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Abstract: In recent years, autonomous robots have proven capable of solving tasks in complex1

environments. In particular, robot manipulations in activities of daily living (ADL) for service robots2

have been in wide use. However, manipulations such as loading a dishwasher or folding laundry are3

difficult to automate robustly. In addition, manipulations of grasping multiple objects in domestic4

environments present difficulty. To perform those applications better, we developed robotic systems5

based on shared autonomy by combining the cognitive skills of a human operator with autonomous6

robot behaviors. In this work, we present techniques for integration of a shared autonomy system7

for assistive mobile manipulation and new strategies to support users in the domestic environment.8

We demonstrate that the robot can grasp multiple objects with random size at known and unknown9

table heights. Specifically, we developed three strategies for manipulation. From experimental10

results, we observed that the first strategy has the highest success rate (70% for random objects) up11

to 70 cm table height. Two other strategies perform better for 80 cm to 100 cm table height. The12

success rate of the second and third strategies shows an average 63.3% and 73.3%, respectively, for13

grasping random objects. We also demonstrated these strategies using two intuitive interfaces, a14

visual interface in rviz and a voice user interface with speech recognition, which are suitable for15

elderly people. In addition, the robot can select strategies automatically in random scenarios, which16

make the robot intelligent and able to make decisions independently in the environment. We obtained17

interesting results showing that the robot adapts to the environmental variation automatically. After18

these experimental demonstrations, our robot shows the capabilities for employment in domestic19

environments to perform actual tasks.20

Keywords: Mobile manipulation; Shared autonomy; Assitive robotics; Grasping multiple objects;21

Service robotics22

1. Introduction23

In the home environment, perception is used to recognize a variety of objects; however, a service24

robot might not be able to detect all of the objects in every circumstance. In other words, when the25

robot encounters multiple objects on a table, it needs large computation time; otherwise, the robot26

might fail to accomplish the given tasks. However, if a human can support the judgment of the robot,27

the robot can acquire the specific object needed quite easily. Furthermore, the calculation time for28

classifying and selecting the appropriate object can be reduced significantly.29

Elderly people tend to spend more time at home and need care in the home due to declining30

capabilities and increasing illnesses. To support the situation, an intelligent system, which can assist31

elderly people, is necessary [1]. One of the options is to develop a service robot, which assists in human32
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Figure 1. The domestic robot Doro, which consists of depth and stereo cameras, robotic arm and
mobile-base platform, is useful manipulation task in domestic environment.

activities with smart home technology that connects between the human and the robot. For this reason,33

many studies researching service robots are underway [2,3].34

To find solutions for performing tasks in the home environment, many types of service robots35

have been developed. In particular, robots that provide shared autonomy and activities of daily living36

(ADL) for older people have been developed. One representative service robot is Care-o-bot, which37

was developed with basic technologies for delivery, navigation, and monitoring for users [4]. Moreover,38

in recent years, several projects have featured different robots that integrate smart home technology39

for health-care, shopping, garaging [5]„ and communication with users by gesture and speech [6].40

Despite enhanced functionalities of the service robots, we still face several challenges of ADL in the41

domestic environment. Particularly with tasks such as grasping objects iteratively in the environments,42

the capabilities of current robots are still lacking. To solve these problems, robots typically focus on43

either a fully autonomous or a fully teleoperated system. However, many limitations with perception44

and manipulation remain. A possible solution to overcome these issues is to use a shared autonomy45

system, in which the human operator controls the robot in a remote site with a high level of abstraction.46

In this paper, we developed integration of a shared autonomy system for grasping multiple objects47

in the domestic environment. To develop the system, we present a new method that is composed of48

three mobile manipulation strategies that were operated by the Doro robotic platform (Fig. 1). We49

focused on development of the strategies for grasping unreachable objects with variable known table50

height. Also, grasping an object on the unknown table heights was considered using the strategies.51

The paper is organized as follows. In the next section, relevant works related to the mobile52

manipulation tasks for grasping objects and user-interfaces are summarized. In section 3, the system53

architecture for grasping multiple objects is explained. In section 4, our shared autonomy system is54

described briefly. In section 5, we discuss implementation of the shared autonomy system, which55

includes multi-object segmentation, user interfaces, and mobile manipulation strategies. In sections 656

and 7, the experimental setup and experimental results are described. Section 8 contains conclusions57

and future work.58

2. Related work59

Mobile manipulation tasks for grasping an object in the domestic environment have been studied60

extensively over decades [7–11]. Research has been conducted on tasks that are performed with several61
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Figure 2. The mobile manipulation task is operated by human capabilities applied with Sheridan’s
four-stage model (a) Information acquisition, (b) Information analysis, (c) Detection and action selection,
and (d) action implementation

types of systems, including autonomous manipulation, human-in-the-loop, shared autonomy, and62

human-robot interaction systems.63

The autonomous manipulation system is frequently used to grasp objects in the domestic64

environment. In particular, the system has been developed for unreachable objects in the environment.65

