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Abstract. This paper treats the connection problem of expressing sums of
finite products of Chebyshev polynomials of the third and fourth kinds in

terms of five classical orthogonal polynomials. In fact, by carrying out explicit

computations each of them are expressed as linear combinations of Hermite,
generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which

involve some terminating hypergeometric functions 2F0, 2F1, and 3F2.

1. Introduction and preliminaries

In this section, we will recall some basic facts about relevant orthogonal poly-
nomials that will be needed throughout this paper. For this, we will first fix some
notations. For any nonnegative integer n, the falling factorial polynomials (x)n and
the rising factorial polynomials < x >n are respectively given by

(x)n = x(x− 1) · · · (x− n+ 1), (n ≥ 1), (x)0 = 1, (1.1)

< x >n= x(x+ 1) · · · (x+ n− 1), (n ≥ 1), < x >0= 1. (1.2)

The two factorial polynomials are evidently related by

(−1)n(x)n =< −x >n, (−1)n < x >n= (−x)n. (1.3)

(2n− 2s)!

(n− s)!
=

22n−2s(−1)s < 1
2 >n

< 1
2 − n >s

, (n ≥ s ≥ 0). (1.4)

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
, (Re x,Re y > 0). (1.5)

Γ(n+
1

2
) =

(2n)!
√
π

22nn!
, (n ≥ 0). (1.6)
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2 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

Γ(x+ 1)

Γ(x+ 1− n)
= (x)n,

Γ(x+ n)

Γ(x)
=< x >n, (n ≥ 0), (1.7)

where Γ(x) and B(x, y) are the gamma and beta functions respectively.
The hypergeometric function is defined by

pFq(a1, · · · , ap; b1, · · · , bq;x)

=

∞∑
n=0

< a1 >n · · · < ap >n
< b1 >n · · · < bq >n

xn

n!
.

(1.8)

We are now ready to state some basic facts about Chebyshev polynomials of
the third kind Vn(x), those of the fourth kind Wn(x), Hermite polynomials Hn(x),
generalized (extended) Laguerre polynomials Lαn(x), Legendre polynomials Pn(x),

Gegenbauer polynomials C
(λ)
n (x), and Jacobi polynomials P

(α,β)
n . All the necessary

facts on those special polynomials can be found in [5-9,11,12]. For the full accounts
of this fascinating area of orthogonal polynomials, the reader may refer to [2,3,21].

The above special polynomials are given in terms of generating functions by

F (t, x) =
1− t

1− 2xt+ t2
=

∞∑
n=0

Vn(x)tn, (1.9)

G(t, x) =
1 + t

1− 2xt+ t2
=

∞∑
n=0

Wn(x)tn, (1.10)

e2xt−t2 =

∞∑
n=0

Hn(x)
tn

n!
, (1.11)

(1− t)−α−1 exp(− xt
1−t ) =

∞∑
n=0

Lαn(x)tn, (α > −1), (1.12)

(1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x)tn, (1.13)

1

(1− 2xt+ t2)λ
=

∞∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ 6= 0, |t| < 1, |x| ≤ 1), (1.14)

2α+β

R(1− t+R)α(1 + t+R)β
=

∞∑
n=0

P (α,β)
n (x)tn, (1.15)

(R =
√

1− 2xt+ t2, α, β > −1).

Explicit expressions for the above special polynomials are as in the following.
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Vn(x) = 2F1(−n, n+ 1; 1
2 ; 1−x

2 )

=

n∑
l=0

(
2n− l
l

)
2n−l(x− 1)n−l, (1.16)

Wn(x) = (2n+ 1)2F1(−n, n+ 1; 3
2 ; 1−x

2 )

= (2n+ 1)

n∑
l=0

2n−l

2n− 2l + 1

(
2n− l
l

)
(x− 1)n−l, (1.17)

Hn(x) = n!

