
Article

Smart Process Optimization and Adaptive Execution
with Semantic Services in Cloud Manufacturing∗

Luca Mazzola 1,†,∗ , Philipp Waibel2, Patrick Kaphanke 3,†, and Matthias Klusch 4

1 HSLU – Lucerne University of Applied Sciences; School of Information Technology (informatik); CH-6343,
Rotkreuz, Switzerland; email: luca.mazzola@hslu.ch

2 TU Wien – Distributed System Group; Austria; email: p.waibel@gmail.com
3 EVANA; Saarbrücken, D-66123, Germany; email: p.kapahnke@evana.de
4 DFKI – German Research Center for Artificial Intelligence, Saarland Informatics Campus D3.2;

Saarbrücken, D-66123, Germany; email: matthias.klusch@dfki.de
* Correspondence: mazzola.luca@gmail.com or luca.mazzola@hslu.ch; Tel.: +41 41 757 68 90
† L. Mazzola and P. Kapahnke worked at DFKI during CREMA project and the ODERU development.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Abstract: A new requirement for the manufacturing companies in Industry 4.0 is to be flexible with 
respect to changes in demands, requiring them to react rapidly and efficiently on the production 
capacities. Together with the trend to use Service-Oriented Architectures (SOA), this requirement 
induces a need for agile collaboration among supply chain partners, but also between different 
divisions or branches of the same company. In order to address this collaboration challenge, we 
propose a novel pragmatic approach for the process analysis, implementation and execution. This 
is achieved through sets of semantic annotations of business process models encoded into BPMN 
2.0 extensions. Building blocks for such manufacturing processes are the individual avaialble 
services, which are also semantically annotated according to the Everything-as-a-Service (XaaS) 
principles and stored into a common marketplace. The optimization of such manufacturing 
processes combines pattern-based semantic composition of services with their non-functional 
aspects. This is achieved by means of Quality-of-Services (QoS) based constraint optimization 
problem (COP) solving, resulting in an automatic implementation of service-based manufacturing 
processes. The produced solution is mapped back to the BPMN 2.0 standard formalism by the 
means of introduced extension elements, fully detailing the enactable optimal process service plan 
produced. This approach allows enacting a process instance, using just-in-time service leasing, 
allocation of resources, and dynamic replanning in case of failures. This proposition provides the 
best compromise between external visibility, control and flexibility. I n t his w ay, i t p rovides an 
optimal approach for business process models implementation, with a full service-oriented taste, 
by implementing user-defined Q oS m etrics, j ust-in-time e xecution a nd b asic d ynamic repairing 
capabilities. This paper presents the described approach, the technical architecture and depicts 
one initial industrial application in the manufacturing domains of aluminum forging for bicycle 
hull body forming, where the advantages stemming from the main capabilities of this approach are 
sketched.
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1. Introduction27

As every other aspect of the everyday life, also the manufacturing domain is strongly influenced28

by innovations in the Information and Communication Technologies (ICT) [1,2]. Companies need to29

flexibly react to changing demands to remain competitive in a dynamic market [3]. The impact of30

ICT in this domain is broadly known as Industry 4.0 and ranges from the application of artificial31

intelligence in robot-assisted production to the usage of Internet of Things (IoT) devices, always32

connected and controllable just-in-time [4].33

Traditionally, a Process Model (PM) is designed by the expert to represent in a standard language,34

such as the Business Process Model Notation (BPMN), an abstract representation of the modus operandi35

and the set of operations adoptable to achieve the expected goal. These elements basically translates36

into a set of flow objects to represent events (such as Start, Intermediate, and Stop), activities (practical37

elementary actions, called Task), and Gateways (conditions, or events, based adaptation of the path,38

representing decision points). A particular instantiation of the PM, based on the relevant set of39

variables and conditions takes the name of Process Instance (PI). To transform a PI into an enactable40

model, it is necessary to associate each task T with one or more services available to allow it execution41

in the physical world, achieving in this way its expected goal. Each service (of combination of42

them) used in this way is called grounding service for the task T. The set of evaluated gateways43

and of provided grounding services for a full PI is known as Process Service Plan (PSP). Additional44

requirement to support a full enactability of the PSP by an execution environment is the existence45

of a contextual environment to be used for services deployment, plus the presence of the variables46

bindings amongst the set of grounding services, to support the exchange of all the information47

required for a correct service instantiation. During the process execution, meaning the ordered48

instantiation of the grounding services, a process registry, also known as PSP log or execution log,49

is created by the RunTime execution environment and used to track the operations performed and50

their outcomes. Whenever one or more of the grounding services in a PSP become, temporarily or51

definitively, unavailable we define this as a "broken" PSP. This situation requires a dynamic adaption52

to support the process execution completion, by providing an alternative set of available grounding53

services for the lacking tasks, using also the information provided by the PSP log.54

There are multiple preconditions for allowing Industry 4.0 real-world applications. For instance,55

the need to formally define the domain in terms of ontological knowledge, the demand to give56

formalized representations of the executable services, and the requirement of independence between57

business process models, their instantiation in the current context and the available services usable to58

executed the models. This calls for supporting tools that can provide effective composition of services59

in the context of Everything-as-a-Service (XaaS) and Service-Oriented Architectures (SOA) systems,60

together with their semantic variant, named SemSOA.61

Along the same line, manufacturing business processes have to be designed and executed62

in a more dynamic production context, thus creating the need for adaptation and optimization63

at design time as well as at run-time [5]. As a consequence, the design of process models for64

business applications has to go further than what the BPMN standard can support, as it needs to65

comprise representations for functional and non-functional requirements. This exceeds what can be66

specified in traditional Business Process Modeling (BPM) systems, which does not include semantic67

representations of product models and manufacturing services as well as Key Performance Indicator68

(KPI) requirements and Quality of Service (QoS) aspects. Moreover, effective supporting tools need69

to be able to provide reliable model optimization to achieve the best executable PSP for business70

processes. Eventually, the provided PSPs should be designed to support effectively a run-time71

incremental re-planning, in case an included service is temporarily failing or becomes unavailable.72
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Additionally, a sustainable approach requires just-in-time service leasing, their elastic deployment on73

request into the cloud, their monitoring, and billing.74

Due to the unavailability of solutions to tackle these issues in an integrated way [6], we75

developed a set of components whose cooperation can pragmatically solve the presented points.76

Starting from the ontology necessary for the domain and business cases description and77

reasoning, and the wrapping of services into their semantic characterization, the approach should78

be able to select the set of compliant services, available to implement the tasks. Subsequently, it79

should support the composition of functionally correct PSPs based on semantic annotations, while80

optimizing their non-functional aspects formalized in terms of a Constrained Optimization Problem81

(COP). The resulting complete PSP is encoded back into specifically developed BPMN 2.0 extensions.82

This approach partially bridges the gap between models and executable plans and provides at the83

same time the best variable assignments to optimize the outcome of the execution.84

Cascading to the availability of the optimal PSP, a pragmatic tool for manufacturing in85

Industry 4.0 should provide an execution environment able to efficiently deploy the services86

grounding on the cloud, control them and react on eventual failure, with a smart re-planning policy.87

The rest of the paper is organized as follows: In Section 2, the related work is presented, then88

Section 3 describes the set of components envisioned and developed into the CREMA framework;89

while Section 4 introduces an exemplary test case in the Manufacturing domain. This includes a90

short overview of the scenario, followed by Section 5 with a brief description of the role of each of the91

components in this context. Then, Section 6 gives some initial thoughts about the modifications that92

were required to achieve our demonstrator and the extendability of the presented use case towards93

a pragmatical approach for Industry 4.0 in Manufacturing. The conclusions are eventually given in94