The pushing operation system is one of the solutions to manipulate objects. Dogar et al. [7] suggest a66

framework to generate a sequence of pushing actions to manipulate a target object. Also, Kitaev et67

al. [8] present a method of push-grasping in which the robot arm shifts unavoidable objects to grasp68

a target object in simulation. However, the pushing action system needs adequate space in which69

to shift or remove objects. In addition, the presence of only one grasp pose in the system does not70

facilitate grasping objects of various shapes. Moreover, a sequence of manipulation actions to grasp the71

objects is suggested. Stilman et al. [9] use a sampling-based planner to take away the blocking objects72

in a simulation. For example, to grasp target objects, the robot arm opens a cabinet and removes an73

object in front of the target object sequentially. Another approach presents a picking and placing or74

sweeping movement to remove each object around the target object [10]. Moreover, Fromm et al. [11]75

propose a method to plan strategies for a sequence of manipulation actions. The authors did not set a76

target object, but they considered grasping all objects in a manipulation sequence selected by a search77

tree method. The sequence of manipulation actions described above show similar human behavior.78

Therefore, we also consider a sequence of manipulation actions for grasping unreachable objects.79

However, the discussed literature show that the robot already knows the target object before the robot80

manipulation starts. To overcome the object selection during the robot manipulation, user-interfaces81

operated by a shared autonomy system are developed.82

Many prior works address development of user-interfaces with shared autonomy systems for83

object selection. For remote selection of an object by people at home, the graphical point-click interface84

system was developed [12,13]. The interface is allowed to drag, translate, and rotate to select a target85

object by a person. In addition, the interface is used to generate waypoints for desired gripper position86

to conduct grasping tasks [14]. Moreover, the interface supports the grasp point on the object, sets the87

approaching angle, and adjusts the grasp pose to execute robot motion [15]. In addition, object-centered88

robot actions operated by service robot have been developed using a tablet PC [16]. Also, a laser point89

interface is employed for users with tremors and upper body impairment [17]. The interface systems90

support the object selection problem using human capabilities. However, the interface systems on the91

papers only consider grasping reachable objects, which are not occluded, and simple task planning is92

applied. In addition. to select the target object, a human operator should concentrate on the visual93

display and take their time when selecting an object.94
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Also, the sequence of manipulation actions for grasping an unreachable object using the95

supervision interface was developed [18]. The authors used an interface that only supports robot96

arm control to perform the pushing operation. However, the object selection system was not under97

consideration. Therefore, to grasp unreachable objects, we developed three mobile manipulation98

strategies with high-level automation and different grasp poses to support grasp planning. Of course,99

the object selection system was implemented using a voice and a visual interface for supporting robot100

perception to build people’s ADL at home.101

3. System architecture102

The goal of our work is to develop a robotic system that will be able to help people in ADL. In103

particular, we studied the scenario in which a user needs a particular object located on a table and asks104

the assistant robot to find and bring the object. To successfully perform the task, the assistant robot105

needs a high level of autonomy and the capability to interact with humans.106

In fact, the preferred way to achieve the scenario is to operate the robotic system automatically.107

Moreover, many different robotic systems have been developed to perform the task without human108

support. In particular, the robot with a multi-sensory navigation system for the indoor environment109

supports bringing a target object to the user safely. However, the capability to recognize a target object,110

calculate eligible grasp poses, and generate task planning for complex tasks are still being researched.111

The mobile manipulation task, which is part of the robotic system, should be automated. Parasuraman112

et al. [19] proposed a model for different levels of automation that provides a framework made up of113

four classes: (1) information acquisition, (2) information analysis, (3) decision and action selection, and114

(4) action implementation. In current work, we adapted the same framework in our robotic system115

(see Fig. 2).116

Information acquisition represents the acquisition of raw sensed data, which consists of distance117

measurements using a camera and laser sensor. In addition, information about the state of the robot118

and its environment (information about objects) is provided. To manipulate successfully, this function119

generally can be automated efficiently and robustly (see Fig. 2(a)).120

Information analysis involves object segmentation and obstacle recognition. For the autonomous121

field, one main challenge is to detect and cluster the object-sensed data in the domestic environment122

because the sensor data can be incomplete and noisy due to occlusions and outliers. In addition,123

reliable interpretation of images from the camera remains a largely unsolved research problem [20]124

(see Fig. 2(b)).125

Decision and action selection are performed by the human. The human knows where the object126

is located and can tell the robot the exact position. Furthermore, the human can support objects that the127

robot should grasp using visual and user voice interfaces. The grasp point of the objects was inferred128

using the 3D centroid function in our system to support grasp planning (see Fig. 2(c)).129

