

1 *Type of the Paper (Article)*

## 2 **Chitosan decorated copper nanoparticles as efficient 3 catalyst for one-pot multicomponent synthesis of 4 novel quinoline derivatives: Sustainable perspectives**

5 **K.S. Alghamdi<sup>1</sup>, N.S.I. Ahmed<sup>2</sup>, D. Bakhutmah<sup>1</sup> and M. Mokhtar<sup>1,3\*</sup>**

6 <sup>1</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

7 <sup>2</sup>Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre,

8 El Buhouth St., Dokki, Cairo 12622, Egypt

9 <sup>3</sup>Physical Chemistry Department, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt

10 \*Correspondence: (MM; email: mmoustsfa@kau.edu.sa, Tel.: +966 500 558045)

11

12 **Abstract:** Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via  
13 reduction methods utilizing green protocol. The CSCuNPs catalysts were tested for the synthesis of  
14 quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic  
15 irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high  
16 turnover frequency (TOF) was characterized using FTIR, TGA, XRD, TEM and XPS techniques.  
17 Generalization of the scope of the proposed catalytic process was studied using different aldehydes.  
18 Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained.  
19 Recyclability performance of the catalyst over five times re-use without detectable loss in product  
20 yield was recorded. The current method is green process utilizing environmentally benign catalyst  
21 and considered to be promising sustainable protocol for the synthesis of fine chemicals.

22

23 **Keywords:** Chitosan-copper NPs; Quinolone derivatives; Ultrasonic irradiation; One- pot synthesis;  
24 Green-sustainable perspectives

25

### 26 **1. Introduction**

27 Quinolone and their derivatives have several biological activities, such as anti-malaria<sup>1</sup>,anticancer<sup>2,3</sup>  
28 , anti-inflammatory<sup>4,5</sup> , anti-bacterial<sup>5</sup> , anti-asthmatic<sup>6</sup> , anti-platelet activity<sup>7</sup> ,anti-hypertensive<sup>8</sup>  
29 .Therefore, several methods have been developed for the synthesis of quinolone derivatives utilizing  
30 various catalysts<sup>9-12</sup> . Recently, green and eco-friendly synthesis have attracted much attention.  
31 Numerous approaches have been established which improved green conditions to safer synthesis.  
32 ultrasonication is one of the auspicious green technology in the synthesis of organic compounds<sup>13,14</sup>.  
33 The use of nanoparticles (NPs) in catalysis is considered to be one of the most significant principles  
34 of green chemistry that is owing to a number of different reasons; the reaction time is short,  
35 diminishes generation of hazardous materials, economically visible as high yields produced with low  
36 cost<sup>15</sup>. Nanoparticles have been widely used as the catalyst support in organic transformation<sup>16</sup>. Our  
37 previous achievements in the synthesis of different organic synthons of important biological activities  
38 utilizing different nanosized solid heterogeneous catalysts under green protocol<sup>17-22</sup> revealed that  
39 exploring efficient, sustainable and green catalyst is crucial to achieve green sustainable perspectives.  
40 To attain our goal, natural bio-polymer supported heterogeneous nano-catalysts that have been  
41 utilized in recent years<sup>23,24</sup>, was selected to be a catalyst support. One of the promising catalyst's

42 support candidate is chitosan, which is produced by the N-deacetylation of chitin. It is considered to  
 43 be the second most abundant natural polymer after cellulose<sup>25</sup>. Chitosan a chemically stable, non-  
 44 toxic is an excellent candidate to be used as a support for copper and other transition metals due to  
 45 its insolubility in organic solvents and the presence of functionalization of the free amine groups in  
 46 the structure which is represented active sites for several of chemical modifications<sup>26-28</sup>.  
 47 Nanoparticles have a special characteristic to aggregate and well clump together to form larger  
 48 particles, thus nanoparticles lose their large surface area and other benefits<sup>29</sup>. Chitosan as a polymer-  
 49 based stabilizes the nanoparticles to prevent their aggregation via coordination with metal  
 50 nanoparticles through chelation mechanism, makes it a perfect support for metal nanoparticles<sup>30</sup>.  
 51 Gold, silver and transition metals nanoparticles such as palladium are available for the development  
 52 of hybrid catalyst complexes and they can also be used in chemical transformation whereas a new  
 53 glyoxal cross-linked chitosan Schiff base was prepared as a support material for palladium catalyzed  
 54 Suzuki cross coupling reactions<sup>31,32</sup>. In addition, chitosan was used as support of copper nanoparticles  
 55 as catalyst for the C-S coupling of thiophenol with aryl halides<sup>33</sup>. The synthesis of Cu nanoparticles  
 56 using chitosan as both reducing and capping agent have been reported<sup>34,35</sup>. This single step method  
 57 is considered to be cost-effective, convenient and eco-friendly relative to other method of preparation  
 58<sup>34</sup>.