[
n
2 ]∑
l=0

(−1)l

l!(n− 2l)!
(2x)n−2l, (1.18)

Lαn(x) =
< α+ 1 >n

n!
1F1(−n, α+ 1;x)

=

n∑
l=0

(−1)l
(
n+α
n−l
)

l!
xl, (1.19)

Pn(x) = 2F1(−n, n+ 1; 1; 1−x
2 )

=
1

2n

[
n
2 ]∑
l=0

(−1)l
(
n

l

)(
2n− 2l

n

)
xn−2l, (1.20)

C(λ)
n (x) =

(
n+ 2λ− 1

n

)
2F1(−n, n+ 2λ;λ+ 1

2 ; 1−x
2 )

=

[
n
2 ]∑
k=0

(−1)k
Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k, (1.21)

P (α,β)
n (x) =

< α+ 1 >n
n!

2F1(−n, 1 + α+ β + n;α+ 1; 1−x
2 )

=

n∑
k=0

(
n+ α

n− k

)(
n+ β

k

)
(x−1

2 )k(x+1
2 )n−k. (1.22)

Next, we state Rodrigues-type formulas for Hermite and generalized Laguerre
polynomials and Rodrigues’ formulas for Legendre, Gegenbauer and Jacobi poly-
nomials.

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (1.23)

Lαn(x) =
1

n!
x−αex

dn

dxn
(e−xxn+α), (1.24)

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, (1.25)

(1− x2)λ−
1
2C(λ)

n (x) =
(−2)n

n!

< λ >n
< n+ 2λ >n

dn

dxn
(1− x2)n+λ− 1

2 , (1.26)

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2nn!

dn

dxn
(1− x)n+α(1 + x)n+β . (1.27)
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4 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

The last thing we want to mention is the orthogonalities with respect to various
weight functions enjoyed by Hermite, generalized Laguerre, Legendre, Gegenbauer
and Jacobi polynomials.

∫ ∞
−∞

e−x
2

Hn(x)Hm(x) dx = 2nn!
√
πδn,m, (1.28)∫ ∞

0

xαe−xLαn(x)Lαm(x) dx =
1

n!
Γ(α+ n+ 1)δn,m, (1.29)∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δn,m, (1.30)∫ 1

−1

(1− x2)λ−
1
2C(λ)

n (x)C(λ)
m (x) dx =

π21−2λΓ(n+ 2λ)

n!(n+ λ)Γ(λ)2
δn,m, (1.31)∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) dx

=
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)Γ(n+ 1)
δn,m. (1.32)

For convenience, let us put

γn,r(x) =

n∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n− l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1

(x), (n ≥ 0, r ≥ 1),

(1.33)

En,r(x) =

n∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(
r − 1 + n− l

r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1

(x),

(n ≥ 0, r ≥ 1).

(1.34)

We observe here that both γn,r(x) and En,r(x) have degree n.

In this paper, we will consider the connection problem of expressing the sums of
finite products in (1.33) and (1.34) as linear combinations of Hn(x), Lαn(x), Pn(x),

C
(λ)
n (x), and P

(α,β)
n (x). These will be done by performing explicit computations

based on Proposition 2.1. We observe here that the formulas in Proposition 2.1
follow from their orthogonalities, Rodrigues’ and Rodrigues-type formulas and in-
tegration by parts.

Our main results are the following Theorem 1.1 and Theorem 1.2.
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Theorem 1.1. Let n, r be any integers with n ≥ 0, r ≥ 1. Then we have the
following.

n∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n− l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1

(x)

=
(2n+ 2r)!

r!4n+r(n+ r − 1
2 )n+r

n∑
k=0

(−2)k

(n− k)!

×
[ k2 ]∑
j=0

2F1(2j − k, 1
2 − n− r;−2n− 2r; 2)

j!4j(k − 2j)!
Hn−k(x) (1.35)

=
1

r!

n∑
k=0

k∑
l=0

(−2)n−l(2n+ 2r − l)!(n+ r − l)!
l!(2n+ 2r − 2l)!(k − l)!

