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1 Abstract: In recent years, autonomous robots have proven capable of solving tasks in complex
> environments. In particular, robot manipulations in activities of daily living (ADL) for service robots
s have been in wide use. However, manipulations such as loading a dishwasher or folding laundry are
s difficult to automate robustly. In addition, manipulations of grasping multiple objects in domestic
s environments present difficulty. To perform those applications better, we developed robotic systems
s  based on shared autonomy by combining the cognitive skills of a human operator with autonomous
»  robot behaviors. In this work, we present techniques for integration of a shared autonomy system
s for assistive mobile manipulation and new strategies to support users in the domestic environment.
o We demonstrate that the robot can grasp multiple objects with random size at known and unknown
1o table heights. Specifically, we developed three strategies for manipulation. From experimental
1 results, we observed that the first strategy has the highest success rate (70% for random objects) up
1z to 70 cm table height. Two other strategies perform better for 80 cm to 100 cm table height. The
1z success rate of the second and third strategies shows an average 63.3% and 73.3%, respectively, for
1« grasping random objects. We also demonstrated these strategies using two intuitive interfaces, a
15 visual interface in rviz and a voice user interface with speech recognition, which are suitable for
s elderly people. In addition, the robot can select strategies automatically in random scenarios, which
1z make the robot intelligent and able to make decisions independently in the environment. We obtained
1= interesting results showing that the robot adapts to the environmental variation automatically. After
1»  these experimental demonstrations, our robot shows the capabilities for employment in domestic
20 environments to perform actual tasks.

a2 Keywords: Mobile manipulation; Shared autonomy; Assitive robotics; Grasping multiple objects;
22 Service robotics

s 1. Introduction

N

24 In the home environment, perception is used to recognize a variety of objects; however, a service
2 robot might not be able to detect all of the objects in every circumstance. In other words, when the
26 robot encounters multiple objects on a table, it needs large computation time; otherwise, the robot
=z might fail to accomplish the given tasks. However, if a human can support the judgment of the robot,
2s the robot can acquire the specific object needed quite easily. Furthermore, the calculation time for
20 classifying and selecting the appropriate object can be reduced significantly.

30 Elderly people tend to spend more time at home and need care in the home due to declining
a1 capabilities and increasing illnesses. To support the situation, an intelligent system, which can assist
2 elderly people, is necessary [1]. One of the options is to develop a service robot, which assists in human
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Figure 1. The domestic robot Doro, which consists of depth and stereo cameras, robotic arm and
mobile-base platform, is useful manipulation task in domestic environment.

33 activities with smart home technology that connects between the human and the robot. For this reason,
s« many studies researching service robots are underway [2,3].

35 To find solutions for performing tasks in the home environment, many types of service robots
s have been developed. In particular, robots that provide shared autonomy and activities of daily living
sz (ADL) for older people have been developed. One representative service robot is Care-o-bot, which
;s was developed with basic technologies for delivery, navigation, and monitoring for users [4]. Moreover,
30 in recent years, several projects have featured different robots that integrate smart home technology
a0 for health-care, shopping, garaging [5],, and communication with users by gesture and speech [6].

a1 Despite enhanced functionalities of the service robots, we still face several challenges of ADL in the
«2 domestic environment. Particularly with tasks such as grasping objects iteratively in the environments,
«3  the capabilities of current robots are still lacking. To solve these problems, robots typically focus on
s either a fully autonomous or a fully teleoperated system. However, many limitations with perception
+s and manipulation remain. A possible solution to overcome these issues is to use a shared autonomy
s system, in which the human operator controls the robot in a remote site with a high level of abstraction.
a7 In this paper, we developed integration of a shared autonomy system for grasping multiple objects
ss in the domestic environment. To develop the system, we present a new method that is composed of
4 three mobile manipulation strategies that were operated by the Doro robotic platform (Fig. 1). We
so focused on development of the strategies for grasping unreachable objects with variable known table
s1  height. Also, grasping an object on the unknown table heights was considered using the strategies.

52 The paper is organized as follows. In the next section, relevant works related to the mobile
ss manipulation tasks for grasping objects and user-interfaces are summarized. In section 3, the system
s« architecture for grasping multiple objects is explained. In section 4, our shared autonomy system is
ss described briefly. In section 5, we discuss implementation of the shared autonomy system, which
s includes multi-object segmentation, user interfaces, and mobile manipulation strategies. In sections 6
s» and 7, the experimental setup and experimental results are described. Section 8 contains conclusions
se and future work.

s 2. Related work

60 Mobile manipulation tasks for grasping an object in the domestic environment have been studied
e1 extensively over decades [7-11]. Research has been conducted on tasks that are performed with several
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Figure 2. The mobile manipulation task is operated by human capabilities applied with Sheridan’s

four-stage model (a) Information acquisition, (b) Information analysis, (c) Detection and action selection,
and (d) action implementation

ez types of systems, including autonomous manipulation, human-in-the-loop, shared autonomy, and
es human-robot interaction systems.