59 In the present work, chitosan decorated copper nanoparticles catalysts were synthesized through  
 60 green methods<sup>34,35</sup> and its application as an efficient catalyst in multicomponent reaction to the  
 61 synthesis of novel quinolone derivatives under ultrasonic irradiation were extensively studied. The  
 62 Cu-CS-NPs catalyst is a promising efficient sustainable green catalyst for the synthesis of quinolone  
 63 derivatives in satisfactory yield in short reaction time under ultrasonication conditions.

## 64 2. Results and Discussion

### 65 2.1 Catalytic Test

66 The synthesis of quinoline derivatives via four-component one-pot reaction of dimedone, p-  
 67 chlorobenzaldehyde, ethyl cyanoacetate and ammonium acetate is represented in scheme 1. Neat  
 68 reaction (absence of catalyst) showed ~25% yield in 6 h using ethanol under refluxing condition. The  
 69 neat reaction carried out under ultrasonic irradiation resulted in poor isolated yield of the product  
 70 (~29%) in 15 min.



71  
 72 **Scheme 1:** Synthesis protocol of quinolone derivatives.

73 In order to find out suitable Cu-CS NPs catalyst, for the synthesis of quinoline derivatives via MCR  
 74 under ultrasound irradiation, two different catalysts (Cu-CS NPs and Cu-CS NPs /TPP) were  
 75 synthesized and tested. The effect of mass of the two catalysts was studied and the results displayed  
 76 in Fig. 1. The results clearly showed that 0.1 g of Cu-CS NPs provided high product's yield (~90 %)  
 77 relative to the other catalyst under the same reaction conditions.



78 **Figure 1.** Catalytic activity of all the investigated catalysts with different masses\*

79 \*Reaction conditions: dimedone (3.6 mmol), aromatic aldehyde (3.6mmol), ethylcyanoacetoacetate  
80 (3.6 mmol), ammoniumacetate (28.8 mmol) and different weight of catalysts in10 ml absolute ethanol  
81 under ultrasonic irradiation at 80°C for 15 min.

82  
83 The ultrasonic irradiation method was selected based on the advantages of this method in  
84 comparison to the conventional one in enhancing the product yield in shorter reaction time.  
85 Therefore, a variety of quinolines derivatives were also synthesized via this method by using the  
86 highly efficient catalyst (Cu-CS NPs, 0.1 g). The optimal reaction conditions were determined to be  
87 catalyst loading: 0.1g Cu-CS NPs; dimedone (3.6 mmol); aromatic aldehyde (3.6mmol);  
88 ethylcyanoacetoacetate (3.6 mmol); ammoniumacetate (28.8 mmol) and 10 ml absolute ethanol under  
89 ultrasonic irradiation at 80°C for 15 min. Then, with the optimum reaction parameters, the catalytic  
90 performance of the catalyst was examined in MCR for quinoline derivatives and results are displayed  
91 in Table 1. As seen from the data in Table 1 catalyst provides an efficient synthesis of a new quinoline  
92 derivatives with high yield productivity, in short reaction time. In addition, the TON and TOF  
93 values were calculated and are existing in Table 1. A remarkably high TON and TOF values were  
94 found with small mass of catalyst. Considering such cyclocondensation reactions, chitosan decorated  
95 copper nanoparticles is considered to be a suitable efficient catalyst. Basically, catalytic activity of  
96 nanoparticles is related to the size of the particles and the good dispersion of active species on the  
97 catalyst's support. Therefore, extensive characterization of the most effeicent Cu-CS NPs catalyst  
98 was attained and presented in the next section.

99  
100 **Table 1: Effect of Cu-CS NPs catalyst on the synthesis of polyhydroquinolines 2 <sup>a-j</sup> using various**  
101 **aromatic aldehydes\*\***



<sup>102</sup> \*<sup>1</sup> S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, An efficient, catalyst-and solvent-free, four-component, and  
<sup>103</sup> one-pot synthesis of polyhydroquinolines on grinding, *Tetrahedron* 64 (2008) 536-542.