× 2F0(l − k, n− k + α+ 1;−; 1)Lαn−k(x) (1.36)

=
(−1)nn!(2n+ 2r)!

r!4r(n+ r − 1
2 )n+r

n∑
k=0

(−1)k(2k + 1)

(n− k)!(n+ k + 1)!

× 3F2(k − n, 1

2
− n− r,−n− k − 1;−2n− 2r,−n; 1)Pk(x) (1.37)

=
(−1)n(2n+ 2r)!4λ−rΓ(λ)Γ(n+ λ+ 1

2 )
√
πr!(n+ r − 1

2 )n+r

n∑
k=0

(−1)k(k + λ)

Γ(n+ k + 2λ+ 1)(n− k)!

× 3F2(k − n, 1

2
− n− r,−n− k − 2λ;−2n− 2r,−n− λ+

1

2
; 1)C

(λ)
k (x) (1.38)

=
(−1)n(2n+ 2r)!Γ(n+ α+ 1)

r!4r(n+ r − 1
2 )n+r

n∑
k=0

(−1)k(2k + α+ β + 1)Γ(k + α+ β + 1)

(n− k)!Γ(α+ k + 1)Γ(n+ k + α+ β + 2)

× 3F2(k − n, 1

2
− n− r,−n− k − α− β − 1;−2n− 2r,−n− α; 1)P

(α,β)
k (x).

(1.39)

Theorem 1.2. Let n, r be any integers with n ≥ 0, r ≥ 1. Then we have the
following.

n∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(
r − 1 + n− l

r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
(2n+ 1)(2n+ 2r)!

r!22n+2r+1(n+ r + 1
2 )n+r+1

n∑
k=0

(−2)k

(n− k)!

×
[ k2 ]∑
j=0

2F1(2j − k,−n− r − 1
2 ;−2n− 2r; 2)

j!4j(k − 2j)!
Hn−k(x) (1.40)

=
(2n+ 1)

r!

n∑
k=0

k∑
l=0

(−2)n−l(2n+ 2r − l)!(n+ r − l)!
l!(2n+ 2r − 2l + 1)!(k − l)!

× 2F0(l − k, n− k + α+ 1;−; 1)Lαn−k(x) (1.41)
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6 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

=
(−1)nn!(2n+ 1)(2n+ 2r)!

r!22r+1(n+ r + 1
2 )n+r+1

n∑
k=0

(−1)k(2k + 1)

(n− k)!(n+ k + 1)!

× 3F2(k − n,−n− r − 1

2
,−n− k − 1;−2n− 2r,−n; 1)Pk(x) (1.42)

=
(−1)n(2n+ 2r)!22λ−2r−1(2n+ 1)Γ(λ)Γ(n+ λ+ 1

2 )
√
πr!(n+ r + 1

2 )n+r+1

×
n∑
k=0

(−1)k(k + λ)

Γ(n+ k + 2λ+ 1)(n− k)!

× 3F2(k − n,−n− r − 1

2
,−n− k − 2λ;−2n− 2r,−n− λ+

1

2
; 1)C

(λ)
k (x)

(1.43)

=
(−1)n(2n+ 2r)!(2n+ 1)Γ(n+ α+ 1)

r!22r+1(n+ r + 1
2 )n+r+1

×
n∑
k=0

(−1)k(2k + α+ β + 1)Γ(k + α+ β + 1)

(n− k)!Γ(α+ k + 1)Γ(n+ k + α+ β + 2)

× 3F2(k − n,−n− r − 1

2
,−n− k − α− β − 1;−2n− 2r,−n− α; 1)P

(α,β)
k (x).

(1.44)

Before closing the section, we are going to mention some of previous results on
the related connection problems. The paper [1,17,18] treat the connection problem
of expressing sums of finite products of Bernoulli, Euler and Genocchi polynomials
in terms of Bernoulli polynomials. In fact, they were carried out by deriving Fourier
series expansions for the functions closely related to those sums of finite products.
Moreover, the same were done for the sums of finite products of Chebyshev poly-
nomials of the second and of Fibonacci polynomials in [14].