6s The autonomous manipulation system is frequently used to grasp objects in the domestic
es environment. In particular, the system has been developed for unreachable objects in the environment.
ss The pushing operation system is one of the solutions to manipulate objects. Dogar et al. [7] suggest a
ez framework to generate a sequence of pushing actions to manipulate a target object. Also, Kitaev et
es al. [8] present a method of push-grasping in which the robot arm shifts unavoidable objects to grasp
e a target object in simulation. However, the pushing action system needs adequate space in which
70 to shift or remove objects. In addition, the presence of only one grasp pose in the system does not
= facilitate grasping objects of various shapes. Moreover, a sequence of manipulation actions to grasp the
72 Objects is suggested. Stilman et al. [9] use a sampling-based planner to take away the blocking objects
»s in a simulation. For example, to grasp target objects, the robot arm opens a cabinet and removes an
za object in front of the target object sequentially. Another approach presents a picking and placing or
7 Sweeping movement to remove each object around the target object [10]. Moreover, Fromm et al. [11]
76 propose a method to plan strategies for a sequence of manipulation actions. The authors did not set a
7z target object, but they considered grasping all objects in a manipulation sequence selected by a search
7e tree method. The sequence of manipulation actions described above show similar human behavior.
7 Therefore, we also consider a sequence of manipulation actions for grasping unreachable objects.
so However, the discussed literature show that the robot already knows the target object before the robot
e manipulation starts. To overcome the object selection during the robot manipulation, user-interfaces
e2 operated by a shared autonomy system are developed.

o3 Many prior works address development of user-interfaces with shared autonomy systems for
s« Object selection. For remote selection of an object by people at home, the graphical point-click interface
es system was developed [12,13]. The interface is allowed to drag, translate, and rotate to select a target
e object by a person. In addition, the interface is used to generate waypoints for desired gripper position
ez to conduct grasping tasks [14]. Moreover, the interface supports the grasp point on the object, sets the
ss approaching angle, and adjusts the grasp pose to execute robot motion [15]. In addition, object-centered
s robot actions operated by service robot have been developed using a tablet PC [16]. Also, a laser point
o0 interface is employed for users with tremors and upper body impairment [17]. The interface systems
o1 support the object selection problem using human capabilities. However, the interface systems on the
o2 papers only consider grasping reachable objects, which are not occluded, and simple task planning is
o3 applied. In addition. to select the target object, a human operator should concentrate on the visual
o« display and take their time when selecting an object.
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95 Also, the sequence of manipulation actions for grasping an unreachable object using the
o6 supervision interface was developed [18]. The authors used an interface that only supports robot
oz arm control to perform the pushing operation. However, the object selection system was not under
os consideration. Therefore, to grasp unreachable objects, we developed three mobile manipulation
9o strategies with high-level automation and different grasp poses to support grasp planning. Of course,
10 the object selection system was implemented using a voice and a visual interface for supporting robot
101 perception to build people’s ADL at home.

102 3. System architecture

103 The goal of our work is to develop a robotic system that will be able to help people in ADL. In
10s  particular, we studied the scenario in which a user needs a particular object located on a table and asks
105 the assistant robot to find and bring the object. To successfully perform the task, the assistant robot
16 Needs a high level of autonomy and the capability to interact with humans.

107 In fact, the preferred way to achieve the scenario is to operate the robotic system automatically.
s Moreover, many different robotic systems have been developed to perform the task without human
10e support. In particular, the robot with a multi-sensory navigation system for the indoor environment
1o supports bringing a target object to the user safely. However, the capability to recognize a target object,
a1 calculate eligible grasp poses, and generate task planning for complex tasks are still being researched.
12 The mobile manipulation task, which is part of the robotic system, should be automated. Parasuraman
us et al. [19] proposed a model for different levels of automation that provides a framework made up of
ue four classes: (1) information acquisition, (2) information analysis, (3) decision and action selection, and
us  (4) action implementation. In current work, we adapted the same framework in our robotic system
us (see Fig. 2).

117 Information acquisition represents the acquisition of raw sensed data, which consists of distance
s IMeasurements using a camera and laser sensor. In addition, information about the state of the robot
1o and its environment (information about objects) is provided. To manipulate successfully, this function
120 generally can be automated efficiently and robustly (see Fig. 2(a)).

121 Information analysis involves object segmentation and obstacle recognition. For the autonomous
122 field, one main challenge is to detect and cluster the object-sensed data in the domestic environment
123 because the sensor data can be incomplete and noisy due to occlusions and outliers. In addition,
124 reliable interpretation of images from the camera remains a largely unsolved research problem [20]
125 (see Fig. 2(b)).

126 Decision and action selection are performed by the human. The human knows where the object
127 is located and can tell the robot the exact position. Furthermore, the human can support objects that the
12 robot should grasp using visual and user voice interfaces. The grasp point of the objects was inferred
120 using the 3D centroid function in our system to support grasp planning (see Fig. 2(c)).

130 The last function is called action implementation; the motion planning system that generates
131 the path to control the robot arm is used. After the robotic arm finishes following the trajectory, the
132 grasping task is executed (see Fig. 2(d))).

