increases with increasing 
KP 

 Table 4. The delay margin for various values of KI and KP=0 

KI θ ω τd 
0.05 1.5460 0.0500 30.9283 
0.1 1.5212 0.1000 15.2066 

0.15 1.4963 0.1502 9.9614 
0.2 1.4712 0.2005 7.3375 
0.4 1.3678 0.4045 3.3816 
0.6 1.2566 0.6153 2.0422 
1.0 0.9889 1.0714 0.9230 
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The proposed method has been compared with four different published methods. The delay 

margin results are less conservative than the results of the LMI method reported in [16,18], however, 
the LMI method which are time domain methods have an advantage of dealing with time varying 
delays. The results of the delay margin are equal to the delay margins obtained by the frequency 
domain methods reported in [20,22], however, the proposed method is simpler for implementation. 

5. Conclusions 

In this paper we propose a method for analyzing the stability of load frequency control system 
with communication delay. The method is a frequency domain method without any approximation 
to the resultant delay system. The delay margins are computed through the binary iteration and the 
sweeping test. A single-area load frequency control system has been chosen as case study and the 
delay margin values have been compared with values reported in the literature. The method gives 
accurate delay margin which is proved by time delay simulation and comparison with the published 
methods. The main two advantages of the proposed method is its accuracy and simplicity compared 
with the other methods. Additionally, the method can determine accurately the oscillating frequency 
of the load frequency control system when the time delay equals the delay margin. The proposed 
method in this paper is applied to single delay load frequency system. The method will be extended 
to deal with multiple time delays which is the case for multi-area load frequency control system. 
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