Along the same line as the present paper, sums of finite products of Cheby-
shev polynomials of the second and Fibonacci polynomials were expressed in [19]

as linear combinations of the orthogonal polynomials Hn(x), Lαn(x), Pn(x), C
(λ)
n (x),

and P
(α,β)
n (x). Also, the connection problem of expressing in terms of all kinds of

Chebyshev polynomials were done for sums of finite products of Chebyshev polyno-
mials of the second, third and fourth kinds and of Fibonacci, Legendre and Laguerre
polynomials in [10,15,16].

Finally, we let the reader refer to [4,20] for some applications of Chebyshev
polynomials.

2. Proof of Theorem 1.1

First, we will state Proposition 2.1 and Proposition 2.2 that will be needed
in showing Theorem 1.1 and 1.2.

The results in (a), (b), (c), (d) and (e) in Proposition 2.1 follow respectively from
(3.7) of [8], (2.3) of [11] (see also (2.4) of [6]), (2.3) of [9], (2.3) of [7] and (2.7) of
[12]. They can be derived from their orthogonalities in (28) -(32), Rodrigues-type
and Rodrigues’ formulas in (23) -(27) and integration by parts.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0140.v1

Peer-reviewed version available at Symmetry 2018, 10, 617; doi:10.3390/sym10110617

http://dx.doi.org/10.20944/preprints201810.0140.v1
http://dx.doi.org/10.3390/sym10110617


D. V. Dolgy, D. S. Kim, T. Kim, J. Kwon 7

Proposition 2.1. Let q(x) ∈ R[x] be a polynomial of degree n. Then we have the
following.

(a) q(x) =

n∑
k=0

Ck,1Hk(x), where

Ck,1 =
(−1)k

2kk!
√
π

∫ ∞
−∞

q(x)
dk

dxk
e−x

2

dx,

(b) q(x) =

n∑
k=0

Ck,2L
α
k (x), where

Ck,2 =
1

Γ(α+ k + 1)

∫ ∞
0

q(x)
dk

dxk
(e−xxk+α) dx,

(c) q(x) =

n∑
k=0

Ck,3Pk(x), where

Ck,3 =
2k + 1

2k+1k!

∫ 1

−1

q(x)
dk

dxk
(x2 − 1)kdx,

(d) q(x) =

n∑
k=0

Ck,4C
(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√
πΓ(k + λ+ 1

2 )

∫ 1

−1

q(x)
dk

dxk
(1− x2)k+λ− 1

2 dx,

(e) q(x) =

n∑
k=0

Ck,5P
(α,β)
n (x), where

Ck,5 =
(−1)k(2k + α+ β + 1)Γ(k + α+ β + 1)

2α+β+k+1Γ(α+ k + 1)Γ(β + k + 1)

×
∫ 1

−1

q(x)
dk

dxk
(1− x)k+α(1 + x)k+βdx.

Proposition 2.2. The following holds true.

(a) For any nonnegative integer m,∫ ∞
−∞

xme−x
2

dx =

0, if m ≡ 1 (mod 2),
m!
√
π

(
m
2 )!2m

, if m ≡ 0 (mod 2),

(b) For any real numbers r, s > −1, we have∫ 1

−1

(1− x)r(1 + x)sdx = 2r+s+1 Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)
,

(c) For any real numbers r, s with r + s > −1, s > −1, we have∫ 1

−1

(1− x)r(1− x2)sdx = 2r+2s+1 Γ(r + s+ 1)Γ(s+ 1)

Γ(r + 2s+ 2)
.
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8 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

Proof. (a) This is an easy exercise.
(c) This follows from (b) with r replaced by r + s.
(b) This follows from the change of variable 1 + x = 2y and (5).

The following lemma can be obtained by differentiating (1.9), as was shown in
[13].