133 4. Shared autonomy system description

134 Based on Sheridan’s four-stage model, which was previously described, Decision & Action
15 selection were conducted as a good starting point for the shared autonomy concept. Moreover, in this
13s model, the human operator only supports object selection in the domestic environment. We aimed
137 to develop a system that is operated by minimum human effort. The human operator contributes by
13s  interpreting the environment from the camera images and by choosing a low level of automation in
130 the third stage of Sheridan’s model.

140 The final objective of the mobile manipulation task is to pick up an object on a table of unknown
11 height and bring it to a user. In our system, as the robot finds a table, it measures the table height
12 and adjusts its neck angle accordingly. Then, robot detects and segments multiple objects that are
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Figure 3. A simple pictorial diagram with variables such as neck angle(Ny), table height(T},) and object

height(Oy,). Look at the text for the variables applied in the equations.

13 positioned in two rows (front and back). As the robot completes extraction of the objects with several
s RGB colors, the user selects a row and a target object using voice and visual interfaces. Based on the
s table height information, and row and object information (height, length, weight, and distance), the
s robot selects one of three mobile manipulation strategies that we have developed for grasping an object
1z in the back row. The strategies were designed with different grasp poses according to the table heights.
148 For grasping an object, we followed two scenarios, In the first scenario, the user employed a
140 known table height fixed at 70, 80, 90, or 100 cm. Moreover, in the second scenario, the user employed
10 an unknown table height which is measured by robot itself, and robot can decide empirically which
11 strategies are better for grasping. From several experimental trials, empirical results suggest three
152 strategy modes for better grasping;:

1 T, < 77cm

153 2 Ty, < 87cm
3 T, < 100cm
154 where Tj, is table height measured by camera. For grasping objects and controlling the arm, we

15 used Point Cloud Library (PCL) [21] and Moveit [22] library.

1s¢ 5. Implementation of shared autonomy system

157 The goal of the shared autonomy system is to provide support to improve the quality of human life.
1ss  For example, if a human operator assigns a task to a service robot with a high level of autonomy using
10 a gadget, the human can use their own cognitive skills for selecting objects. Thus, the task performance
160 with the shared autonomy system is more efficient than an autonomous system, which still has
161 difficulty in recognizing objects in the domestic environment. The main contribution of this paper is
162 the development of motion planning with three strategies of manipulation. To implement the strategies
163 Of manipulation, several components such as image preprocessing, multi-object segmentation, visual
16 and voice user interfaces, and action planning were applied. The components were organized to
165 perform key roles in performing fundamental ADL for human life.

166 The domestic environment contains myriad household objects with different shapes and sizes
167 such as bottle, box, and cup, chairs, tables etc. We considered grasping an object from a table of
16s  unknown height in the domestic environment, which schematically is shown in Fig. 3 with our robot.
160 Actually, many studies for grasping objects [7-11] were tested using fixed table height and viewpoint.
170 However, if the viewpoint is changed, detection of objects on the table will be difficult by the robot.
11 Therefore, to overcome the difficulty of detecting objects from a different viewpoint, we adjusted the
172 neck angle of the robot based on table height. Before applying the fixed neck angle, the robot needs to
173 find a table. Thus, the initial neck angle was set at the lowest position to find a lower table height. For
17a  detecting the table, the random sample consensus (RANSAC) [23] algorithm was used to filter noises
175 from raw data of the environment and was also applied to segment a table by PCL. After the table was
17 segmented, a point (which is calculated by averaging all the coordinate points on the top surface of
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Figure 4. The flow chart of the shared autonomy system; It is included with image preprocessing,
multi-object segmentation, object selection and action planning with developed strategies.

177 the table) was extracted from the base frame of the robot (see Fig. 5), and only the z-axis value was
17e  used to calculate table height. Then the value was stored for changing the neck angle and choosing the
e strategies. Next, the neck angle of the robot was adjusted by the interpolation method. To interpolate
10 the neck angle, we set the maximum and minimum range of neck angle and table height. Moreover,
w1 the linearly interpolated neck angle helped the robot to detect multiple objects easily.

N@,d = NG,min + (Th - Th,min) ?ﬂ,mux — 1’1\]9,111‘111 (1)
h,max h,min

12 Where Ny 4 is desired neck angle,Nj ,,,5x and N ,,i, are maximum and minimum of neck angle, and
183 T}y gy and Ty i, are maximum and minimum of table heights. The Tj, is the current table height
s described in Fig. 3. In the actual environment, if a robot detects a very low table height (less than 70
15 €M), it positions itself very close to the table. As a result, the workspace for manipulation reduces and
s difficult to manipulate. To establish an appropriate area for grasping an object,it secures the workspace
167 using a laser sensor to measure the distance between the table and robot base. After the robot judges
1es that the workspace is enough to manipulate then detection and segmentation of the multiple objects
10 start. This process is represented in the flow chart(See the Fig. 4).