<sup>104</sup> \*\*Reaction conditions: dimedone (3.6 mmol), aromatic aldehyde (3.6mmol), ethylcyanoacetoacetate (3.6 mmol),  
<sup>105</sup> ammoniumacetate (28.8 mmol) and 0.1g of catalyst in10 ml absolute ethanol under ultrasonic irradiation at  
<sup>106</sup> 80°C for 15 min.; TON: (turnover number, yield of product/ per mol of Cu); TOF: (turn over frequency,  
<sup>107</sup> TON/time of reaction)

<sup>108</sup> Many catalysts have been used for one pot-catalytic synthesis of organic precursors utilizing  
<sup>109</sup> nanocrystalline and nanoparticle catalysts such as ClO<sub>4</sub>/Zr-MCM-41 nanoparticles <sup>36</sup>, Fe<sub>3</sub>O<sub>4</sub>@B-MCM-  
<sup>110</sup> 41<sup>37</sup>, and ZnO nanoparticles <sup>38</sup>. All of these catalysts showed pronounced catalytic activity due to their  
<sup>111</sup> nanosized and large surface area features. In contrary to that the produced % yield of products  
<sup>112</sup> especially after re-use of catalysts for four time was not sufficient relative to our proposed catalyst in  
<sup>113</sup> the present work. In order to study the sustainability of the present efficient catalyst towards four  
<sup>114</sup> components one-pot catalytic synthesis of novel quinoline derivatives under ultrasound irradiation,  
<sup>115</sup> the re-use test was carried out and the results are given in the following section.

116

117 **2.2 Reusability Procedure**

118

119 Reusability is crucial for supported catalysts <sup>39</sup>. Therefore, the same catalytic particles were used after  
120 filtration from the reaction mixture for several reactions under the same conditions. Typically, after  
121 15 min ultrasound irradiation, Cu- CS NPs was filtered and washed 4-6 times with hot ethanol to  
122 remove all the unreacted educts then dried at room temperature for 24 h. The dried catalyst was used  
123 in the subsequent runs and the results are displayed in Fig.2.



124

125

**Figure 2.** Robust feature of Cu-CS NPs catalyst after five times r-use

126

127

The results shown in Fig. 2 depicted that there is no apparent decay of catalytic activity even after 5 runs, and the attained yields of the reusability test are within the experimental deviations.

128

129

**2.3 Catalyst Characterization**

130

**2.3.1 FTIR**

131

132

133

134

135

136

137

138

139

FT-IR spectra of chitosan and copper decorated chitosan nanoparticles (Fig.3) displayed a broad band for OH and NH stretching of amine groups located at 3250  $\text{cm}^{-1}$ . The existence of band at 1553  $\text{cm}^{-1}$  is due to the presence of the  $\text{NH}_2$  groups. Stretching vibrations due to C-OH and C-N appeared consequently in the absorption bands in the range 1016 and 1402  $\text{cm}^{-1}$ . The absorption band placed at 2936  $\text{cm}^{-1}$  is credited to the C-H stretching mode of methylene groups<sup>40</sup>. The decoration of chitosan by copper nanoparticles resulted in the formation of new intense peaks in the fingerprint region at low -frequency (600-500  $\text{cm}^{-1}$ ) due to formation of Cu-N and Cu-O coordinate bonds. Furthermore, the peak at 612  $\text{cm}^{-1}$  assigns for CuNPs-chitosan interaction, indication that NPs were capped by the biopolymer <sup>34</sup>.



140  
141 **Figure 3.** FTIR spectra of pure chitosan and chitosan decorated copper nanoparticles.  
142  
143

### 2.3.2 TGA analyses

144 Thermograms of CS and Cu-CS A NPs samples are shown in Figure 4. The TGA study is used  
145 to illuminate the thermal stability and approach of decomposition of the pristine chitosan and copper  
146 decorated chitosan. The TGA thermogram of investigated samples display three mass loss stages.  
147 The preliminary mass loss (8%) for CS and (21%) for Cu-CS A NPs in the temperature range 25-200°C,  
148 could be attributed to the hygroscopic nature of the chitosan and dehydration of copper decorated  
149 chitosan sample <sup>41</sup>. The second thermal stage in the temperature range 200-400 °C displayed 48 and  
150 40% mass loss for CS and Cu-CS A NPs, respectively is mainly assigned to de-polymerization along  
151 with breakdown of acetylated and deacetylated unit of chitosan. The third thermal decomposition  
152 stage (400-550°C) was accompanied by about 30% mass loss for both investigated samples. The total  
153 mass loss of copper nanoparticles decorated chitosan is higher than that of pristine chitosan (~10%  
154 higher) as the introduction of a metal nanoparticles into the biopolymer matrix, affect the chain  
155 packing and causes releasing of the packed assembly <sup>42,43</sup>.