Lemma 2.3. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the following
identity.

n∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n− l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x) =

1

2rr!
V

(r)
n+r(x), (2.1)

where the inner sum runs over all nonnegative integers i1, i2, · · · ir+1, with i1 + i2 +
· · ·+ ir+1 = l.

From (1.16), we see that the rth derivative of Vn(x) is given by

V (r)
n (x) =

n−r∑
l=0

(
2n− l
l

)
2n−l(n− l)r(x− 1)n−l−r. (2.2)

Especially, we have

V
(r+k)
n+r (x) =

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k(x− 1)n−k−l. (2.3)

Now, we are ready to prove Theorem 1.1. As (1.38) and (1.39) can be shown
similarly to (1.43) and (1.44) in the next section, we will show only (1.35), (1.36)
and (1.37). With γn,r(x) as in (1.33), we let

γn,r(x) =

n∑
k=0

Ck,1Hk(x). (2.4)

Then, from (a) of Proposition 2.1, (2.1), (2.3), and integration by parts k
times, we obtain

Ck,1 =
(−1)k

2kk!
√
π

∫ ∞
−∞

γn,r(x)
dk

dxk
e−x

2

dx

=
(−1)k

2k+rk!r!
√
π

∫ ∞
−∞

V
(r)
n+r(x)

dk

dxk
e−x

2

dx

=
1

2k+rk!r!
√
π

∫ ∞
−∞

V
(r+k)
n+r (x)e−x

2

dx

=
1

2k+rk!r!
√
π

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k

×
∫ ∞
−∞

(x− 1)n−k−le−x
2

dx.

(2.5)
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Before proceeding further, by making use of (a) in Proposition 2.2, we note
that

∫ ∞
−∞

(x− 1)me−x
2

dx

=

m∑
s=0

(
m

s

)
(−1)m−s

∫ ∞
−∞

xse−x
2

dx

=
∑

0≤s≤m
s≡0 (mod 2)

(
m

s

)
(−1)m−s

s!
√
π

( s2 )!2s

=(−1)m
√
π

[ m2 ]∑
j=0

(
m

2j

)
(2j)!

j!22j
, (m ≥ 0).

(2.6)

From (2.4) - (2.6), and after simplifications, we have

γn,r(x) =
1

r!

n∑
k=0

(−2)k

(n− k)!

k∑
l=0

[ k−l
2 ]∑
j=0

(− 1
2 )l(2n+ 2r − l)!(n+ r − l)!

l!(2n+ 2r − 2l)!(k − l − 2j)!j!4j
Hn−k(x)

=
1

r!

n∑
k=0

(−2)k

(n− k)!

[ k2 ]∑
j=0

1

j!4j

k−2j∑
l=0

(− 1
2 )l(2n+ 2r − l)!(n+ r − l)!

l!(2n+ 2r − 2l)!(k − l − 2j)!
Hn−k(x)

=
(2n+ 2r)!

r!4n+r < 1
2 >n+r

n∑
k=0

(−2)k

(n− k)!

[ k2 ]∑
j=0

1

j!4j(k − 2j)!

×
k−2j∑
l=0

2l < 2j − k >l< 1
2 − n− r >l

l! < −2n− 2r >l
Hn−k(x)

=
(2n+ 2r)!

r!4n+r(n+ r − 1
2 )n+r

n∑
k=0

(−2)k

(n− k)!

×
[ k2 ]∑
j=0

2F1(2j − k, 1
2 − n− r;−2n− 2r; 2)

j!4j(k − 2j)!
Hn−k(x).

(2.7)

This shows (1.35) of Theorem 1.1.
Next, we let

γn,r(x) =

n∑
k=0

Ck,2L
α
k (x). (2.8)

Then, from (b) of Proposition 2.1, (2.1), (2.3) and integration by parts k times
, we get
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10 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

Ck,2 =
1

2rr!Γ(α+ k + 1)

∫ ∞
0

V
(r)
n+r(x)

dk

dxk
(e−xxk+α)dx

=
(−1)k

2rr!Γ(α+ k + 1)

∫ ∞
0

V
(r+k)
n+r (x)e−xxk+αdx

=
(−1)k

2rr!Γ(α+ k + 1)

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k

×
∫ ∞

0

(x− 1)n−k−le−xxk+αdx

=
(−1)k

2rr!Γ(α+ k + 1)

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k

×
n−k−l∑
s=0

(
n− k − l

s

)
(−1)n−k−l−sΓ(s+ k + α+ 1)

=
(−1)k

2rr!