100 where Nj 4 is the desired neck angle, Ny ,,,5x and Np ;i are maximum and minimum neck angle,
11 respectively, and Tj, ,,, and Tj, s, are maximum and minimum table heights, respectively. The T}, is
102 the current table height described in Fig. 3. In the actual environment, if a robot detects a very low
103 table height (less than 70 cm), it positions itself very close to the table. As a result, the workspace
10s for manipulation is reduced, which makes it difficult to manipulate. To establish an appropriate
15 area for grasping an object, the robot secures the workspace using a laser sensor to measure the
106 distance between the table and robot base. After the robot judges that the workspace is appropriate for
17 manipulation, detection and segmentation of the multiple objects starts. This process is represented in
108 the flow chart in Fig. 4).
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10 5.1. Multi-object segmentation

200 When the robot explores its environment and encounters multiple objects, a depth-based
21 segmentation algorithm could be useful for extracting the objects using point could data acquired
202 from the RGB camera which is first implemented by [24-26]. Trevor et al. proposed a connected
203 component-based approach to segment a set of objects from an organized point cloud [24].

208 In our work, we adapted and modified the trevor et al.’s approach to segment multiple objects
20s by an organized point cloud library. We suggest to use the depth camera (Xtion) for acquiring depth
206 data instead of RGB camera will increase depth data accuracy. For each point P(x,y) a label L(x, y) is
207 assigned. Points belonging to the same segment will be assigned to the same label based on Euclidean
208 clustering comparison function (See the [24] for more details). To segment the objects accurately, some
200  Of the large segments, like the plane surface, will be excluded. In addition, if the distance between the
210 two points in the same label set is more than a threshold, one of the points will be discarded because
2 of increasing object segmentation speed. The area to be clustered and the threshold of points for each
212 object between 1500 to 10000 points were chosen experimentally. In order to distinguish multiple
213 Objects easily, the object were covered with six RGB colors. The result of this segmentation process is
aa presented in Fig. 5. This process is described in the flow chart (See the Fig. 4).

215 In our work, we adapted and modified the approach of et al.. to segment multiple objects by
26 an organized point cloud library. We used a depth camera (Xtion) for acquiring depth data instead
21z of an RGB camera to increase depth data accuracy. For each point P(x,y), a label L(x, y) is assigned.
2e Points belonging to the same segment will be assigned to the same label based on the Euclidean
210 clustering comparison function (see [24] for more details). To segment the objects accurately, some of
220 the large segments, like the plane surface, will be excluded. In addition, if the distance between the
21 two points in the same label set is more than a threshold, one of the points will be discarded because
222 of increasing object segmentation speed. The area to be clustered and the threshold of points for each
223 object. The points of each object clustered between 1500 to 10000 points were chosen experimentally.
224 To distinguish between multiple objects easily, the object were covered with six RGB colors. The result
225 of this segmentation process is presented in Fig. 5. This process is described in the flow chart shown in
226 Fig. 4).

227 5.2. Human object selection

220 Autonomous object selection is the best method for humans. However, selection of the target object
220 in the domestic environment is a difficult task, although multiple objects were clustered completely by
230 a camera. For this reason, the selection was conducted via human intelligence. A variety of interfaces
21 for object selection have been developed [12-16]. For our robotic platform, object selection was done
232 in two ways: 1) voice and 2) visual. We also believe that a combination of these two methods could
233 be easily accessible for very old people who cannot move. Moreovert, our interface platform includes
23s  a tablet for the voice user interface (see Fig. 6(b)) and rviz in a PC for the visualization interface
235 (see Fig. 6(a)). The visualization interface, which includes RGB colors and depth information of
236 the environment, was provided for the selection system; the voice user interface is based on speech
23z recognition [28]. The selection system consisted of three steps:

238 o 1. Select one of the rows of multiple objects

230 e 2. Choose an object desired in the same row

240 e 3. Choose an object desired in a different row

2a1 First, the user selects the object from the front or back row of the table. After identification of the

22 Tow (front or back), the target object selection is done (see Fig. 4).

2a3 5.3. Action planning & Execution

248 Among multiple objects, grasping objects are still a challenge. Thus, we tried to find a grasping
25 point with simply shaped objects such as a bottle or box, which are common household objects in
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X

Figure 5. Real-time multi-object segmentation on the table visualized in rviz [27]

26 the domestic environment. In addition, the grasping point was used to generate possible hand poses
2z relative to the object for action planning.

248 To extract the grasping point from each object, we used the 3D centroid function in PCL and
200 configured the grasp poses. In our case, we characterized two types of grasp poses:

250 oTop pose: It is aligned by the robot hand to the object in the vertical plane (along the x- and
=1 z-axis), and opening and closing of the robotic hand is in the direction of the x- or y-axis (see Fig. 7(a)).
252 oSide pose: It is defined in the horizontal plane (along the x- and y-axis), and the opening and
23 closing direction of the robotic hand is the same as previous (see Fig. 7(b)).