Section 7.95

2. Related Work96

Multiple different domains are affected by our proposed approach. This section gives a brief97

overview of the current status of them, in particular with respect to the following themes: SOA and98

it semantic variant used for service matching and composition; XaaS approach; Business Process99

optimization by user-defined KPI and QoS metrics; PSP composition, including variable bindings100

and optimal configuration; elastic process execution in the cloud; aspects of fault tolerance in101

business processes realization; and deployment of Container based software as supporting solution102

for heterogeneous services enactment.103

The key idea of semantic web services (in short: semantic services) is to enable service-based104

applications or intelligent agents to automatically understand what the services are actually doing105

by encoding their functional and non-functional service semantics not only in a standardized106

machine-readable but machine-understandable way [7]. That is achieved by describing the semantics107

of web service interface elements by annotating them in particular with references to concepts108

and rules which are formally defined in a shared ontology such as in W3C standard ontology109

language OWL2 or RDFS. These well-founded formal semantic annotations can then be exploited110

by applications and agents with appropriate formal reasoning techniques in order to perform, for111

example, automated service composition planning and high-precision service discovery.112

Everything-as-a-Service [8] is a concept common in the cloud computing infrastructure field113

and denotes an approach where every resource is seen as a service, and the search, selection, and114

invocation is bound to well-defined public interfaces. Another fundamental element of XaaS is the115

abstraction between the concrete instantiation of the service and its (semantic) description, supporting116

in this way a complete decoupling of the model from the service-based plan implementing it.117

Following the paradigm of Semantic Service-Oriented Architectures, manufacturing process118

models are automatically implemented with semantic services by the application of appropriate119

techniques for semantic service discovery, selection, and composition planning.120
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The key idea is to enable automated understanding of task requirements and services by121

providing semantic descriptions in a standardized machine-understandable way by using formal122

ontological definitions [7], for example in OWL21. In [9], the authors propose SBPM, a framework123

to combine semantic web services and BPM to overcome the problem of automated understanding124

of processes by machines in a dynamic business environment. Similarly, the authors of [10] propose125

sBPMN, which integrates semantic technologies and BPMN to overcome the obvious gap between an126

abstract representation of process models and actual executable descriptions in BPEL. [11] follows the127

same track with the proposal of BPMO, an ontology, which partly is based on sBPMN, while [12] takes128

sBPMN as basis for the Maestro tool, which implements the realization of semantically annotated129

business tasks with concrete services by means of automatic discovery and composition. In [13], a130

reference architecture for semSOA in BPM is proposed, which aims to address the representation131

discrepancy business expertise and IT knowledge by making use of semantic web technologies. All132

of these proposals rely on formalization different from (although based on) BPMN or do not aim for133

a full integration from a formalism point of view. In the work [14] the authors propose an approach134

that uses BPMN extensions to add semantic annotations for automatic composition of process service135

plans and to verify their soundness, but this approach does not consider QoS-aware or run-time136

optimization. Adopting a similar approach, our demonstrator proposes a set of BPMN extensions137

that not only enable interoperability by offering process model composition, task service selection138

and process execution, but also provide a way to represent the best values to optimize the QoS and139

the quality values achieved.140

Our optimized PSP creation component applies state of the art semantic service selection141

technologies [15] for implementing annotated process tasks. Non-functional criteria often referred142

to as QoS (e.g., costs, execution time, availability), can additionally be considered to find matching143

services in terms of functional and non-functional requirements [16,17]. Here, optimality with respect144

to the non-functional QoS specifications is achieved on the process model level by solving (non-)linear145

multi-objective COP (muCOP) as an integrated follow-up to the pattern-based composition.146

Most existing approaches to PSP composition do not cover the combination of functional147

(semantic) aspects and non-functional (QoS-aware) optimization. For example, [12,18,19] consider148

functional semantic annotations to implement business processes by means of a service composition149

plan. [20] provides a survey giving an overview of existing approaches and initiatives in this150

direction and highlights research questions. Integrated functional and non-functional optimization151

has rarely been considered, with the notable exception of [21]. While composition typically includes152

the computation of possible data flows, our approach proposal additionally finds optimal service153

variable assignments that are also required for executing the resulting plans. This is a feature154

not yet considered by existing work. Moreover, our PSP computation component is equipped to155

perform re-optimization of PSPs at run-time upon request, which is also a novel feature. Finally,156

our optimization component employs means of RDF stream processing to react to service changes157

(non-functional QoS aspects) reported by the service registry. This information can be used to trigger158

optimizations pro-actively if the RDF stream engine identifies that a previously computed PSP is159

affected.160

Although the services are an established concept in computer science, the recent trend towards161

micro-services has triggered several innovations. One of these innovations are container based162

deployment techniques [22] such as Docker2, rkt3 or LXC4. These containers can be regarded as163

lightweight VMs that allow service developers to bundle all dependencies within one container and164

do not require any further configuration upon deployment. In the beginning, this approach was only165

1 W3C standard: https://www.w3.org/TR/owl2-overview/
2 https://www.docker.com
3 https://coreos.com/rkt/
4 https://linuxcontainers.org/
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considered for the micro-service domain [23], but soon they have also been applied to other domains,166

such as the integration of legacy services [24] or in our scenario for integrating heterogeneous services167

into business processes. Furthermore, containers have a better startup performance and a lower168

resource footprint than established virtual machines (VMs) [25], which makes them an obvious choice169

for an on-demand process execution environment.170

In the field of elastic process execution the following publications are relevant to the work171

at hand. ViePEP (Vienna Platform for Elastic Processes) is an eBPMS (elastic Business Process172

Management System) that combines the functionality of a traditional process engine with a cloud173

controller [26,27]. By doing this, the platform is capable of using cloud resources, in the case of174

ViePEP VMs, to execute software based processes and the corresponding process tasks on them.175

Moreover, ViePEP optimizes the enactment of the services on the available cloud resources in a176

cost-efficient way without violating predefined Service Level Agreements (SLAs) [28]. Similar to our177

work, ViePEP uses software-based services as representative execution entities for the process tasks.178

However, in comparison to our approach, ViePEP does not provide an automatic service selection, as179

our approach provides it. Therefore, it can not provide the functionality described in this work, e.g.,180

automatic service matching and composition or process optimization during the runtime in a failure181

case. Another difference to our proposed approach is the execution of the service on VMs instead of182

Containers. Despite those differences, ViePEP comes closest to our work.183

Another work that uses cloud-based computational resources, in the form of VMs, in an184

on-demand fashion to execute process tasks is presented by Juhnke et al. [29]. Their approach is185

using a BPEL-based process representation. As already described, by relying on BPMN v2.0 we can186

simplify the interpretation of the executable process service plans.187

Similar to ViePEP the works of Wei and Blake [30], Bessai et al. [31] and Cai et al. [32] are using188

VMs to enact business processes, respectively the process tasks of them, on cloud resources. However,189

also those approaches are not providing an automatic service selection, which leads again to a lack190

of flexibility during the process execution, especially in the case of a necessary reconfiguration if a191

service is not available.192

3. CREMA: Towards Industry 4.0 for Manufacturing193

The objective of this work is to provide a pragmatic solution for implementing an Industry 4.0194

approach in the manufacturing domain. This is based on the smart process composition supported195

by the usage of semantic services, together with the possibility to optimize the service plan through196

a novel definition of requirements and objectives. That is facilitated by an ad-hoc developed197

COP language for defining QoS-based functions, that can be embedded into BPMN extensions.198

As a dynamic and just-in-time adaptation to frequently changing execution context and service199

availability, the proposed approach provides an Adaptive Instances Execution, by automatically deal200

with "broken" PSPs and repairing them seamlessly using services, or a combination of them.201