The last function is called action implementation; the motion planning system that generates130

the path to control the robot arm is used. After the robotic arm finishes following the trajectory, the131

grasping task is executed (see Fig. 2(d))).132

4. Shared autonomy system description133

Based on Sheridan’s four-stage model, which was previously described, Decision & Action134

selection were conducted as a good starting point for the shared autonomy concept. Moreover, in this135

model, the human operator only supports object selection in the domestic environment. We aimed136

to develop a system that is operated by minimum human effort. The human operator contributes by137

interpreting the environment from the camera images and by choosing a low level of automation in138

the third stage of Sheridan’s model.139

The final objective of the mobile manipulation task is to pick up an object on a table of unknown140

height and bring it to a user. In our system, as the robot finds a table, it measures the table height141

and adjusts its neck angle accordingly. Then, robot detects and segments multiple objects that are142
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Figure 3. A simple pictorial diagram with variables such as neck angle(Nθ), table height(Th) and object
height(Oh). Look at the text for the variables applied in the equations.

positioned in two rows (front and back). As the robot completes extraction of the objects with several143

RGB colors, the user selects a row and a target object using voice and visual interfaces. Based on the144

table height information, and row and object information (height, length, weight, and distance), the145

robot selects one of three mobile manipulation strategies that we have developed for grasping an object146

in the back row. The strategies were designed with different grasp poses according to the table heights.147

For grasping an object, we followed two scenarios, In the first scenario, the user employed a148

known table height fixed at 70, 80, 90, or 100 cm. Moreover, in the second scenario, the user employed149

an unknown table height which is measured by robot itself, and robot can decide empirically which150

strategies are better for grasping. From several experimental trials, empirical results suggest three151

strategy modes for better grasping:152 
1 Th < 77cm

2 Th < 87cm

3 Th < 100cm

153

where Th is table height measured by camera. For grasping objects and controlling the arm, we154

used Point Cloud Library (PCL) [21] and Moveit [22] library.155

5. Implementation of shared autonomy system156

The goal of the shared autonomy system is to provide support to improve the quality of human life.157

For example, if a human operator assigns a task to a service robot with a high level of autonomy using158

a gadget, the human can use their own cognitive skills for selecting objects. Thus, the task performance159

with the shared autonomy system is more efficient than an autonomous system, which still has160

difficulty in recognizing objects in the domestic environment. The main contribution of this paper is161

the development of motion planning with three strategies of manipulation. To implement the strategies162

of manipulation, several components such as image preprocessing, multi-object segmentation, visual163

and voice user interfaces, and action planning were applied. The components were organized to164

perform key roles in performing fundamental ADL for human life.165

The domestic environment contains myriad household objects with different shapes and sizes166

such as bottle, box, and cup, chairs, tables etc. We considered grasping an object from a table of167

unknown height in the domestic environment, which schematically is shown in Fig. 3 with our robot.168

Actually, many studies for grasping objects [7–11] were tested using fixed table height and viewpoint.169

However, if the viewpoint is changed, detection of objects on the table will be difficult by the robot.170

Therefore, to overcome the difficulty of detecting objects from a different viewpoint, we adjusted the171

neck angle of the robot based on table height. Before applying the fixed neck angle, the robot needs to172

find a table. Thus, the initial neck angle was set at the lowest position to find a lower table height. For173

detecting the table, the random sample consensus (RANSAC) [23] algorithm was used to filter noises174

from raw data of the environment and was also applied to segment a table by PCL. After the table was175

segmented, a point (which is calculated by averaging all the coordinate points on the top surface of176
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Figure 4. The flow chart of the shared autonomy system; It is included with image preprocessing,
multi-object segmentation, object selection and action planning with developed strategies.

the table) was extracted from the base frame of the robot (see Fig. 5), and only the z-axis value was177

used to calculate table height. Then the value was stored for changing the neck angle and choosing the178

strategies. Next, the neck angle of the robot was adjusted by the interpolation method. To interpolate179

the neck angle, we set the maximum and minimum range of neck angle and table height. Moreover,180

the linearly interpolated neck angle helped the robot to detect multiple objects easily.181

Nθ,d = Nθ,min + (Th − Th,min)
Nθ,max − Nθ,min

Th,max − Th,min
(1)

where Nθ,d is desired neck angle,Nθ,max and Nθ,min are maximum and minimum of neck angle, and182

Th,max and Th,min are maximum and minimum of table heights. The Th is the current table height183

described in Fig. 3. In the actual environment, if a robot detects a very low table height (less than 70184

cm), it positions itself very close to the table. As a result, the workspace for manipulation reduces and185

difficult to manipulate. To establish an appropriate area for grasping an object,it secures the workspace186

using a laser sensor to measure the distance between the table and robot base. After the robot judges187

that the workspace is enough to manipulate then detection and segmentation of the multiple objects188

start. This process is represented in the flow chart(See the Fig. 4).189

where Nθ,d is the desired neck angle, Nθ,max and Nθ,min are maximum and minimum neck angle,190

respectively, and Th,max and Th,min are maximum and minimum table heights, respectively. The Th is191

the current table height described in Fig. 3. In the actual environment, if a robot detects a very low192

table height (less than 70 cm), it positions itself very close to the table. As a result, the workspace193

for manipulation is reduced, which makes it difficult to manipulate. To establish an appropriate194

area for grasping an object, the robot secures the workspace using a laser sensor to measure the195

distance between the table and robot base. After the robot judges that the workspace is appropriate for196

manipulation, detection and segmentation of the multiple objects starts. This process is represented in197

the flow chart in Fig. 4).198
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5.1. Multi-object segmentation199