254 To grasp the object, we used the motion planning library, which includes capability for collision

265 avoidance, self-collisions, and joint limit avoidance of the robot arm in the domestic environment. The
2 motion planning library (Moveit) was used for executing three mobile manipulation strategies. In
=7 addition, the library supports collision-aware inverse kinematics to determine the feasibility of grasp
zs by finding collision-free solutions. Even if collision-free solutions were found, many possible paths
260 could be used to reach the goal, and the library choose a path generated with minimum trajectory cost;
260 namely, the shortest in the joint space. In addition, the position of the robot hand plays an important
261 role in grasping. For this reason, pre-grasp position (it is an offset from the target object with the two
262 grasp poses) was developed. After the pre-grasp position was obtained, the palm of the robot hand
263 approached the surface of the target object to grasp it. Based on these technologies, the strategies were
26 enhanced to avoid crashes between the robot arm and robot body during the operation [29] (see Fig.
205 4).
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206 0.4. Developed mobile manipulation strategies
267 Three strategies of the mobile manipulation were conceived to grasp an object, which was apart

2es  from the robot. A set of 6 objects, arranged in two rows, was placed in front of the robot (see Fig. 6(a)).
200  We consider grasping objects placed in the back row because grasping front row objects are an easy
270 task that we have already developed. Before starting the strategies for grasping an object, we need to
ann accomplish three steps. The first step is initialization of the robot arm. The next step is to transform the
22 coordinates of multiple objects from camera frame to robot base frame for manipulation. The last step
273 is pre-grasp position based on table height. These three steps are described in Algorithm 1 (lines 2 to
zza  5). Actually, these steps are capable of grasping an object on a table, but grasping back-row objects
25 always fails due to the obstruction caused the front-row objects. For these reasons, we developed three
276 strategies for the mobile manipulation for grasping an object in the back row. To exploit the three
217 strategies of mobile manipulation, motion planning with Moveit library is applied to prevent the robot
ze arm from colliding with the robot body.

279 o The first strategy

280 The objective of the first strategy was to grasp an object on the approximately 70cm high table,
2e1  directly from the back row, to reduce manipulation time. The mobile platform was pre-defined to be
2e2  at a rotated angle and also the specific neck angle that supports segmentation of objects in the back
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Figure 8. The first strategy for manipulation: (a) The robot moves close to the table, (b) The mobile
platform is rotated to grasp the target object. (c) Top grasp pose is implemented to grasp the object
directly. (d) After grasping the object, the robot arm returns back to the initial position.

2e3  TOw was set. In fact, the two angles were defined empirically based on distance between the table and
2ea robot. However, the information of the scene obtained by the camera was still insufficient due to the
25 Obstruction of front row objects. Actually, when the same sizes of objects are detected, the visualization
2es  Of the object size shows differently because the distance from the camera to each object is different. In
2e7 addition, the objects in the front row would be obstructed during grasping, and it will be difficult to
2ee  detect the entire size of the back row objects. For this reason, the function of the linear interpolation
200 (the same as Equation 1) with different variables was developed. The output of the interpolation is
200 a value that will add to the position in the z-axis to establish the stable grasping point. After the
201 interpolation, the top grasp pose was applied to grasp the object directly. The first strategy in the
202 actual environment was performed as shown in Fig. 8((a)-(d)) and also as described in Algorithm 1
203 (lines 7 to 9).

208 o The second strategy

205 The first strategy of the mobile manipulation was useful to grasp the objects in the back. However,
206 we still are challenged to ensure stable grasping by the robot. For this reason, we developed a new
207 strategy to grasp the objects in the back row to compensate for an inadequate object segmentation
206 and robust and stable grasping. The objective of the second strategy was to grasp the objects from an
200 80-cm-high table while ensuring good stability. To pick up the objects, the algorithm for removing the
300 Objects in the front was conceived. The point of the strategy is that when the user selects the back row
;1 and target object, the robot calculates the centroid front row object as well. Then, the robot lifts the
02 Object off the front row and places it in the empty place on the table. First, to find the objects in the
;03 front, the function was implemented for searching the nearest distance between all objects and the
s0s  target object. After the object in the front row was found, the pre-defined grasp position was applied.
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Algorithm 1: The three mobile manipulation strategies

Input :Joint position q, Inital pose x;,,;;, Object row Oy, All objects information O,j;, The
centroid of the object selected and transformed O, Object desired x;, Grasp pose
Xgrasp, The new centroid of the object selected and transformed Opewcen, Distance of z
axis z,44, Table height Tj,

Output: Goal pose, Xgoq1

1 while until manipulator finish task given do

2 InitializationJacoArm(q);

3 TransformAllObjects;

4 Xgrasp < Pre-definedGraspPose(X;yit, Orow, Tp);
5 if O,p.back = True then
6
7
8
9

1. The first strategy
Rotate MobileBase & Set the Angle of Neck
z,44 < InterpolationAddGraspAxis(Ocen);
Xgoal <~ Xcen * Xgrasp * Zadd

10 2. The second strategy

11 Search NearestObject(O¢en);

12 Search Pre-defiendEmptySpace(O,;);

13 x; < Calculate TargetObject(Ocer);

14 Xgoal €~ Xd * Xgrasp;

15 3. The third strategy

16 Update ObjectStates & Move MobileBase;

17 Ohewcen — Search ObjectUsing Axis(Ocen);

18 x; < Calculate TargetObject(Oyewcen);