In the following sections we present each individual component required to implement this202

vision: we start by the ontology and its usages (§ 3.1), followed by a short depiction of the helper UI203

for the semantic services annotation (§ 3.2). With these two elements in place, it is possible to define204

the process model (PM) in BPMN, together with the additional elements that define its semantic205

meaning, by the usage of an extended BPMN editor (§ 3.3). When the user requires the execution of206

the process, an optimized PSP is computed by the system, through semantic service matching and207

COP solving on the QoS defined objective function (§ 3.4). This PSP is then executed by the runtime208

environment (§ 3.5). The runtime environment then uses the invocation and controlling capabilities209

of the deployment component (§ 3.6), that controls the retrieval, instantiation and feedback collection210

of the services on the cloud resources.211
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3.1. Ontology Exploration, Validation, Extension, and Editing212

For our solution described in this paper, we propose a reference domain ontology called213

CDM-Core [33], which provides OWL2 descriptions of concepts from the manufacturing domain.214

Figure 1. The definition of the concept "Robot" in the developed ontology, represented using the OWL
abstract syntax. Here the expressive richness of an ontology is evident, by allowing to express complex
knowledge. A Robot equips exactly a RobotCell and includes a Controller, plus being completed by
some Tool (of the supported types) and Motor. It performs some Manufacturing_operation.

Figure 2. The use of the CDM-Core ontology for a data stream semantical enrichment (also called
sometimes RDFication).

The released version is publicly available under the Creative Commons license (CC BY-SA 3.0) on215

https://sourceforge.net/projects/cdm-core/ and concentrates on hydraulic metal press maintenance216

and car exhaust production, but for the current work, we designed an extension to cover the forge217
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Figure 3. Extract of the lightweight web interface for ontology exploration and manipulation. In the
superimposed window, the underlying ontology extract (in RDF/XML syntax) is presented together
with the visual object correspondences, highlighted by color (function) and numbers.

by aluminum based injection process. As an example, Fig. 1 reports the OWL representation of the218

concept "Robot" using an abstract syntax, for readability reasons.219

Additionally, the ontology can be used for creating an enriched version of industrial data stream220

from IoT devices, such as in the case of Fig. 2, where a multi-reader device provides a set of values221

for a controlled pneumatic circuit. In this particular example, it is possible to see how the raw (tab222

separated) input is transformed into an RDF (Linked Data enabled) fact. Here the flow concentrates223

only on the field marked in red, to show how every single measurement existing in the stream is224

transformed.225

As modifying an ontology is not a simple task, in particular, due to the strict formalism required,226

we also developed a very lightweight helper interface [34], to provide minimal support in this task227

to domain expert and business-oriented process modelers. This is a very initial effort towards better228

sustainability and acceptance of ontologies and formalized domain knowledge as a base for industrial229

and business modeling efforts. Figure 3 presents a small extract of its representation capabilities,230

showcasing the translation of a CDM-Core segment in RDF/XML syntax (in the small overlapping231

window) into a set of graphical objects.232

3.2. Service and Task Annotation233

In order to enable a XaaS abstraction, all services require to be wrapped with semantic234

annotations of their external behaviors. For this, the W3C recommendation OWL-S [35] is used,235

which provides means for not only Inputs, Outputs, Preconditions, and Effects (IOPE) annotations, but236

also for the QoS aspect required by the non-functional optimization. QoS aspects are not predefined237

in OWL-S, but can be adapted flexibly to the specific use case at hand. Definitions for various QoS238

aspects are defined in the CDM-Core ontology (or can be defined based on it in terms of extensions)239

and could, for example, represent monetary costs of using a service, operation cycle time of a machine240

or accumulated failure probability.241

Figure 4 presents the basic UI provided by our architecture for working with service semantic242

annotation. In the bottom section, the IOPE annotations are visible, together with the variables243

section, that allows binding environmental variables to the service execution, for run-time usage.244

The over-imposed boxes give an impression of potential instantiation for each semantic annotation245
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Figure 4. A screenshot of the service and task annotation tool, with some example sections for the
variables and IOPE annotations. In the round over layer, an example of the search for concepts and
relationship in the semantic space provided by the CDMCore ontology.

element. Additionally, the round overlay shows the search interface, to support the search and246

management of available semantic concepts (and relationship) names from the CDM-Core ontology.247

At the moment, no semantic checking of compatibility is anyway performed, as this will heavily248

overload the solution.249

3.3. Process Model Composition, Annotation, and Parametrization250

Once the semantic source for the domain definition has been specified and the semantically251

annotated services have been created, the process models can be created.252

In order to be able to automatically compose functionally valid process service plans given a253

process model, it is necessary that process tasks are equipped with structured semantic descriptions.254

Following the SemSOA approach, IOPE of tasks are described in terms of formalized ontological255

domain knowledge.256

These are basically BPMN models, enriched by a set of annotations to define the semantic257

behaviors of each task, in terms of IOPE. This means, that the semantic annotations are embedded258

in the BPMN model by making use of extension elements at the task level. At this stage, a default259

semantic service can optionally be bound by the process designer, when considered useful as a260

default and zero-effort option for the process implementation. Additionally, the editor allows to261

add variables that can be used during the process instantiation and explore the produced XML262

encoding for the process model, for debugging purposes with respect to BPMN. Figure 5 present263

a screenshot for the CREMA process model editor, with a simple model for forging the single hull of264

an aluminum-based bike frame by injection.265

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0143.v1

Peer-reviewed version available at Information 2018, 9, 279; doi:10.3390/info9110279

http://dx.doi.org/10.20944/preprints201810.0143.v1
http://dx.doi.org/10.3390/info9110279


9 of 25

Figure 5. A screenshot of the enriched BPMN editor: on the right side a designed process model, and
on the left (partially visible) the definition of the associated constrained optimization problem.

3.4. Process Optimization by COP Solving with Semantic Services266

To provide a service-based solution, we developed a one-stop process service plan composition267

and optimization component for extended BPMN [36]. In order for the proposal to be optimal with268

respect to the set of possible functionally valid solutions, it has to make particular choices driven269

by non-functional requirements, which are expressed as functions of the QoS measures provided by270

the services. Moreover, it computes concrete settings of service input parameter values, which yield271

optimal results in terms of the optimization criteria.272

This is done by specifying a COP at the process model level, whose solutions dictates what273

services to choose from and what parameter settings to use when calling services. The COP274

formulation includes information on how to map optimal parameter values to service inputs and275

service QoS to COP constants. The outputs produced by the optimization component are PSPs276

encoded in the original BPMN itself by making use of BPMN extensions. Besides the optimal services277

and input values for calling the services as described above, this also includes possible data flows278

with parameter bindings among services. Such a PSP implementing the process model can then be279

instantiated at run-time by a process service plan execution environment.280

To achieve this the optimization component follows two steps in a sequential manner: (a)281

it performs an Pattern-based composition using semantic service selection for all semantically282

annotated process tasks and the computation of possible data flows. Then, it executes a (b) QoS-aware283

non-functional optimization by means of COP solving on the process model level. This second step284

selects particular services out of sets of functionally fitting services per tasks previously identified285

and provides the optimal settings for service inputs.286

This workflow can be applied at design time and run-time (of a process model execution287

instance). At design time, the optimization component will be called after a process model has been288

defined in order to provide an executable implementation of the model as guidance for the execution289

environment. The run-time case appears as soon as a PSP is executed. Additionally, the execution290

environment can query back the optimization to provide alternative PSPs in case of an exception291

during execution (e.g., a service becoming unavailable or failing). For this, the plan enacting tool292

should not only provide to the optimization component the PSP it tried to execute, but also the293

current state of execution. This includes information on what services have already been executed,294
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how gateways have been evaluated and what services caused errors during execution. The aim of295

this component in the run-time case is then to provide an alternative solution for the given process296

instance. That is, it tries to patch the existing PSP and considers the current state of the world as fixed297

and not undoable, nevertheless trying to re-implement in an optimal way the part of process model298

still uncovered or not correctly executed.299

Listing 1: antlr4 grammar for Constraint Optimization Problems.
1 grammar COPSE2_meta;