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k

×
n−k−l∑
s=0

(
n− k − l

s

)
(−1)n−k−l−s < k + α+ 1 >s

=
1

r!

n−k∑
l=0

(2n+ 2r − l)!(−2)n−l(n+ r − l)!
l!(2n+ 2r − 2l)!(n− k − l)!

×
n−k−l∑
s=0

1

s!
< k + l − n >s< k + α+ 1 >s

=
1

r!

n−k∑
l=0

(2n+ 2r − l)!(−2)n−l(n+ r − l)!
l!(2n+ 2r − 2l)!(n− k − l)!

× 2F0(k + l − n, k + α+ 1;−; 1).

(2.9)

Combining (2.8) - (2.9), we finally have

γn,r(x) =
1

r!

n∑
k=0

k∑
l=0

(2n+ 2r − l)!(−2)n−l(n+ r − l)!
l!(2n+ 2r − 2l)!(k − l)!

× 2F0(l − k, n− k + α+ 1;−; 1)Lαn−k(x).

(2.10)

This completes the proof for (1.36) of Theorem 1.1.

Finally, let us put

γn,r(x) =

n∑
k=0

Ck,3Pk(x). (2.11)
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Then, from (c) of Proposition 2.1, (2.1), (2.3) and integration by parts k times,
we have

Ck,3 =
2k + 1(−1)k

2k+r+1k!r!

∫ 1

−1

V
(r+k)
n+r (x)(x2 − 1)kdx

=
(2k + 1)(−1)k

2k+r+1k!r!

n−k∑
l=0

(
2n+ 2r − l

l

)
2n+r−l(n+ r − l)r+k

×
∫ 1

−1

(x− 1)n−k−l(x2 − 1)kdx.

(2.12)

By making use of (c) in Proposition 2.2 and after simplifications, from (2.12)
we obtain

Ck,3 =
(−1)n+k(2k + 1)

r!

n−k∑
l=0

× (−1)l4n−l(2n+ 2r − l)!(n+ r − l)!(n− l)!
l!(2n+ 2r − 2l)!(n− k − l)!(n+ k − l + 1)!

=
(−1)n(2n+ 2r)!n!

r!4r(n+ r − 1
2 )n+r

(−1)k(2k + 1)

(n− k)!(n+ k + 1)!

×
n−k∑
l=0

< k − n >l< 1
2 − n− r >l< −n− k − 1 >l

l! < −2n− 2r >l< −n >l

=
(−1)n(2n+ 2r)!n!

r!4r(n+ r − 1
2 )n+r

(−1)k(2k + 1)

(n− k)!(n+ k + 1)!

× 3F2(k − n, 1

2
− n− r,−n− k − 1;−2n− 2r,−n; 1).

(2.13)

From (2.11) and (2.13), we get

γn,r(x) =
(−1)n(2n+ 2r)!n!

r!4r(n+ r − 1
2 )n+r

n∑
k=0

(−1)k(2k + 1)

(n− k)!(n+ k + 1)!

× 3F2(k − n, 1

2
− n− r,−n− k − 1;−2n− 2r,−n; 1)Pk(x).

(2.14)

This proves (1.37) of Theorem 1.1.

3. Proof of Theorem 1.2

Here we will show only (1.43) and (1.44) in Theorem 1.2, as (1.40), (1.41),
(1.42) can be shown analogously to the proofs for (1.35), (1.36), (1.37), respectively.
The following can be derived by differentiating the equation (1.10) and is stated in
[13].
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12 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

Lemma 3.1. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the following
identity.

n∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(
r − 1 + n− l

r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1

(x) =
1

2rr!
W

(r)
n+r(x),

(3.1)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 +
i2 + · · ·+ ir+1 = l.