19 ManipulationBasedOnModeSelection;

20 Xgoal <= X4 * Xgrasp;

21 end

22 end
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Figure 9. The second strategy shows the robot performing lateral grasp to pick up an object in the back.
(a) First, the object in front of the object selected is removed. (b) The object is placed on the empty place.
(c) The robot grasps the target object with a side grasp pose. (d) As the object grasps, the arm starts to
return back to the initial position.

ss TO ensure a stable grasping, the side grasp pose was introduced. Then, as the front row object was
206 grasped (see Fig. 9(a)), a pre-defined place was located at the right edge of the table (see Fig. 9(b)).
307 Since the robot arm is mounted on the right of the body, we considered that an available place to the
s0e  right would be easier. After the object was placed on the table, the arm returned to the initial position
;00 and the robot started grasping the target object with the side grasp pose (see Fig. 9(c,d)). The entire
;10 process is represented in Algorithm 1 (lines 11 to 14).

a1 o The third strategy

312 The first and second strategies of the mobile manipulation were helpful to grasp objects in the
a1z back row, but the robot might fail to accomplish the task. For example, if the robot faced a table higher
s than its visual field, or if objects in the front row were taller than objects in the back row, the robot
s could not detect objects in the back row. For this reason, the third strategy was developed to grasp the
s16  hidden object. The third strategy is used in the particular situation of a hidden object when the first
a1z and second strategies cannot perform grasping tasks. In this strategy, human support was exploited
ae  to overcome the difficulty of object selection. For instance, a human can evaluate placement of the
a0 Object better than a robot can. In other words, if the user cannot see the object by visual interface, they
s20 can suggest other alternatives. To conduct a feasibility study for the third strategy, the hidden object
sz was evaluated according to the decision of the user. In the first and second strategies, the user selects
sz an object in the back row and the target object. The object selection method in the third strategy was
;23 not the same as in previous strategies because the user cannot see the object in the back using visual
224 interface. However, the user already knows the location of the target object on the table and selects the
:2s  back row and an object in the front using voice interface. After the user selects both row and object, the
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dleé height
. variation joint

Figure 10. Experimental setup with multiple objects and an adjustable height table.

s26  process of the third strategy, which is similar to that of the second strategy, is implemented. The basic
2z difference between these two strategies is to update the state of the objects. After the object in the front
226 is placed in the empty space, the robot should discover the target object. To find the object, the state of
:20  the scene was updated using the multi-object segmentation function. In addition, the information of
:30  the y-axis is used to find the target object because the target object is located colinear to the front object.
a1 The simplified algorithm is described in Algorithm 1(lines 16 to 20).

32 6. Experimental setup

333 Our experimental setup is shown in Fig. 10. The robotic platform for the experiment is the Doro
;3 (domestic robot) personal robot [7], a service robot equipped with an omni-directional mobile base
:3s  and a Kinova Jaco robotic arm. The Kinova Jaco arm, which has six degrees of freedom, is used for
;3 manipulation tasks. The head of the Doro is a pan-tilt platform equipped with two stereo cameras and
;37 an Asus Xtion Pro depth camera; they are used for object detection and segmentation. Furthermore,
s3e  front laser (SICK S 300) and laser (Hokuyo URG-04LX) sensors are used to detect obstacles for safe
;39 navigation in a domestic environment. The three manipulation strategies were tested in the DomoCasa
a0 Lab, a domestic house developed and managed by The BioRobotics Institute of Scuola Superiore
s SantAnna in Peccioli, Italy. To implement ADL, we set up the experimental environment with multiple
sz Objects placed on the table, which can be adjusted in height as shown in Fig. 10. Three objects were
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Figure 11. Objects were placed as follows: (a) left top: short objects, right: tall objects; (b) short objects
in the front (FSO, right top); (c) tall objects in the front (FTO, left bottom); and (d) random size objects
(RO, right bottom).

sa3 placed in the front, and the others were placed in the back. We used rectangular objects such as plastic
:as bottles and juice boxes during the experiments.

345 For the experiment, several scenarios were organized. Before grasping an object in the back row,
s we tested a simple scenario for grasping an object in the front row. Then, the three manipulation
sz strategies were tested to grasp an object in the back. The known table height was set at different steps
2es  Of 10 cm, such as 70, 80, 90, and 100 cm. In addition, these three strategies were tested at an unknown
a0 table height to apply them in the real-life situation. The objects were placed in three positions: short
30 size objects in the front (FSO), tall size objects in the front (FTO), and random size objects (RO) (see Fig.
31 11). During the manipulation with all strategies for unknown table height, we considered grasping one
sz of the objects, which were placed randomly. The scenarios were evaluated 10 times for each strategy in
53 terms of collision, execution time, and success rate with known table height and with unknown table
354 hEIght

sss 7. Experimental results

356 Firstly, quantitative and qualitative analysis for three mobile manipulation strategies for known
sz and unknown table height were performed. We only considered the execution time and collisions
s when the mobile manipulation task was a success.

sso  7.1. Quantitative analysis at known table heights

360 The quantitative results focused on three criteria: success rates, collision, and execution time. The
se1  success rates were measured when the robot grasped a target object. We also considered a collision
sz case in which objects were crashed into by a robot hand. The execution time is measured beginning
ses  when these experiments start.

sea  7.1.1. Success rates

365 The success rates were evaluated in each strategy with three different object positions (FSO, FTO,
ses and RO) on known table heights. When the kinematic solver operating in Moveit could not work
se7  properly, we did not measure the success rate during trials.