2
3 problem: ’PROBLEM ’ type solver problemclass probleminstance output? ’END PROBLEM ’;

4
5 type: ’TYPE’ Linear Objective ’END TYPE’;

6 Linear: (’linear ’|’nonlinear ’);

7 Objective: (’single ’|’multi’);

8
9 solver: ’SOLVER ’ Solver ’END SOLVER ’;

10 Solver: (’centralized ’|’distributed ’|’both’);

11
12 problemclass: ’CLASS ’ variables constants? functions? constraints? objectivefunction+ ’END CLASS ’;

13
14 variables: ’VARIABLES ’ (Identifier|ArrayIdentifier)+ ’END VARIABLES ’;

15 constants: ’CONSTANTS ’ (Identifier|ArrayIdentifier)+ ’END CONSTANTS ’;

16 functions: ’FUNCTIONS ’ function+ ’END FUNCTIONS ’;

17 functionSignature: Identifier ’(’ identifierList ’)’;

18 function: functionSignature ’=’ (expr|ifexpr);

19
20 Comparison: ’>=’|’<=’|’==’|’!=’|’>’|’<’;

21 Assignment: ’=’;

22 expr: ’-’? term ((’+’|’-’) term)*;

23 term: mterm ((’*’|’/’|’^’) mterm)*;

24 dim: Identifier ’.length ’ ;

25
26 loop: (’SUM’|’PRODUCT ’) ’(’ Identifier ’,’ (Number|dim) ’,’ (Number|dim) ’,’ expr ’)’;

27
28 mterm: (Identifier|ArrayElem|REAL|’(’ expr ’)’|(’MIN’|’MAX’) ’{’ expr (’,’ expr)* ’}’|functionSignature|dim|Number|loop);

29
30 ifexpr: ’IF’ expr Comparison (expr|Number) ’THEN’ (expr|ifexpr) ’ELSE’ (expr|ifexpr) ’END IF’;

31
32 constraints: ’CONSTRAINTS ’ constraint+ ’END CONSTRAINTS ’;

33 constraint: expr (Comparison|Assignment) (expr|Identifier|Number);

34
35 objectivefunction: (’minimize ’|’maximize ’) expr (’->’ URI)?;

36
37 probleminstance: ’INSTANCE ’ variabledomains? constantvalues? ’END INSTANCE ’;

38
39 variabledomains: ’DOMAINS ’ vdomain+ ’END DOMAINS ’;

40 constantvalues: ’VALUES ’ cvalue+ input? ’END VALUES ’;

41
42 input: ’INPUT ’ inputEntry+ ’END INPUT’;

43 inputEntry: Identifier ’<-’ ’(’ Identifier ’,’ URI ’)’;

44 URI: ’http ://’ ([a-zA-Z0 -9/.])+ ’#’ ([a-zA-Z0 -9])+;

45
46 vdomain: (Identifier|ArrayIdentifier) ( Number | ’[’ Number ’,’ Number ’]’ | ’{’ Number (’,’ Number)* ’}’);

47 cvalue: (Identifier|ArrayElem) Assignment Number;

48
49 output: ’OUTPUT ’ (valueAssignment|serviceSelection)+ ’END OUTPUT ’;

50 valueAssignment: (Identifier|ArrayElem) ’->’ ’(’ Identifier ’,’ URI ’)’;

51 serviceSelection: ArrayIdentifier ’::’ Identifier;

52
53 fragment Letter: [a-zA-Z];

54 fragment ANumber: [0-9];

55 fragment INF: (’INF’|’-INF’);

56
57 Number: ((’-’? (ANumber+|ANumber* ’.’ ANumber+) (’*’ (’10’|’e’) ’^’ ’-’? ANumber +)?)|INF);

58
59 Identifier: Letter (Letter|ANumber|’_’)*;

60 ArrayIdentifier: Identifier ’[]’;

61 ArrayElem: Identifier ’[’Identifier ’]’;

62 identifierList: Identifier (’,’ Identifier)*;

63
64 WS: [ \t\r\n]+ -> skip;

300

301
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3.4.1. Constraint Optimization Problem Definition302

We defined a context-free grammar COPSE2 to represent constrained optimization problems by303

use of antlr45 (cf. Listing 1). The COP specification starts with the definition of its type (linear vs.304

non-linear, single vs. multi-objective, etc.) and continues with the declaration of the problem class.305

In this part, the variables, constants and functions are indicated, while in the last segment, any306

complex function can be defined using operators such as MAX, MIN, SUM, PRODUCT, and IF-ELSE.307

The set of constraints is then defined with respect to the variables, constants and functions already308

specified, and the objective function(s) is normally constructed by minimizing one or more functions309

(or functions combination). In case of a multi-objective, it is possible to have many of them, also in a310

combined form of a MIN-MAX COP problem.311

The COPSE2 grammar also allows to map back the achieved value to the produced PSP into a312

semantic concept. In the second part of the constraint optimization problem definition, the current313

problem instance is indicated: after defining the variables domain, and the value of the constants,314

the mapping of variables values that give the optimal solution is reported back to semantic concepts315

used as inputs of the used services.316

This approach allows the definition of complex aggregates of QoS and environment variables317

instead of mere lists of objectives for simple QoS, extending the expressive capability with respect to318

the non-functional optimization problem definition. In [37], we showcased how this flexibility can be319

useful to represent heterogeneous optimization problems.320

3.4.2. Process Service Plan321

The computation of a PSP is presented in Algorithm 1, which uses four helper functions. The322

first one is SIM (IOPEA, IOPEB) in line 10, that is used to compute the similarity between two323

IOPE annotations based on a selected measure. Given the semantic description of a task (IOPEA)324

and a service (IOPEB) as input, the adopted measures consider a Logic-based signature pluging325

match for Inputs and Outputs and a Logic specification pluging for Precondition and Effects. These326

matching filters are inspired by the classical plugin matching of components in software engineering.327

While a plugin match is commonly considered near-optimal, we prioritize services with semantic328

descriptions, which are logically equivalent with respect to the requested functionality. A possible329

ranking of logic-based semantic matching filters is proposed for iSeM as shown in [38]. Alternative330

approaches to semantic service selection learn the optimal weighted aggregation of different types of331

non-logic-based and logic-based semantic matching filters [39].332

A second helper function is the COPsolve(Parameters) used in line 23 for computing the set of333

Pareto-optimal solutions of the COP. This is a simple compiler that transforms our COP definition334

into a running instance of a JaCoP solver6, using the set of parameters given.335

The call to ComposeVariableBindings (Solution) computes a possible set of variable bindings,336

which together define the data flow (line 26). Bindings are determined by checking the semantic337

compatibility of the semantic variable types. This ensures a functionally meaningful assignment338

beyond simple data type compatibility checking. The overall aim of this function is to connect as339

many service inputs in Solution with outputs of services earlier in the execution order determined340

by the process model definition. Inputs which cannot be bound in that way are considered341

environmental variables. This ensures the direct executability of the computed service plan.342

Please note, that the pseudo code leaves out details on the handling of gateways and different343

possible execution paths through the process model for parallel execution and choices. Without344

loss of generality, the different paths can be considered additional options for generating PSPs, each345

indicating other gateway decisions and a valid data flow given this decision. The component is able to346

5 http://www.antlr.org/
6 http://jacop.osolpro.com/
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Algorithm 1: The pseudocode for the process service plan composition
Input: PM: semantically annotated BPMN model, S: set of available services
parameter: Simmin: minimal similarity value accepted
Output: PSP: the computed process service plan