When the robot explores its environment and encounters multiple objects, a depth-based200

segmentation algorithm could be useful for extracting the objects using point could data acquired201

from the RGB camera which is first implemented by [24–26]. Trevor et al. proposed a connected202

component-based approach to segment a set of objects from an organized point cloud [24].203

In our work, we adapted and modified the trevor et al.’s approach to segment multiple objects204

by an organized point cloud library. We suggest to use the depth camera (Xtion) for acquiring depth205

data instead of RGB camera will increase depth data accuracy. For each point P(x,y) a label L(x, y) is206

assigned. Points belonging to the same segment will be assigned to the same label based on Euclidean207

clustering comparison function (See the [24] for more details). To segment the objects accurately, some208

of the large segments, like the plane surface, will be excluded. In addition, if the distance between the209

two points in the same label set is more than a threshold, one of the points will be discarded because210

of increasing object segmentation speed. The area to be clustered and the threshold of points for each211

object between 1500 to 10000 points were chosen experimentally. In order to distinguish multiple212

objects easily, the object were covered with six RGB colors. The result of this segmentation process is213

presented in Fig. 5. This process is described in the flow chart (See the Fig. 4).214

In our work, we adapted and modified the approach of et al.. to segment multiple objects by215

an organized point cloud library. We used a depth camera (Xtion) for acquiring depth data instead216

of an RGB camera to increase depth data accuracy. For each point P(x,y), a label L(x, y) is assigned.217

Points belonging to the same segment will be assigned to the same label based on the Euclidean218

clustering comparison function (see [24] for more details). To segment the objects accurately, some of219

the large segments, like the plane surface, will be excluded. In addition, if the distance between the220

two points in the same label set is more than a threshold, one of the points will be discarded because221

of increasing object segmentation speed. The area to be clustered and the threshold of points for each222

object. The points of each object clustered between 1500 to 10000 points were chosen experimentally.223

To distinguish between multiple objects easily, the object were covered with six RGB colors. The result224

of this segmentation process is presented in Fig. 5. This process is described in the flow chart shown in225

Fig. 4).226

5.2. Human object selection227

Autonomous object selection is the best method for humans. However, selection of the target object228

in the domestic environment is a difficult task, although multiple objects were clustered completely by229

a camera. For this reason, the selection was conducted via human intelligence. A variety of interfaces230

for object selection have been developed [12–16]. For our robotic platform, object selection was done231

in two ways: 1) voice and 2) visual. We also believe that a combination of these two methods could232

be easily accessible for very old people who cannot move. Moreover, our interface platform includes233

a tablet for the voice user interface (see Fig. 6(b)) and rviz in a PC for the visualization interface234

(see Fig. 6(a)). The visualization interface, which includes RGB colors and depth information of235

the environment, was provided for the selection system; the voice user interface is based on speech236

recognition [28]. The selection system consisted of three steps:237

• 1. Select one of the rows of multiple objects238

• 2. Choose an object desired in the same row239

• 3. Choose an object desired in a different row240

First, the user selects the object from the front or back row of the table. After identification of the241

row (front or back), the target object selection is done (see Fig. 4).242

5.3. Action planning & Execution243

Among multiple objects, grasping objects are still a challenge. Thus, we tried to find a grasping244

point with simply shaped objects such as a bottle or box, which are common household objects in245
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Figure 5. Real-time multi-object segmentation on the table visualized in rviz [27]

the domestic environment. In addition, the grasping point was used to generate possible hand poses246

relative to the object for action planning.247

To extract the grasping point from each object, we used the 3D centroid function in PCL and248

configured the grasp poses. In our case, we characterized two types of grasp poses:249

•Top pose: It is aligned by the robot hand to the object in the vertical plane (along the x- and250

z-axis), and opening and closing of the robotic hand is in the direction of the x- or y-axis (see Fig. 7(a)).251

•Side pose: It is defined in the horizontal plane (along the x- and y-axis), and the opening and252

closing direction of the robotic hand is the same as previous (see Fig. 7(b)).253