368 As shown in Fig. 12(a), the success rate of the first strategy was higher for the 70 cm table height
30 compared to any other table heights and strategies (60% to 80% for all three scenarios). At this table
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=70 height, the second and third strategies have low success rates of manipulation because of lack of
sn workspace. However, if the robot faces the same situation, the first strategy can grasp objects with top
sz grasp pose, which helps the robot to avoid front obstacles and save manipulation time. Nevertheless,
sz some trials in the first strategy also failed to grasp the target object, although we developed linear
s7a  interpolation to overcome insufficient object segmentation and stable grasping. In addition, except for
a5 the 70 cm table height, the first strategy was not successful in grasping because the robot cannot reach
376 pre-grasp position over 77 cm.

377 The success rate of the second strategy was improved for a table height of greater than 80 cm,
aze  which is better than for the first strategy, but it doesn’t work for the 70 cm table height (see Fig. 12(b)).
a0 In particular, we found that the second strategy was a success for an average of 30% of the 70 cm table
;0 height tests in three different scenarios. Moreover, this strategy performed better for 80, 90, and 100 cm
se1  table heights for FSO and RO (success rate varies from 60% to 8%). We also observed that the second
sz strategy failed to grasp FTO objects at table heights of 90 and 100 cm, which occurred due to taller
;a3 Objects blocking the target object (the human could not see or select the target object). In addition,
;s When the robot grasped an object in the FTO, the robot only segmented small parts of objects in the
ses  back at 80 cm table height. Therefore, the grasp point was not extracted accurately.

386 Finally, the third strategy (see Fig. 12(c)) could be carried out with any table height. In this case,
sz the success rate varies from 70% to 80% (higher than second strategy) at 80, 90, and 100 cm table heights.
s.s  However, for the 70 cm table height, the performance is similar to that of the second strategy (20%
;e t0 30%). As the robot removed the front object, the multi-object segmentation system was repeated
0 automatically. As a result, the grasp point could be extracted more accurately than with the second
s1  strategy. However, as mentioned before, we still have a kinematic solver problem. Therefore, when the
302 kinematic solver performed well, we deemed the manipulation to be successful. Failure of the strategy
303 occurred when the grasp force was insufficient to grasp the target object. Thus, the robot dropped the
:s Object during manipulation. Furthermore, if the grasp point of the object was slightly shifted from
s0s the centroid of the object, the robot arm could not grasp the object. As shown in Fig. 12(c), the third
a6 strategy can be applied in any environment and shows better performance except for the 70 cm table
397 hEIght

ses  7.1.2. Collisions

399 During the evaluation, the number of collisions was measured for each table height using the
a0 three strategies for a total of 10 times for all scenarios in the experiments (see Fig. 13).
401 The best results with 70 cm table height were achieved using the first strategy with a total average

22 of seven collisions from all scenarios (see Fig. 13(a)). The collisions in the strategy occurred while
«03 the robot arm returned to the home position. Except for the 70 cm table height, the low number of
aos  collisions occurred at 80, 90, and 100 cm table height with the third strategy. The total number of
s collisions using the strategy occurred with all scenarios, with averages of six, eight, and ten for 80,
ss 90, and 100 cm table height respectively (see Fig. 13(b),(c),(d)), and standard deviation is about 5%
a7 of each collision. However, the second and third strategies have similar manipulations. Therefore,
a8 Fig. 13(b),(c),(d) show that the collisions of the strategies are similar except for 90 cm and 100 cm table
a0 heights in the FTO scenario. The collisions with two strategies occurred while the robot arm was close
a0 to the object and returned to the home position with a target object.

a11 Actually, with the first strategy, collisions only with the 70 cm table height could be measured
a1z because the robot arm could not reach objects with the other table heights (see Fig. 13(a)). Moreover,
a3 we could not measure collisions with the second strategy in the FTO at the 90 and 100 cm table
a1s heights since the objects in the back were occluded due to being shorter than the front objects (see Fig.
as  13(c),(d)).
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Figure 12. The success rate of the mobile manipulation for grasping an object in the back row on known
table heights: (a) First strategy; (b) Second strategy; (c) Third strategy.

ase  7.1.3. Execution times

a7 We measured the execution times for grasping objects in the back row using three strategies. Then
as we calculated the average time with FSO, FTO, and RO configurations. The three categories for the
a0 time measured were separated (see Fig. 14):

420 e 1. Image preprocessing and multi-object segmentation (IP & MOS)

a2 e 2. Human object selection (HOS)

422 o 3. Each strategy execution time (ESE)

a23 In three strategies, the execution time for the first and the second categories were similar. The first

a2¢ category took 35 seconds to finish, but the robot can finish the task in less than 25 seconds. Actually,
«2s  sometimes the depth camera did not detect objects because of noise from input data. Therefore, the
426 TObOt repeats segmentation with new input data, which takes more time (~ 10 seconds).