156

157

**Figure 4.** TGA of chitosan (CS) and Cu-CS A NPs.

158

### 159 2.3.3 XRD analyses

160

161 X-ray diffraction patterns of pure chitosan (CS) and copper nanoparticles decorated chitosan  
162 (Cu-CS NPs) are displayed in Figure 5. Some characteristic peaks for chitosan at  $2\theta = 11.5^\circ$  and  $22.5^\circ$   
163 were observed <sup>44,45</sup>. A slight right shift with wider peak at  $2\theta=23^\circ$  recommends the decrease in  
164 crystallinity after anchoring copper nanoparticles in the chitosan structure. The main structure of  
165 chitosan was not disturbed with the absence of any characteristic peaks for copper nanoparticles. This  
166 observation suggests the dispersion of copper nanoparticles over the surface of chitosan and the  
167 structure of chitosan was not changed during the preparation method.



Figure 5. XRD patterns of chitosan (CS) and Cu-CS A NPs.

168

169

170

171

#### 172 2.3.4 SEM-EDX of Cu-Cs NPs catalyst

173

174

The morphology of Cu-decorated chitosan sample (CuNPs) described by SEM image (Fig. 6) displayed asymmetrical deposits of chitosan. The nonattendance of copper nanoparticles could be ascribed to the good scattering of copper nanoparticles over chitosan. EDX spectra (Fig. 7) showed copper in addition to carbon, nitrogen and oxygen elements. The atomic % of copper should be complemented by XPS analysis in order to give accurate turnover number of copper relative to the total atomic percentage derived from ICP-AES analysis.

175

176

177

178

179

180



**Figure 6.** SEM image for Cu-CS NPs



**Figure 7.** EDX spectra of copper decorated chitosan nanoparticles.

### 196 2.3.5 XPS and HRTEM of Cu-Cs NPs catalyst

197 XPS peaks at 932.7 and 952.5 eV corresponding to Cu2p3/2 and Cu2p1/2, respectively, which  
198 confirmed the presence of copper, which is not appeared in XRD patterns. Copper nanoparticles are  
199 fashioned in three diverse oxidation states, which could improve the catalytic efficacy of the  
200 synthesized catalyst. The number of moles of copper nanoparticles was detected from both EDX and  
201 XPS analyses for the determination of turnover number of active species. TEM images (Fig. 8 right-  
202 side) show copper nanoparticles are well dispersed over chitosan. The corresponding selected area  
203 diffraction (SAED pattern) shows uniform distribution of copper NPs in two faces (111) and (110).  
204 These information about the uniform distribution of copper species with different oxidation states in  
205 different crystallographic faces could deliver elucidation of the superior catalytic activity of the  
206 catalyst and the suitability of the catalyst's support in avoiding the agglomeration of copper  
207 nanoparticles.

208

209

210

211



212

213 **Figure 8.** XPS (left-side) and HRTEM images (right-side) for Cu-CS NPs.  
 214

215 **4. Tentative Mechanism**

216 A tentative mechanism for multicomponent reaction of quinolines derivatives over Cu-CS NPs  
 217 has been proposed to occur via three different reaction steps (Scheme 2). Firstly, the well dispersed  
 218 copper nanoparticles facilitate the electrophilicity of carbonyl group of the aldehyde via reduction of  
 219 Cu<sup>2+</sup> ions into Cu<sup>0</sup>, which resulted in ease of attack on the active methylene carbon of  
 220 ethylcyanoacetate and elimination of water. Secondly, the reaction proceeded via Michael addition  
 221 assisted by basic sites of the catalyst then followed by the last step in ionic mechanism.