To grasp the object, we used the motion planning library, which includes capability for collision254

avoidance, self-collisions, and joint limit avoidance of the robot arm in the domestic environment. The255

motion planning library (Moveit) was used for executing three mobile manipulation strategies. In256

addition, the library supports collision-aware inverse kinematics to determine the feasibility of grasp257

by finding collision-free solutions. Even if collision-free solutions were found, many possible paths258

could be used to reach the goal, and the library choose a path generated with minimum trajectory cost;259

namely, the shortest in the joint space. In addition, the position of the robot hand plays an important260

role in grasping. For this reason, pre-grasp position (it is an offset from the target object with the two261

grasp poses) was developed. After the pre-grasp position was obtained, the palm of the robot hand262

approached the surface of the target object to grasp it. Based on these technologies, the strategies were263

enhanced to avoid crashes between the robot arm and robot body during the operation [29] (see Fig.264

4).265
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Figure 6. (a) Visualization interface system, (b) Voice user interface system

Figure 7. (a) Top grasp pose, (b) Side grasp pose

5.4. Developed mobile manipulation strategies266

Three strategies of the mobile manipulation were conceived to grasp an object, which was apart267

from the robot. A set of 6 objects, arranged in two rows, was placed in front of the robot (see Fig. 6(a)).268

We consider grasping objects placed in the back row because grasping front row objects are an easy269

task that we have already developed. Before starting the strategies for grasping an object, we need to270

accomplish three steps. The first step is initialization of the robot arm. The next step is to transform the271

coordinates of multiple objects from camera frame to robot base frame for manipulation. The last step272

is pre-grasp position based on table height. These three steps are described in Algorithm 1 (lines 2 to273

5). Actually, these steps are capable of grasping an object on a table, but grasping back-row objects274

always fails due to the obstruction caused the front-row objects. For these reasons, we developed three275

strategies for the mobile manipulation for grasping an object in the back row. To exploit the three276

strategies of mobile manipulation, motion planning with Moveit library is applied to prevent the robot277

arm from colliding with the robot body.278

• The first strategy279

The objective of the first strategy was to grasp an object on the approximately 70cm high table,280

directly from the back row, to reduce manipulation time. The mobile platform was pre-defined to be281

at a rotated angle and also the specific neck angle that supports segmentation of objects in the back282
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Figure 8. The first strategy for manipulation: (a) The robot moves close to the table, (b) The mobile
platform is rotated to grasp the target object. (c) Top grasp pose is implemented to grasp the object
directly. (d) After grasping the object, the robot arm returns back to the initial position.

row was set. In fact, the two angles were defined empirically based on distance between the table and283

robot. However, the information of the scene obtained by the camera was still insufficient due to the284

obstruction of front row objects. Actually, when the same sizes of objects are detected, the visualization285

of the object size shows differently because the distance from the camera to each object is different. In286

addition, the objects in the front row would be obstructed during grasping, and it will be difficult to287

detect the entire size of the back row objects. For this reason, the function of the linear interpolation288

(the same as Equation 1) with different variables was developed. The output of the interpolation is289

a value that will add to the position in the z-axis to establish the stable grasping point. After the290

interpolation, the top grasp pose was applied to grasp the object directly. The first strategy in the291

actual environment was performed as shown in Fig. 8((a)-(d)) and also as described in Algorithm 1292

(lines 7 to 9).293

• The second strategy294

The first strategy of the mobile manipulation was useful to grasp the objects in the back. However,295

we still are challenged to ensure stable grasping by the robot. For this reason, we developed a new296

strategy to grasp the objects in the back row to compensate for an inadequate object segmentation297

and robust and stable grasping. The objective of the second strategy was to grasp the objects from an298

80-cm-high table while ensuring good stability. To pick up the objects, the algorithm for removing the299

objects in the front was conceived. The point of the strategy is that when the user selects the back row300

and target object, the robot calculates the centroid front row object as well. Then, the robot lifts the301

object off the front row and places it in the empty place on the table. First, to find the objects in the302

front, the function was implemented for searching the nearest distance between all objects and the303

target object. After the object in the front row was found, the pre-defined grasp position was applied.304
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Algorithm 1: The three mobile manipulation strategies
Input : Joint position q, Inital pose xinit, Object row Orow, All objects information Oall , The

centroid of the object selected and transformed Ocen, Object desired xd, Grasp pose
xgrasp, The new centroid of the object selected and transformed Onewcen, Distance of z
axis zadd, Table height Th

Output :Goal pose, xgoal

1 while until manipulator finish task given do
2 InitializationJacoArm(q);
3 TransformAllObjects;
4 xgrasp ← Pre-definedGraspPose(xinit, Orow, Th);
5 if Orow.back = True then
6 1. The first strategy
7 Rotate MobileBase & Set the Angle of Neck
8 zadd ← InterpolationAddGraspAxis(Ocen);
9 xgoal ← xcen · xgrasp · zadd ;

10 2. The second strategy
11 Search NearestObject(Ocen);
12 Search Pre-defiendEmptySpace(Oall);
13 xd ← Calculate TargetObject(Ocen);
14 xgoal ← xd · xgrasp;
15 3. The third strategy
16 Update ObjectStates & Move MobileBase;
17 Onewcen ← Search ObjectUsingAxis(Ocen);
18 xd ← Calculate TargetObject(Onewcen);
19 ManipulationBasedOnModeSelection;
20 xgoal ← xd · xgrasp;
21 end
22 end
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Figure 9. The second strategy shows the robot performing lateral grasp to pick up an object in the back.
(a) First, the object in front of the object selected is removed. (b) The object is placed on the empty place.
(c) The robot grasps the target object with a side grasp pose. (d) As the object grasps, the arm starts to
return back to the initial position.