427 In addition, when a user selects a row and an object, it spends less than 10 seconds. However,
a2s  sometimes the voice interface could not be recognized by the tablet directly. Thus, we used time to
a20  Trequest the object row and target object again (~ 15 seconds).

430 Comparing each strategy execution time (third category), the first strategy is the fastest because
a1 the strategy does not consider removing the front object. In contrast, the third strategy is slower
a2 than the second strategy since the third strategy needs more time to segment multiple objects due to
a3 repetition.
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Figure 13. Number of collisions with three strategies during the grasp of an object in the back row for
known table heights: (a) 70 cm table height; (b) 80 cm table height; (c) 90 cm table height; (d) 100 cm
table height.

aa  7.2. Quantitative results in unknown table heights

435 Previous quantitative results were analyzed using known table height. However, various types of
a6 tables exist in reality. Before we set up the table height, we defined range between 70 and 100 cm to
a7 select strategies automatically. Then, the table height was set up randomly between defined ranges.
as  Also, we only tested the strategies with objects in the RO configuration for implementing in the actual
a9 environment.

440 To confirm the three strategies of mobile manipulation, the three different table heights were
«1 measured and the results were evaluated in the same manner as previous cases (see Fig. 15). The robot
a2 selected one strategy automatically to manipulate according to table height. As a result, the experiment
s3 was tested in ten trials; the average of the success rate of the manipulation in unknown table height
s is greater than 75%. We analyzed the number of collisions during the experiment. Collisions were
a5 evaluated with the same criteria, and an average of five collisions occurred with all three scenarios.
ass  In addition, the execution time for self-selected strategies at unknown table height (73.3 cm, 84.3 cm,
sz and 93.7 cm) are 104 s, 178 s, and 184 s for the random scenario (see Fig. 16). Also, this result is only
ws  measured when the kinematic solver operates well.

a0 7.3. Qualitative results for known and unknown table heights

450 For known table height, the first strategy was developed in terms of saving time. However, in
ss1 terms of stability, the second and third strategies performed better than the first strategy. In addition,
sz the voice and the visual interfaces together made it more comfortable and convenient for the user to
453 select a target object. Specifically, sometimes a few users are not able to see the object, and in that case
asa  they can ask the robot vocally (more likely with elderly people and children).
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Figure 14. Visualization of execution times for grasping an object on known table heights with three
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Figure 15. The success rate and number of collisions with three strategies of the mobile manipulation
for grasping an object in the back row with unknown table heights.

as5 For unknown table height, the robot demonstrated that self-selection strategies succeeded by
«se enabling less user input and more intelligent selection. Moreover, unknown table height with random
457 Object selection is a better fit for the domestic environment. Upon receiving better performance by
sss  the robot with intelligent selection, the user will be more comfortable with the robot and find it more
ase  convenient.

w0 8. Conclusions and future work

161 In this paper, we present three mobile manipulation strategies in which the operator provides a
sz simple command using visual and voice user interfaces. The strategies resulted in the improvement of
a3 grasping capabilities of household objects in collaboration with a real robot Doro. The user provides
ssa  the two commands regarding the object row and target object using a visual and a voice interface.
«s The three strategies of the mobile manipulation were developed to pick and place, and convey an
ass Object in the domestic environment effectively. Based on the results, the three strategies have their own
sz advantages at the different table heights. Therefore, the intelligent strategy selection system can be
sss applied for domestic environments that have different table heights.

a60 The goal of this paper is to support elderly people for ADL in the domestic environment. Although
a0 the proposed system considered grasping limited to certain types of domestic objects, the strategies we
ann developed can apply grasping to various household objects. In addition, to take care of elderly people
a2 daily, monitoring and managing systems using robots are invaluable. In this sense, our proposed
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Figure 16. Visualization of execution times for grasping an object with unknown table heights using
three strategies.

a7z system can be useful to monitor the robot state and select an object easily for ADL. Nevertheless,
aza  we still have many issues, including detection and segmentation, that we need to resolve in the
a7zs  domestic environment. Actually, the current system could be used to detect, cluster, and extract simple
a7ze  household objects such as bottles, boxes, etc. However, various objects that are different in shape exist
a7z in the domestic environment. Therefore, the 3D centroid of an object would not be able to grasp it.
a7s  For this reason, we will develop a grasp pose algorithm for a variety of household objects with our
4o strategies to save time [30]. In addition, a deep learning-based approach for extracting grasping point
«s0 could be considered to obtain more accurate performance [31,32]. Moreover, for the insufficient shape
a1 information, the tactile sensors could be used on the fingers of the robotic hand. These would help the
a2 Doro robot for contact-reactive grasping of objects [33].
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