From (1.17), the rth derivative of Wn(x) is given by

W (r)
n (x) = (2n+ 1)

n−r∑
l=0

2n−l

2n+ 1− 2l

(
2n− l
l

)
(n− l)r(x− 1)n−l−r. (3.2)

In particular, we have

W
(r+k)
n+r (x) = (2n+ 1)

n−k∑
l=0

2n+r−l

2n+ 2r + 1− 2l

(
2n+ 2r − l

l

)
(n+ r − l)r+k(x− 1)n−k−l.

(3.3)

With En,r(x) as in (1.34), we let

En,r(x) =

n∑
k=0

Ck,4C
(α)
k (x). (3.4)

Then, from (d) of Proposition 2.1, (3.1),(3.3) and integration by parts k times,
we get

Ck,4 =
(k + λ)Γ(λ)

2k+rr!
√
πΓ(k + λ+ 1

2 )

×
∫ 1

−1

W
(r+k)
n+r (x)(1− x2)k+λ− 1

2 dx

=
(k + λ)Γ(λ)(2n+ 1)

2k+rr!
√
πΓ(k + λ+ 1

2 )

×
n−k∑
l=0

2n+r−l

2n+ 2r + 1− 2l

(
2n+ 2r − l

l

)
(n+ r − l)r+k

×
∫ 1

−1

(x− 1)n−k−l(1− x2)k+λ− 1
2 dx

=
(k + λ)Γ(λ)(2n+ 1)(−2)n−k

r!
√
πΓ(k + λ+ 1

2 )

×
n−k∑
l=0

(− 1
2 )l(2n+ 2r − l)!(n+ r − l)!

(2n+ 2r − 2l + 1)l!(2n+ 2r − 2l)!(n− k − l)!

×
∫ 1

−1

(1− x)n−k−l(1− x2)k+λ− 1
2 dx.

(3.5)

Invoking (c) of Proposition 2.2 and after simplifications, from (3.5) we obtain
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Ck,4 =
(−1)n−k(k + λ)Γ(λ)(2n+ 1)22n+2λ+1Γ(n+ λ+ 1

2 )(2n+ 2r)!

Γ(n+ k + 2λ+ 1)(n− k)!r!
√
π

×
n−k∑
l=0

(− 1
4 )l(2n+ 2r − l)!(n+ r − l + 1)!(n− k)!(n+ k + 2λ)l

l!(2n+ 2r)!(2n+ 2r − 2l + 2)!(n− k − l)!(n+ λ− 1
2 )l

=
(−1)k(k + λ)Γ(λ)(2n+ 1)22λ−2r−1(−1)nΓ(n+ λ+ 1

2 )(2n+ 2r)!

Γ(n+ k + 2λ+ 1)(n− k)!r!
√
π(n+ r + 1

2 )n+r+1

×
n−k∑
l=0

< k − n >l< −n− r − 1
2 >l< −n− k − 2λ >l

l! < −2n− 2r >l< −n− λ+ 1
2 >l

=
(−1)k(k + λ)Γ(λ)(2n+ 1)22λ−2r−1(−1)nΓ(n+ λ+ 1

2 )(2n+ 2r)!

Γ(n+ k + 2λ+ 1)(n− k)!r!
√
π(n+ r + 1

2 )n+r+1

× 3F2(k − n,−n− r − 1

2
,−n− k − 2λ;−2n− 2r,−n− λ+

1

2
; 1).

(3.6)

From (3.4) and (3.6), we have

En,r(x) =
Γ(λ)(2n+ 1)22λ−2r−1(−1)nΓ(n+ λ+ 1

2 )(2n+ 2r)!

r!
√
π(n+ r + 1

2 )n+r+1

×
n∑
k=0

(−1)k(k + λ)

Γ(n+ k + 2λ+ 1)(n− k)!