To ensure a stable grasping, the side grasp pose was introduced. Then, as the front row object was305

grasped (see Fig. 9(a)), a pre-defined place was located at the right edge of the table (see Fig. 9(b)).306

Since the robot arm is mounted on the right of the body, we considered that an available place to the307

right would be easier. After the object was placed on the table, the arm returned to the initial position308

and the robot started grasping the target object with the side grasp pose (see Fig. 9(c,d)). The entire309

process is represented in Algorithm 1 (lines 11 to 14).310

• The third strategy311

The first and second strategies of the mobile manipulation were helpful to grasp objects in the312

back row, but the robot might fail to accomplish the task. For example, if the robot faced a table higher313

than its visual field, or if objects in the front row were taller than objects in the back row, the robot314

could not detect objects in the back row. For this reason, the third strategy was developed to grasp the315

hidden object. The third strategy is used in the particular situation of a hidden object when the first316

and second strategies cannot perform grasping tasks. In this strategy, human support was exploited317

to overcome the difficulty of object selection. For instance, a human can evaluate placement of the318

object better than a robot can. In other words, if the user cannot see the object by visual interface, they319

can suggest other alternatives. To conduct a feasibility study for the third strategy, the hidden object320

was evaluated according to the decision of the user. In the first and second strategies, the user selects321

an object in the back row and the target object. The object selection method in the third strategy was322

not the same as in previous strategies because the user cannot see the object in the back using visual323

interface. However, the user already knows the location of the target object on the table and selects the324

back row and an object in the front using voice interface. After the user selects both row and object, the325

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0138.v1

http://dx.doi.org/10.20944/preprints201810.0138.v1


13 of 21

Figure 10. Experimental setup with multiple objects and an adjustable height table.

process of the third strategy, which is similar to that of the second strategy, is implemented. The basic326

difference between these two strategies is to update the state of the objects. After the object in the front327

is placed in the empty space, the robot should discover the target object. To find the object, the state of328

the scene was updated using the multi-object segmentation function. In addition, the information of329

the y-axis is used to find the target object because the target object is located colinear to the front object.330

The simplified algorithm is described in Algorithm 1(lines 16 to 20).331

6. Experimental setup332

Our experimental setup is shown in Fig. 10. The robotic platform for the experiment is the Doro333

(domestic robot) personal robot [7], a service robot equipped with an omni-directional mobile base334

and a Kinova Jaco robotic arm. The Kinova Jaco arm, which has six degrees of freedom, is used for335

manipulation tasks. The head of the Doro is a pan-tilt platform equipped with two stereo cameras and336

an Asus Xtion Pro depth camera; they are used for object detection and segmentation. Furthermore,337

front laser (SICK S 300) and laser (Hokuyo URG-04LX) sensors are used to detect obstacles for safe338

navigation in a domestic environment. The three manipulation strategies were tested in the DomoCasa339

Lab, a domestic house developed and managed by The BioRobotics Institute of Scuola Superiore340

SantAnna in Peccioli, Italy. To implement ADL, we set up the experimental environment with multiple341

objects placed on the table, which can be adjusted in height as shown in Fig. 10. Three objects were342
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Figure 11. Objects were placed as follows: (a) left top: short objects, right: tall objects; (b) short objects
in the front (FSO, right top); (c) tall objects in the front (FTO, left bottom); and (d) random size objects
(RO, right bottom).

placed in the front, and the others were placed in the back. We used rectangular objects such as plastic343

bottles and juice boxes during the experiments.344

For the experiment, several scenarios were organized. Before grasping an object in the back row,345

we tested a simple scenario for grasping an object in the front row. Then, the three manipulation346

strategies were tested to grasp an object in the back. The known table height was set at different steps347

of 10 cm, such as 70, 80, 90, and 100 cm. In addition, these three strategies were tested at an unknown348

table height to apply them in the real-life situation. The objects were placed in three positions: short349

size objects in the front (FSO), tall size objects in the front (FTO), and random size objects (RO) (see Fig.350