234 **Scheme 2:** proposed mechanism for the synthesis of quinolone derivatives.  
 235

236

237 **5. Experimental Section**238 **5.1 Materials**

239 Chitosan (molecular weight 100,000-300,000) (Acros Organics- Belgium). Sodium  
240 tripolyphosphate (Acros Organics- Belgium), copper (II) acetate monohydrate (Central Drug House  
241 CDH, New Delhi, India), dimedone, ethyl cyanoacetate, and ammonium acetate (Techno Pharm  
242 Chem, New Delhi, India). 4-chlorobenzaldehyde, 4-bromo benzaldehyde, 4-florobenzaldehyde,  
243 piperonal(1,3-benzodioxole-5-carbaldehyde), salicylaldehyde (2-hydroxybenzaldehyde, thiophen -3-  
244 aldehyde,4-dimethylaminobenzaldehyde, 2-methoxybenzaldehyde,3,4- dimethoxy benzaldehyde, m-  
245 nitro benzaldehyde (Merck KGaA, Darmstadt, Germany), absolute ethanol and acetone (Fisher  
246 scientific, Leicestershire, U.K).

## 247

248 **5.2 Materials characterization**

249

250 The reactions were monitored by TLC and all yields refer to isolated products. Melting points  
251 were obtained by the Barnstead international 1002 melting point apparatus. IR spectra of the catalyst  
252 and products were recorded for the compounds in PerkinElmer spectrum 100 FT-IR  
253 spectrophotometer.  $^1\text{H}$  NMR and  $^{13}\text{C}$  spectra of products were recorded on Burker WM 400 and 850  
254 MHz spectrometer using TMS (0.00 ppm). Chemical shifts ( $\delta$ ) are given in ppm relative to the signal  
255 for TMS as standard, and coupling constants in Hz. Thermo-Microbalance TG 209 F3 (NETZSCH)  
256 was used to perform thermal gravimetric analysis for the prepared samples. The sample was first  
257 heated from room temperature up to 150°C, 5°C/min, and kept half an hour at 150°C. Then the sample  
258 temperature was raised up to 550°C, afterwards cooled down to 40°C at the same rate of 10°C / min.  
259 Mixture of 20 ml/min of dry air and 10 ml/min of helium was passed through during these processes.  
260 PXRD patterns catalyst sample were analyzed using a Powder XRD diffractometer (Model  
261 Equinox1000 – INEL (France) with Co  $\text{K}_\alpha$  ( $\lambda = 1.7890 \text{ \AA}$ ) radiation at 30kV and 30mA. XPS  
262 measurements were carried out in an ultra-high vacuum multi- technique surface analysis system  
263 (SPECS GmbH, Germany) operating at a base pressure range of 1010 bar. Catalyst morphology was  
264 investigated by means of field emission scanning electron microscopy (FEG-SEM, Quanta FEG450,  
265 FEI, the Netherlands) using an ETD Everhart Thornley detector (High Vacuum mode), a solid-state  
266 backscattering electron detector (VCD)and EDS detector (XFLASH6-30, Brucker) for elemental  
267 analysis. HRTEM samples were prepared by sonication of the suspended powder in ethanol. A single  
268 drop of the sonicated suspension was deposited on TEM carbon grid 200 mesh and leaved for total  
269 evaporation at room temperature. Then the grid was mounted on a TEM single tilt holder, the  
270 residual solvent was removed by plasma cleaning process. The reactions that carried out by U.S  
271 irradiation was done using Daihan (Wiseclean, D-40 MHz) ultrasonic bath. Microanalysis was  
272 performed by Perkin Elmer elemental analyzer at the Faculty of Science, King Abdul Aziz University.  
273

274 **5.3 Method**275 **5.3.1 Synthesis of Cu-Chitosan Catalyst**

276

277 The synthesis of Cu- chitosan nanoparticles was carried out according to two methods: Firstly:  
278 Cu- chitosan NPs (Cu-Cs NPs) have been prepared via one-step synthesis green protocol. In a typical  
279 method, 0.75 g chitosan dissolving in 100 ml 0.1% acetic acid (in distilled water) then 50 ml of the  
280 solution and 25 ml of 0.05 M copper solution were delivered under stirring at 70°C for 9 h till the  
281 reaction was completed. the colloid was centrifuged for 10min. to separate particles from suspension  
282 then washed with acetone (90%, v/v) and the centrifugation was repeated three times to remove  
283 unreacted reagents. The particles were dried under vacuum at the room temperature overnight and  
284 stored <sup>34</sup>.