× 3F2(k − n,−n− r − 1

2
,−n− k − 2λ;−2n− 2r,−n− λ+

1

2
; 1)C

(α)
k (x).

(3.7)

This shows (1.43) of Theorem 1.2.
Next, we let

En,r(x) =

n∑
k=0

Ck,5P
(α,β)
n (x). (3.8)

Then, from (e) of Proposition 2.1, and (3.1), (3.3), and integrating by parts k
times, we obtain

Ck,5 =
(2k + α+ β + 1)Γ(k + α+ β + 1)

2α+β+k+r+1r!Γ(α+ k + 1)Γ(β + k + 1)

×
∫ 1

−1

W
(r+k)
n+r (x)(1− x)k+α(1 + x)k+βdx

=
(2k + α+ β + 1)Γ(k + α+ β + 1)(2n+ 1)

2α+β+k+r+1r!Γ(α+ k + 1)Γ(β + k + 1)

×
n−k∑
l=0

2n+r−l

2n+ 2r − 2l + 1

(
2n+ 2r − l

l

)
(n+ r − l)r+k(−1)n−k−l

×
∫ 1

−1

(1− x)n+α−l(1 + x)k+βdx.

(3.9)
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14 Sums of finite products of Chebyshev polynomials of the third and fourth kinds

By exploiting (b) in Proposition 2.2 and after simplifications, from (3.9) we
get

Ck,5 =
(−1)n−k(2k + α+ β + 1)Γ(k + α+ β + 1)22n+1(2n+ 1)Γ(n+ α+ 1)

Γ(α+ k + 1)Γ(n+ k + α+ β + 2)r!

×
n−k∑
l=0

(− 1
4 )l(2n+ 2r − l)!(n+ r − l + 1)!(n+ k + α+ β + 1)l

l!(2n+ 2r − 2l + 2)!(n− k − l)!(n+ α)l

=
(−1)n−k(2k + α+ β + 1)Γ(k + α+ β + 1)(2n+ 1)Γ(n+ α+ 1)(2n+ 2r)!

Γ(α+ k + 1)Γ(n+ k + α+ β + 2)(n− k)!r!22r+1(n+ r + 1
2 )n+r+1

×
n−k∑
l=0

< k − n >l< −n− r − 1
2 >l< −n− k − α− β − 1 >l

l! < −2n− 2r >l< −n− α >l

=
(−1)n−k(2k + α+ β + 1)Γ(k + α+ β + 1)(2n+ 1)Γ(n+ α+ 1)(2n+ 2r)!

Γ(α+ k + 1)Γ(n+ k + α+ β + 2)(n− k)!r!22r+1(n+ r + 1
2 )n+r+1

× 3F2(k − n,−n− r − 1

2
,−n− k − α− β − 1;−2n− 2r,−n− α; 1).

(3.10)

Thus, from (3.8) and (3.10), we have

En,r(x) =
(−1)n(2n+ 1)Γ(n+ α+ 1)(2n+ 2r)!

r!22r+1(n+ r + 1
2 )n+r+1

×
n∑
k=0

(−1)k(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(α+ k + 1)Γ(n+ k + α+ β + 2)(n− k)!

× 3F2(k − n,−n− r − 1

2
,−n− k − α− β − 1;−2n− 2r,−n− α; 1)P (α,β)

n (x).

4. Conclusion

In this paper, we considered sums of finite products of Chebyshev polynomials
of the third and fourth kinds and expressed each of them in terms of five orthogo-
nal polynomials, namely Hermite, generalized Laguerre, Legendre, Gegenbauer and
Jacobi polynomials. This can be viewed as a generalization of the classical connec-
tion problem. Those sums of finite products were also represented by all kinds
of Chebyshev polynomials in [15]. In addition, the same had been done for sums
of finite products of Chebyshev polynomials of the second, Fibonacci polynomials,
Legendre polynomials and Laguerre polynomials.
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