1 forall s ∈ S do
2 IOPEs → IOPES;
3 end
4 forall task ∈ PM do
5 task→ T;
6 end
7 % Find task service candidates
8 forall t ∈ T do
9 forall s ∈ S do

10 if SIM(IOPEt, IOPEs) >= Simmin then
11 s→ CANDIDATESt;
12 end
13 end
14 end
15 % Solve the COP
16 forall t ∈ T do
17 forall s ∈ CANDIDATESt do
18 forall QoS ∈ T do
19 QoS→ Parametersst ;
20 end
21 end
22 end
23 Solutions = COPSOLVE(Parameters);
24 % For all the Pareto-optimal solutions compute a valid data flow
25 forall Solution ∈ Solutions do
26 COMPOSEVARIABLEBINDINGS(Solution)→ Plans;
27 end
28 % Return a Process Service Plan using the first solution
29 PSP=MERGEPMWITHSOLUTION(PM, Plans[0]);
30 return PSP;

handle parallel (AND), choice (OR) and exclusive (XOR) gateways. While the AND gateway opens347

up independent parallel paths and is easy to handle, the XOR and OR gateways result in n and348

n! possible alternative execution paths, thus widening the problem space significantly. Structurally,349

however, all these options are handled in an analogous way to what explained.350

Eventually, MergePMwithSolution (PM,Plan) takes care of adding the full metadata section into351

the original process model to create an executable PSP. This happens at line 29.352

Functional Optimisation (Services selection) The first step for creating a PSP is to select all353

the possible candidates functionally valid for each task. We rely on functionally equivalent exact or354

on plug-in matches [40] that are limited to direct sub class relationships. This way all PSPs logical355

properties (in term of IOPE) are conserved with respect to the given PM.356

This step creates for each task a set of candidates, either simple or composed service. In fact,357

the selection of their best composition is left for the non-functional optimization, based on the COP358

solution. Only after this additional phase, the actual service implementation in the returned PSP is359

complete.360
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Non-Functional Optimization (Optimal Services composition) Amongst all the possible361

combinations of services of the candidate pools of the process tasks, the best (or Pareto-optimal362

in case of a multi-objective problem) option is chosen as part of the overall solution. This implies363

solving the COP problem associated to the PM, such as the example in Listing 2 by minimizing the364

function TotalCost(X). For an introduction to the BPMN extensions defined in CREMA and used by365

our components, we refer the reader to [41].366

Based on the SOA approach, the optimisation facility is a JAVA-based software implemented as367

a RESTful service. Figure 6 depicts its basics components and the interactions it requires for a fully368

functional Process Enterprise Execution Platform, such as the one that the CREMA solution provides.369

Figure 6. The optimization component in context of a fully-fledged BPM and execution architecture.

370

To achieve this objective, during the CREMA project a set of functions was designed and371

implemented: they allow to ask for an integrated composition and optimisation (meaning,372

considering both the functional and non-functional requirements specified into the input BPMN)373

or separately, in case when (a) the user is interested only in a functionally valid plan or (b) when a374

composed plan already exists that requires to be optimised based on the non-functional QoS measures375

and the user-defined objective function(s). This is valid both at design time (input is a process376

model) and at run-time (input is an instance of the process model, together with the execution log,377

if available). For accountability, then a functions to allow the user approval of the computed PSP378

is provided. Additionally, it exposes also a set of utility operations, ranging from operations able379

to retrieve the ordered list of services found to implement a single task, till capacity for fetching380

previously computed PSPs, to support user inspection for alternatives, if interesting.381

3.5. Process Service Plan Execution and Contextual Environment Management382

Our demonstrator also envisioned a component responsible for the execution of a PSP. It is based383

on an affirmed process engine, and its role is to execute process tasks according to the order defined in384

the process. As our approach is based on an optimal PSP realization by the optimization component,385

the execution follows precisely the service sequence defined in the process service plan. This is our386

instantiation of the flexible service selection concept for process tasks execution.387

This additional facility is bounded to the extension of parsing abilities and deployment388

capabilities for a standard process engine. This arises because the communication of the suggested389

service sequence and the externalization of the optimal environment initialization required for its390

implementation is performed by the optimization component using BPMN extensions; and our391

approach needs consequently to implement the logic necessary for considering this additional PSP392

section at the process engine level.393
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Figure 7. Screenshot of the Process Execution Engine showing the process "ALU Casting die", whose
instance can be executed.

Figure 7 shows its main UI, with possible plans to be executed, their creation time (for reference)394

and the current number of instance(s) running. Furthermore, from this interface, the human operator395

can retrieve information and control the process, by launching, stopping, pausing, or resuming396

instances of it.

Figure 8. Screenshot of the Process Execution Engine "Enactment Configuration" capabilities: here the
user can launch one time or repeatedly on an interval base a process, passing an arbitrary number of
contextual variables, to be used as the complement for the process enactment environment.

397

In case of issues with the process execution this component is additionally able to automatically398

capture this exception, to pause the execution, to invoke the interaction with the optimisation399

component, to request a new PSP respecting this additional previously unforeseeable constraint,400

and, then, to continue the execution of the paused process with the updated PSP. For example,401

such an exception can happen during the execution of a service, such as in the cases of a hardware402
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breakdown of a manufacturing machine, a physical resource (e.g., a human operator) already busy or403

an unavailability of a service for unplanned maintenance reasons. The possibility of providing this404

just-in-time adaptation of the PSP offers an initial fault-tolerance capacity for process execution, that405

is a novelty of our approach.406

For debugging capabilities and for testing purposes, the component can also enact (once or407

repeatedly on an interval base) a process using a manually defined configuration, as shown in Fig. 8.408

This support the human operator in discovering the reason for unexpected outputs or behaviors of409

the process executed.410

3.6. Process Deployment in the Cloud and Execution Control411

At the lower level of the control chain for process execution sits a service deployment412

and execution control facility. This is responsible for the on-demand enactment of services on413

cloud resources. Differently from purely informative business PMs, the manufacturing domain is414

characterized by a natural mix of heterogeneous kinds of services. Naturally, there are traditional415

software services, such as analysis of values or computation of control conditions that are naturally416

enactable on computational resources.417

Typical of this domain, there are also real-world services, such as the one that physically418

manipulates the material and semi-finished piece to produce the final outcome of the manufacturing419

activity. These can be welding machines, robot arms, manipulators, numerically controlled machines420

(CNC), lubrication systems, and so on. It is necessary to transform them by adding a software-based421

representation that works as their digital interface to enable their deployment and control on cloud422

resources.423

Figure 9. Screenshot of the OSL showing a deployed and running PSW called ”Metal Injection”, which
is used in the ”ALU casting die” process.