11). During the manipulation with all strategies for unknown table height, we considered grasping one351

of the objects, which were placed randomly. The scenarios were evaluated 10 times for each strategy in352

terms of collision, execution time, and success rate with known table height and with unknown table353

height.354

7. Experimental results355

Firstly, quantitative and qualitative analysis for three mobile manipulation strategies for known356

and unknown table height were performed. We only considered the execution time and collisions357

when the mobile manipulation task was a success.358

7.1. Quantitative analysis at known table heights359

The quantitative results focused on three criteria: success rates, collision, and execution time. The360

success rates were measured when the robot grasped a target object. We also considered a collision361

case in which objects were crashed into by a robot hand. The execution time is measured beginning362

when these experiments start.363

7.1.1. Success rates364

The success rates were evaluated in each strategy with three different object positions (FSO, FTO,365

and RO) on known table heights. When the kinematic solver operating in Moveit could not work366

properly, we did not measure the success rate during trials.367

As shown in Fig. 12(a), the success rate of the first strategy was higher for the 70 cm table height368

compared to any other table heights and strategies (60% to 80% for all three scenarios). At this table369

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2018                   doi:10.20944/preprints201810.0138.v1

http://dx.doi.org/10.20944/preprints201810.0138.v1


15 of 21

height, the second and third strategies have low success rates of manipulation because of lack of370

workspace. However, if the robot faces the same situation, the first strategy can grasp objects with top371

grasp pose, which helps the robot to avoid front obstacles and save manipulation time. Nevertheless,372

some trials in the first strategy also failed to grasp the target object, although we developed linear373

interpolation to overcome insufficient object segmentation and stable grasping. In addition, except for374

the 70 cm table height, the first strategy was not successful in grasping because the robot cannot reach375

pre-grasp position over 77 cm.376

The success rate of the second strategy was improved for a table height of greater than 80 cm,377

which is better than for the first strategy, but it doesn’t work for the 70 cm table height (see Fig. 12(b)).378

In particular, we found that the second strategy was a success for an average of 30% of the 70 cm table379

height tests in three different scenarios. Moreover, this strategy performed better for 80, 90, and 100 cm380

table heights for FSO and RO (success rate varies from 60% to 8%). We also observed that the second381

strategy failed to grasp FTO objects at table heights of 90 and 100 cm, which occurred due to taller382

objects blocking the target object (the human could not see or select the target object). In addition,383

when the robot grasped an object in the FTO, the robot only segmented small parts of objects in the384

back at 80 cm table height. Therefore, the grasp point was not extracted accurately.385

Finally, the third strategy (see Fig. 12(c)) could be carried out with any table height. In this case,386

the success rate varies from 70% to 80% (higher than second strategy) at 80, 90, and 100 cm table heights.387

However, for the 70 cm table height, the performance is similar to that of the second strategy (20%388

to 30%). As the robot removed the front object, the multi-object segmentation system was repeated389

automatically. As a result, the grasp point could be extracted more accurately than with the second390

strategy. However, as mentioned before, we still have a kinematic solver problem. Therefore, when the391

kinematic solver performed well, we deemed the manipulation to be successful. Failure of the strategy392

occurred when the grasp force was insufficient to grasp the target object. Thus, the robot dropped the393

object during manipulation. Furthermore, if the grasp point of the object was slightly shifted from394

the centroid of the object, the robot arm could not grasp the object. As shown in Fig. 12(c), the third395

strategy can be applied in any environment and shows better performance except for the 70 cm table396

height.397

7.1.2. Collisions398

During the evaluation, the number of collisions was measured for each table height using the399

three strategies for a total of 10 times for all scenarios in the experiments (see Fig. 13).400

The best results with 70 cm table height were achieved using the first strategy with a total average401

of seven collisions from all scenarios (see Fig. 13(a)). The collisions in the strategy occurred while402

the robot arm returned to the home position. Except for the 70 cm table height, the low number of403

collisions occurred at 80, 90, and 100 cm table height with the third strategy. The total number of404

collisions using the strategy occurred with all scenarios, with averages of six, eight, and ten for 80,405

90, and 100 cm table height respectively (see Fig. 13(b),(c),(d)), and standard deviation is about 5%406

of each collision. However, the second and third strategies have similar manipulations. Therefore,407

Fig. 13(b),(c),(d) show that the collisions of the strategies are similar except for 90 cm and 100 cm table408

heights in the FTO scenario. The collisions with two strategies occurred while the robot arm was close409

to the object and returned to the home position with a target object.410

Actually, with the first strategy, collisions only with the 70 cm table height could be measured411

because the robot arm could not reach objects with the other table heights (see Fig. 13(a)). Moreover,412

we could not measure collisions with the second strategy in the FTO at the 90 and 100 cm table413

heights since the objects in the back were occluded due to being shorter than the front objects (see Fig.414

13(c),(d)).415
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Figure 12. The success rate of the mobile manipulation for grasping an object in the back row on known
table heights: (a) First strategy; (b) Second strategy; (c) Third strategy.