Eventually, human-based services are another typical category, and can be, for instance, the task424

of loading or unloading parts, manipulating the machines, managing an unexpected condition, or425

collecting information about an environmental condition that is not automatically monitored. For this426

type of services to be enactable in a distributed computation environment, it is necessary to design427

some user interfaces that act as human communication vector. This additional interfacing facility428

allows, on the one side, to provide instruction and input and on the other end, to collect feedbacks429

and information for reporting back to the execution context.430
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In order to combine these services, we have designed an abstraction approach called Proxy431

Service Wrappers (PSW), which provide an uniform representation of every different kind of services,432

allowing their usage as grounding for process tasks.433

The basic foundation of a PSW is a set of requirements that need to be implemented by services434

in order to be integrated. Firstly, there is the need of exposing two different endpoints for each435

service: an endpoint for checking the Availability of the actual service, that should indicate its current436

leasibility, taking into account all the limitations affecting it (e.g: contemporary usages, stale states,437

or maintenance operations) and a Start one, which deploys the service using a JSON-encoded input438

parameters object. As a precondition, it is possible to call the latter one only under a positive answer439

from the former endpoint invocation. As consequence of a Start endpoint triggering, a PSW starts the440

operation for a software-based service, triggers a real-world interaction, e.g., starts a welding process,441

or signals a human that he can start working on a specific task.442

Secondly, a feedback and control channel is required between the executing PSW and the443

controlling component. This means that there is the need for each service to register to an endpoint444

to report its status. This can be either the termination of its execution by correct completion (such445

as software calculation or a welding operation accomplishment, or a human indication that the446

operation is done) or a report for the occurrence of an error. In the last case, our component can447

raise an exception, to signal the process execution engine to start the compensation mechanism, by448

obtaining a newly PSP avoiding the failing service.449

Eventually, a common technical format for every service is required, to ease their deployment on450

cloud resources. As it is currently common practice to use containers [22], we also adopted this model.451

Our demonstrator uses the Docker Image format to represent every service grounding. This choice452

has the advantages of using an affirmed, widespread technical solution, that is also able to package453

all kinds of external resources within the image, supporting in this way our need for packaging454

heterogeneous services.455

Thanks to this restricted set of three requirements, our system design is capable of integrating all456

kinds of services from the manufacturing domain smoothly.457

In Fig. 9 the UI of the OSL is shown. This UI can be used to monitor the status of deployed and458

running PSWs (in this case a single service called "Metal Injection") and to stop their execution, if459

necessary.460

4. Demonstrative Application461

Figure 10. Some semantic services usable to implement the Task 2 of the Process Model in Fig. 11.
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Figure 11. A Process Model for the forging of an aluminum hull for a bike body frame by injection.

To showcase the flexibility and usefulness of the proposed approach, we envisioned and462

designed a simple PM for the manufacturing process of bicycle bodies. It encompasses the injection463

of melted aluminum by all the processes required to prepare the cold-chamber molding machine and464

to control and expel the formed piece of hull.465

Listing 2: the Constraint Optimization Problem (COP) associated with the model in Fig. 11.
1 PROBLEM

2 TYPE linear single END TYPE

3 SOLVER both END SOLVER

4 CLASS

5 VARIABLES X[] VC Q END VARIABLES

6 CONSTANTS A1 A2 A3 B1 B2 B3 C1 C2 C3 Time[] Electricity [] ManteinTime [] SetupCost [] AmmCost [] AcqTime [] Prec[] HoursAvaialble END CONSTANTS

7 FUNCTIONS

8 Setup(T) = SUM(i,1,X.length , X[i] * SetupCost + X[i] * AmmCost[i])

9 ExecTime(T) = SUM(i,1,X.length , X[i] * Time[i])

10 ExecEletricity(T) = SUM(i,1,X.length , X[i] * Electricity[i])

11 ManteinanceTime(T) = MIN{X[i] * ManteinTime[i]}

12 AcquisitionTime(T) = MAX{X[i] * AcqTime[i]}

13 Precision(T) = MIN{X[i] * Prec[i]}

14 AvgTime(T) = A1 * ManteinanceTime(T) + A2 * ExecTime(T) - A3 * Precision(T)

15 ProdCostDirect(T) = B1 * ExecEletricity(T) - B2 * Precision(T) + B3 * Setup(T)

16 TotalCost(T) = C1 * AcquisitionTime(T) + C2 * AvgTime(T) + C3 * ProdCostDirect(T)

17 END FUNCTIONS

18 CONSTRAINTS

19 SUM(i,1,X.length , X[i]) = 1

20 AvgTime(T) <= HoursAvaialble / BatchSize

21 ExecEletricity(T) / BatchSize < MaxElectricity

22 QuaterlyCashFlow / QuaterlyProduction + MinQuaterlyRevenues > ProdCostDirect(T) * BatchSize

23 END CONSTRAINTS

24 minimize TotalCost(X) -> http :// localhost/examples/Ont.owl#Cost

25 END CLASS

26 INSTANCE

27 DOMAINS X[]{0 ,1} VC [120.0 ,1275.0] Q[10.5 ,1000.0] END DOMAINS

28 VALUES A1 = 1.5 A2 = 0.2 A3 = 3 B1 = 7.1 B2 = 12.9 B3 = 1.55 C1 = 4.55 C2 = 7.75 C3 = 9.99

29 HoursAvaialble = ( DeliveryDate - StartProduction ) / WorkingDayHours - DeliveryTime

30 INPUT

31 BatchSize <- (Task_A, http :// localhost/examples/Ont.owl#BatchDimension)

32 MaxElectricity <- (Task_A, http :// localhost/examples/Ont.owl#ElectricitzySupplyCapabilities)

33 DeliveryDate <- (Task_A, http :// localhost/examples/Ont.owl#DeliveryDate)

34 StartProduction <- (Task_A, http :// localhost/examples/Ont.owl#StartProduction)

35 WorkingDayHours <- (Task_A, http :// localhost/examples/Ont.owl#WorkingDayHours)

36 DeliveryTime <- (Task_A, http :// localhost/examples/Ont.owl#DeliveryTime)

37 QuaterlyCashFlow <- (Task_C, http :// localhost/examples/Ont.owl#QuaterlyCashFlow)

38 QuaterlyProduction <- (Task_C, http :// localhost/examples/Ont.owl#QuaterlyProduction)

39 MinQuaterlyRevenues <- (Task_C, http :// localhost/examples/Ont.owl#ExpectedQuaterlyRevenues)

40 Time <- (Task_F, http :// localhost/examples/Ont.owl#ForgingTime)

41 Electricity <- (Task_F, http :// localhost/examples/Ont.owl#ElectricityConsumption)

42 ManteinTime <- (Task_G, http :// localhost/examples/Ont.owl#ManteinanceTime)

43 AcqTime <- (Task_B, http :// localhost/examples/Ont.owl#BlockingServiceTime)

44 Prec <- (Task_F, http :// localhost/examples/Ont.owl#ProductionPrecision)

45 SetupCost <- (Task_C, http :// localhost/examples/Ont.owl#SetupCost)

46 AmmCost <- (Task_C, http :// localhost/examples/Ont.owl#AmmortisationCost)

47 END INPUT

48 END VALUES

49 END INSTANCE

50 OUTPUT

51 VC -> (Task_F, http :// localhost/examples/Ont.owl#VariableCost)

52 Q -> (Task_F, http :// localhost/ontology/fake.owl#Quality)

53 END OUTPUT

54 END PROBLEM

466

467

As an initial step, we semantically described the services available to implement the different468

tasks in this manufacturing area. Figure 10 presents the results for 3 selected services, namely S2, S3,469
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Table 1. The mapping between some QoS to provided semantic concepts, to support semantic type
matching control during service plan generation and service invocation.

QoS metric Semantic concept
ExecCost http://localhost/examples/Ont.owl#Running_Cost
AmmCost http://localhost/examples/Ont.owl#Amministrative_Cost
AcqCost http://localhost/examples/Ont.owl#Acquisition_Cost
SetupCost http://localhost/examples/Ont.owl#Setup_Cost
Time http://www.w3.org/2006/time#TimePosition
Electricity http://localhost/examples/CM_ontology.owl#Electric_Power
Precision (ppm) http://purl.oclc.org/NET/ssnx/ssn#Precision
OutcomeRate http://localhost/examples/Ont.owl#Production_Rate
DeliveryDate http://localhost/examples/Ont.owl#DeliveryDate
BatchSize http://www.owl-ontologies.com/mason.owl#batch_run_size
ManteinTime http://www.w3.org/2006/time#Interval
MinQuaterlyRevenues http://localhost/examples/Ont.owl#Expected_Revenues
StartProduction http://www.w3.org/2006/time#TimePosition
AcqTime http://www.w3.org/2006/time#Interval

and S4. This figure concentrates only on the semantic aspect, for this reason, the other metadata to470

represent the grounding and the QoS measures for these services is not explicitly depicted.471

Figure 11 depicts the BPMN, mainly a linear model composed of 11 tasks, three exclusive472

gateways (the first two defining together two alternative subpaths, to include or exclude T2, whether473

the third is used to control a condition and repeat T9 as many times as required). Each task is474

characterized by its IOPE annotation, as from Fig. 5.475

Interesting to be noted here is the fact that there is not always a perfect one to one correspondence476

between tasks and services, but services can be composed (e.g., S2+3 as the sequential arrangement477

of S2 and S3) or can be alternatively used (at least under certain assumption, such as the plug-in478

compatibility) to implement the same Task (e.g., T2 in Fig. 11 can be implemented by S4 or by the479

composed service S2+3). This is also part of the flexibility provided by a SemSOA approach.480

In Listing 2 the optimization problem defined using our COP grammar for the PM in Fig. 11481

is presented: it starts (Line 2) by indicating the type of problem (linear and single objective) and482

then it defines the variables (Line 5) , an array and a two simple variables followed by many483

constants (Line 6) in both simple and array form. There are nine functions (Lines 8-16), ranging484

from a linear combination of variables (Lines 14, 15, 16) to sum for the X array length between one485

or more parameters (Lines 8, 9, 10), passing through non-linear operators such as MAX and MIN486

(Lines 11, 12, 13).487

Table 2. Subset of the QoS measured for the services S2 and S3 (respectively, for melting the aluminum
and for filling in the forming machine reservoir chamber till the expected level.); and for service S4, the
robotic arm for the automatic refilling of the melted aluminum. These are alternatives to implement
the Task 2 of the process model.

QoS metric Value
S2 S3 S4

ExecCost 100 10 8
AmmCost 500 5 95
AcqCost 390 1 10000
SetupCost 15 19 2390
Time 275 2 65
Electricity 575 15 1223
Precision (ppm) 1000 95 500
OutcomeRate 5 1255 2000
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Then the constraints are presented (Lines 19-22): the first one limiting the sum of elements in X488

to the value 1 (this, together with the domain definition for each entry in the set {0, 1} allows only one489

element in the X array to be not null); the second constrain devoted to guarantee that there is enough490

production time for the required batch. Then a constraint on the electricity consumption is presented491

to assure it does not exceed the available amount during the production time; and eventually, one492

for securing that the marginal revenues level produced by the execution of the current batch of hulls493

is satisfactory, both in respect of its dimension and on the average quarterly cash flow. To complete494

the problem class definition, the objective functions is stated, together with its association with the495

semantic concept (Line 24), to allow its reuse in composing the final service plan. In this case, the496

objective is to minimize the TotalCost(X) for the production.497

As presented before, the definition of the current instance of the problem is then given, starting498

from the domains of variables (Line 27) and the values of the constraints (Lines 28-29). Eventually,499

in section "INPUT" the mappings of semantic concepts (an extract of it is visible in Table 1) in500

the PM annotation is used to create the automatic binding of produced output to incoming input501

(Lines 31-46), based on the service QoS annotations. The actual values used for comparing and502

contrasting services during the optimal PSP computation comes from their QoS annotation, such503

as in Table 2. The final optional section "OUTPUT" instructs on how to map back the found variables504

into the variable environment assignments (Lines 51, 52), which reflect how service input parameters505

are supposed to be set in order to yield the optimal objective values and the best level obtainable506

itself.507

5. Results508

At first, we define the flow of invocation and data exchange at the base of the proposed509

demonstrator behavior. Figure 12 depicts the ordered sequence: at first the user annotates (Step 1) the510

services using the provided UI; as a consequence all the semantic services complete with metadata511

about QoS and the executable program, which offers the service (the so-called service grounding), are512

stored in a repository (Step 2).513

Figure 12. The flow of interaction and data exchange between the components of the proposed
solution. The data exchange is as follow: light blue dashed line for Semantic Services (SS), dark
yellow for Process Models (PM), and green for Process Service Plans (PSP). Black continuous arrows
indicates user function call and black dashed ones pinpoints internal function calls.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0143.v1

Peer-reviewed version available at Information 2018, 9, 279; doi:10.3390/info9110279

http://dx.doi.org/10.20944/preprints201810.0143.v1
http://dx.doi.org/10.3390/info9110279


20 of 25

Every dashed line color represent a different type of transferred object: light blue encodes for514

Semantic Services (SS), dark yellow marks for Process Models (PM), where green stays for Process515

Service Plans (PSP). Important is to notice that Models, Instances, and Service Plans are all encoded516

as BPMN v2.0 compliant XML documents, by usage of extensions elements: this allows to maintain517

in a single place the different stages of the models and to store them coherently in a unique repository.518

As for the notation in this representation, continues lines represent explicit user actions, whether fine519

dashed connections indicate implicit components interaction to provide the service to the user. In520

Step 3 the process model is designed, together with the IOPE characterization and all the metadata521

required and stored into the central Extended BPMN repository (Step 4). This finishes the preparation,522

until the moment the user is ready to execute an instance of a defined process model. Important is523

to notice that this approach supports the theoretical separation between the service annotator, the524

process model designer and the operator in charge of executing the instance of this manufacturing525

process. In Step 5, through the RunTime execution environment, the human operator launches an526

instance of the process, causing it to retrieve the model from the repository (Step 6) and passing527

it to the Optimisation component (Step 7). After retrieving the set of available semantic services528

(Step 8) the Optimisation component computes a non-dominated process service plan by functional529

composition and non-functional optimisation of the related COP definition, and returns it to the530

RunTime execution component (Step 10). Furthermore, the Optimisation component stores the plan531

in the eBPMN archive facility (Step 9).532

The process then continues without user interaction, as the RunTime execution component533

analyzes the produced process service plan one service at a time, in the corresponding order to534

the process model. Here the first service, equivalent to the T1 in Fig. 11, is considered and the535

service metadata are passed in Step 11 to the Allocation and Service Deployment together with all536

the environmental and contextual variables and setting necessary for the service. Eventually, that537

enactment component retrieves from the repository the full information set of the service (Step 12)538

and after initializing the environment deploy its grounding in the cloud (Step 13), monitor it and539

collect the returned value(s). Once the service finished its task, it is also necessary to dispose the540

deployment wrapper and environment, in order to release the cloud resources used by this service. If541

the current service is correctly executed, the Allocation and Service Deployment component interacts542

with the RunTime execution to move to the next service used to implement the model, till the full543

process service plan is completed, and the UI returns a positive confirmation of termination to the544

user.545

Anyway, it is possible that a service is unable to be deployed (such as when it is a physical546

resource already in use or out-of-service for unplanned maintenance) or a failure code is returned.547

Figure 13 represents this case: the first task was terminated correctly by the execution of S1, then the548

PSP dictated to use S4 for implementing T2, as this was the best match (amongst the semantically549

quasi-equivalent alternatives {S2+3, S4} from Fig. 10) but the robotic arm used to ground S4 is550

currently unusable, making the service failing.551

The interaction flow follows the same evolution as for the ”none failure” case until (Step 13).552

In Step 14 the service control return a failure status to the calling component. This triggers back the553

RunTime execution environment (Step 15) that collects all the information about the services correctly554

executed and the failing ones for the current process (PSP log, and it requests an alternative Process555

Service Plan (Step 16) via the Optimizer. Using the additional knowledge about the execution log556

and the services currently available (Step 17), a new functional composition and a new QoS-based557