7.1.3. Execution times416

We measured the execution times for grasping objects in the back row using three strategies. Then417

we calculated the average time with FSO, FTO, and RO configurations. The three categories for the418

time measured were separated (see Fig. 14):419

• 1. Image preprocessing and multi-object segmentation (IP & MOS)420

• 2. Human object selection (HOS)421

• 3. Each strategy execution time (ESE)422

In three strategies, the execution time for the first and the second categories were similar. The first423

category took 35 seconds to finish, but the robot can finish the task in less than 25 seconds. Actually,424

sometimes the depth camera did not detect objects because of noise from input data. Therefore, the425

robot repeats segmentation with new input data, which takes more time (∼ 10 seconds).426

In addition, when a user selects a row and an object, it spends less than 10 seconds. However,427

sometimes the voice interface could not be recognized by the tablet directly. Thus, we used time to428

request the object row and target object again (∼ 15 seconds).429

Comparing each strategy execution time (third category), the first strategy is the fastest because430

the strategy does not consider removing the front object. In contrast, the third strategy is slower431

than the second strategy since the third strategy needs more time to segment multiple objects due to432

repetition.433
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(a) (b)

Figure 13. Number of collisions with three strategies during the grasp of an object in the back row for
known table heights: (a) 70 cm table height; (b) 80 cm table height; (c) 90 cm table height; (d) 100 cm
table height.

7.2. Quantitative results in unknown table heights434

Previous quantitative results were analyzed using known table height. However, various types of435

tables exist in reality. Before we set up the table height, we defined range between 70 and 100 cm to436

select strategies automatically. Then, the table height was set up randomly between defined ranges.437

Also, we only tested the strategies with objects in the RO configuration for implementing in the actual438

environment.439

To confirm the three strategies of mobile manipulation, the three different table heights were440

measured and the results were evaluated in the same manner as previous cases (see Fig. 15). The robot441

selected one strategy automatically to manipulate according to table height. As a result, the experiment442

was tested in ten trials; the average of the success rate of the manipulation in unknown table height443

is greater than 75%. We analyzed the number of collisions during the experiment. Collisions were444

evaluated with the same criteria, and an average of five collisions occurred with all three scenarios.445

In addition, the execution time for self-selected strategies at unknown table height (73.3 cm, 84.3 cm,446

and 93.7 cm) are 104 s, 178 s, and 184 s for the random scenario (see Fig. 16). Also, this result is only447

measured when the kinematic solver operates well.448

7.3. Qualitative results for known and unknown table heights449

For known table height, the first strategy was developed in terms of saving time. However, in450

terms of stability, the second and third strategies performed better than the first strategy. In addition,451

the voice and the visual interfaces together made it more comfortable and convenient for the user to452

select a target object. Specifically, sometimes a few users are not able to see the object, and in that case453

they can ask the robot vocally (more likely with elderly people and children).454
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Figure 14. Visualization of execution times for grasping an object on known table heights with three
strategies.

Figure 15. The success rate and number of collisions with three strategies of the mobile manipulation
for grasping an object in the back row with unknown table heights.

For unknown table height, the robot demonstrated that self-selection strategies succeeded by455

enabling less user input and more intelligent selection. Moreover, unknown table height with random456

object selection is a better fit for the domestic environment. Upon receiving better performance by457

the robot with intelligent selection, the user will be more comfortable with the robot and find it more458

convenient.459

8. Conclusions and future work460

In this paper, we present three mobile manipulation strategies in which the operator provides a461

simple command using visual and voice user interfaces. The strategies resulted in the improvement of462

grasping capabilities of household objects in collaboration with a real robot Doro. The user provides463

the two commands regarding the object row and target object using a visual and a voice interface.464

The three strategies of the mobile manipulation were developed to pick and place, and convey an465

object in the domestic environment effectively. Based on the results, the three strategies have their own466

advantages at the different table heights. Therefore, the intelligent strategy selection system can be467

applied for domestic environments that have different table heights.468

The goal of this paper is to support elderly people for ADL in the domestic environment. Although469

the proposed system considered grasping limited to certain types of domestic objects, the strategies we470

developed can apply grasping to various household objects. In addition, to take care of elderly people471

daily, monitoring and managing systems using robots are invaluable. In this sense, our proposed472
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Figure 16. Visualization of execution times for grasping an object with unknown table heights using
three strategies.

system can be useful to monitor the robot state and select an object easily for ADL. Nevertheless,473

we still have many issues, including detection and segmentation, that we need to resolve in the474

domestic environment. Actually, the current system could be used to detect, cluster, and extract simple475

household objects such as bottles, boxes, etc. However, various objects that are different in shape exist476

in the domestic environment. Therefore, the 3D centroid of an object would not be able to grasp it.477

For this reason, we will develop a grasp pose algorithm for a variety of household objects with our478

strategies to save time [30]. In addition, a deep learning-based approach for extracting grasping point479

could be considered to obtain more accurate performance [31,32]. Moreover, for the insufficient shape480

information, the tactile sensors could be used on the fingers of the robotic hand. These would help the481

Doro robot for contact-reactive grasping of objects [33].482
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