COP resolution is computed. This generates a viable non-dominated PSP, stored (Step 18) and558

subsequently returned to the execution component (Step 19), that is then able to resume the process559

execution, without the need of aborting the already executed services. This is particularly critical in560

the manufacturing domain, as most part of the services are not-idempotent, and cannot be repeated561

without affecting the final result or generating scrap and defective parts. If there are no possible562

services available to implement the process, the user will observe a failure ("broken" PSP). In this563

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0143.v1

Peer-reviewed version available at Information 2018, 9, 279; doi:10.3390/info9110279

http://dx.doi.org/10.20944/preprints201810.0143.v1
http://dx.doi.org/10.3390/info9110279


21 of 25

Figure 13. Whenever a requested service became unavailable, the proposed architecture allows for
fast and incremental replanning. Here the Service S4 deployment in the cloud failed (red dashed
arrow), and CREMA proposed to achieve T2 objectives by using the service combination S2 + S3,
that constitutes a semantic equivalent (valid under plug-in relaxation) candidate. They are successful
(green dashed arrows) and this fulfills the requirements for T2 correct execution in the PM.

demonstrative case, we suppose there is a combination that can be used as a functionally equivalent564

for the T2, even though it is sub-optimal with respect of the COP objective and the QoS measures for565

the services.566

After that, the normal iteration is restored between the execution and the deployment567

component, using the new PSP that has an updated grounding for T2, composed by S2 and S3. Each568

single service is then individually instantiated: Step 20 and 25 report the service deployment request;569

Step 21 and 26 pinpoint the service details retrieval from the repository; Step 22 and 27 show the actual570

deployment of the service in the complete and correct cloud environment; Step 23 and 28 signal the571

correct completion of the service execution; whether eventually Step 24 and 29 confirm it for the572

RunTime execution environment , in order to allow it to proceed with the next service defined by the573

PSP. Eventually, when the last service is correctly returned, the execution of the process instance is574

done and the human operator is informed through a message in the UI.575

6. Discussion576

In this section, we present our thoughts about the effort and major barriers for the extension of577

the presented demonstrative case to general manufacturing-related processes, towards a pragmatical578

Industry 4.0 enabled approach in physical production contexts. The analysis is divided following the579

presented components of our demonstrator.580

As a base, we proposed a basic general domain ontology, and we showcased how it can be treated581

and extended to cover the specific sub-domain for a new application. Cascade, we showed that it is582

feasible to implement a semantic wrapper for the service annotation; and that is possible to use it for583

representing whatever type of service (information retrieval or computation, mechanical/operative584

tool or robot, and human operators) in a XaaS approach. This wrapping capabilities showed itself585

able also to equip the service description with user-defined QoS. These steps are still a considerable586

obstacle for process designers, as they are not normally familiar with domain knowledge elicitation587

and its formalisation. Additionally, the need for defining the semantic and metadata (QoS) wrapper588

around all the available service, at the finest granularity possible, is also a big barrier for the adoption589

of XaaS in manufacturing. On the positive side, once these demanding and challenging tasks are590

done, it normally should not be necessary to repeat them, as they can support every process in the591

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0143.v1

Peer-reviewed version available at Information 2018, 9, 279; doi:10.3390/info9110279

http://dx.doi.org/10.20944/preprints201810.0143.v1
http://dx.doi.org/10.3390/info9110279


22 of 25

defined sub-domain. Unfortunately, in reality, both small correction and, sometimes, big reworks are592

occasionally necessary, to better focus or to correct a misunderstanding in these element settings.593

Minimal modifications are necessary on the BPMN editor side, to support the extension in the594

standard language for including the COP problem description; the service plan, the data bindings,595

and the optimal variable assignment; and the execution log. We exposed that this is already enough596

to support the expected functionalities. Designing extended BPMN models equipped with COP597

definition and Tasks semantic annotations should not be too challenging, once the previous two steps598

are internalized. For the rest, these are standard model following the well-known notation and their599

graphical representation follows the usual aspect familiar to the process designer.600

From the point of view of the processes optimization, the main benefits in respect of the existing601

approaches are manifold: the first improvement is the business process formulation, as it allows602

full integration of functional service selection and composition with non-functional optimization603

based on user-defined QoS and objective functions arbitrarily complex in the COP. This is achieved604

through our BPMN extensions and thanks to the development of a grammar for the optimization605

problem formalization. Secondly, the produced output, the PSP, is directly enactable by an execution606

environment, being a complete plan. This means that it is equipped with all the relevant information:607

service assignments, data flow (variable bindings) and optimal variable assignments for initialising608

the enactment environment. Eventually, by encoding the computed PSP in an extended BPMN609

format, it allows to maintain in a single place model and plan, together with the variables assignment610

and the optimality value achieved. This part is completely transparent to the process designer and611

the human operator in charge of supervising the process execution, except for the approval of the612

proposed service plan, for responsibility assumption.613

Regarding the execution part, thanks to a small interpretation effort for the model/instance614

additional fields, the main advantage is the capability of using the optimal PSP and data binding615

information, together with the decoupling of the BPMN structure (conditionals and gateways) from616

the service deployment, that is delayed and demanded to a specialized component.617

Regarding the service execution and control, our specialized component is a complete novelty618

in this domain and allows to check the status (availability and leasability) of any service in the form619

of a container and to support late deploy on cloud facilities. Also, these last two components work620

in the background of the demonstrator, except for the very standard UI they provide for controlling621

the process execution and the service deployment, so this should not represent any barrier for the622

practical adoption of such an approach in real-world manufacturing industries.623

7. Conclusions624

In this work, we presented our innovative pragmatic solution for an Industry 4.0 application in625

Manufacturing domain. It is based on formalized domain knowledge and structured service wrapped626

with semantic annotation, to provide dynamic and just-in-time process plans. After introducing the627

ontology and the service annotation tool, we concentrated in presenting the optimization component,628

which composes functionally correct plans and supports optimization of non-functional aspects, in629

the form of a COP, using as measures generic QoS and supporting user-defined composed objective630

functions. Then, we depicted the role of the execution tool and the service deployment facility,631

indicating how they make use of the computed optimal process service plan for enacting in the cloud632

the actual service grounding, producing in this way the model expected results.633

To showcase the capabilities of the tool, we applied it to a scenario in the manufacturing domain.634

Our tools combination allowed to practically transpose a real-world process for aluminum forging by635

injection into a fully functioning Industry 4.0 enabled process. The main point of this demonstrator is636

to showcase that it is currently possible to implement an existing structured manufacturing practice637

into an optimized ICT-supported process, taking advantages of the flexibility and effectiveness of638

dynamic service binding and deployment.639
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Regarding the extensibility of this demonstrator and the barriers for its adoption, we identified640

that they are concentrated mainly in the initial phases of such an approach, namely in the domain641

knowledge elicitation, its formalization into an ontology (maybe an extension of our current proposal)642

and in the elementary service identification and annotation with semantics and QoS metrics value.643

Fortunately, these complex and highly valuable kick off activities can be executed once and can644

be highly supported by external competence from semantic and SOA experts, maybe in the form645

of consultant for the company innovation. For all the other parts of the proposed demonstrator,646

despite its minimal coverage of all the possibilities sketched by the Industry 4.0 trends existing in647

the literature, we perceive that the modifications will be mainly limited to the ICT infrastructure and648

software adopted by the manufacturing enterprise. All the other adjustment needed in the operative649

practice of the corporation can be over-compensated by the flexibility and dynamicity naturally650

provided by the proposed approach.651
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OWL-S OWL Web-Service description
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sBPMN Semantic BPMN
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QoS Quality of Service
COP Constrained Optimisation Problem
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PM Process Model
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PSP Process Service Plan
CREMA Cloud-based Rapid Elastic MAnufacturing
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