285 Secondly: Cu-chitosan NPs (Cu-Cs NPs /TPP) were prepared based on the ionotropic gelation  
286 between chitosan and sodium tripolyphosphate (TPP). Chitosan acted as a reducing/stabilizing  
287 agent. TPP was dissolved in water to a concentration of 0.25%. Under magnetic stirring at room  
288 temperature, 33 ml of TPP solution was added into 50 ml of chitosan solution 0.75% (in dil. acetic

289 acid 0.1 %) and the mixture was stirred for 15min. Chitosan nanoparticles loaded Cu<sup>2+</sup> were obtained  
290 by adding metal ion solutions 16ml 0.05 M into the chitosan nanosuspensions and heated to 70 °C  
291 using a water bath, after a blue color appeared, stirring continued for another 90 min. before  
292 removing the heater. The resulting solution was cooled to room temperature for characterization<sup>35</sup>.  
293

294 **5.3.2 Synthesis of polyhydroquinolines in the presence of Cu-chitosan NPs**

295

296 A mixture of dimedone (3.6 mmol, 0.5 gm), aromatic aldehyde (3.6mmol, 0.5 gm),  
297 ethylcyanoacetoacetate (3.6 mmol, 0.38 ml), ammoniumacetate (28.8 mmol, 2.219 gm) and catalytic  
298 amounts of Cu-chitosan NPs (0.1 gm) in 10 ml absolute ethanol irradiate with ultrasonic waves at  
299 80°C. After completion of the reaction (monitored by TLC, petroleum ether: EtOAc, 1:2), the reaction  
300 mixture was filtered to separate the catalyst, then cooled at room temperature and the solid product  
301 obtained and was filtered off, dried and recrystallized from ethanol.  
302

303 **5.3.3 Physical and spectroscopic data of product compounds**

304

305 **Ethyl-2-amino-4-(4-chlorophenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-  
306 carboxylate (IV<sub>a</sub>)**

307 Off – white crystals (1.09gm, 82.47 % yield); m.p 173 °C. FTIR; 3478,3328, 3200 (-NH, NH<sub>2</sub>);  
308 1686,1655 (2C=O ); and 1621 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.96, 1.09 (6H, 2s, 2CH<sub>3</sub>);  
309 1.14 (3H, t, -CH<sub>2</sub>CH<sub>3</sub>, J=7.2 Hz); 1.84 (1H,br.s, -NH); 2.17 (2H, dd, C<sub>8</sub>-H, J = 14 Hz); 2.41 ( 2H, s , C<sub>6</sub>-H  
310 ); 4.03 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 7.2 Hz); 4.66 (1H, s, C<sub>4</sub>-H); 6.21 (2H, br.s, NH<sub>2</sub>) and 7.15, 7.21 (4H, 2d, Ar-  
311 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.22 (CH<sub>2</sub>CH<sub>3</sub>); 27.36, 29.09 (2CH<sub>3</sub>); 32.24 (C<sub>7</sub>); 33.48 (C<sub>4</sub>); 40.66 (C<sub>8</sub>); 50.69  
312 (C<sub>6</sub>); 59.77 (CH<sub>2</sub>CH<sub>3</sub>); 80.30 (C<sub>3</sub>); 116.40 ( C<sub>4a</sub> ) ; 127.91 (C<sub>3</sub>'), C<sub>5</sub>'); 129.63 (C<sub>2</sub>'), C<sub>6</sub>'); 131.63 (C<sub>4</sub>'); 144.46  
313 (C<sub>1</sub>'); 158.37 (C<sub>8a</sub>); 161.54 ,196.43 (2 C=O); and 168.95 (C<sub>2</sub>) . Anal. Calcd. for C<sub>20</sub>H<sub>23</sub>ClN<sub>2</sub>O<sub>3</sub> (374.86): C,  
314 64.02; H, 6.61; N, 7.47; O, 12.80. Found : C, 64.42; H, 6.43; N, 7.01; O, 12.58.  
315

316 **Ethyl-2-amino-4-(4-bromophenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-  
317 carboxylate (IV<sub>b</sub>)**

318 Semisolid Off – white (1.41 gm, 93.49 % yield). FTIR; 3473,3331,3204 (-NH, NH<sub>2</sub>); 1686,1654  
319 (2C=O ); and 1620 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.96, 1.09 (6H, 2s, 2CH<sub>3</sub>); 1.15 (3H, t, -  
320 CH<sub>2</sub>CH<sub>3</sub>, J=7.56 Hz); 2.08 (1H,br.s, -NH); 2.18 (2H, dd, C<sub>8</sub>-H, J = 14 Hz); 2.42 ( 2H, d.d , C<sub>6</sub>-H , J = 17  
321 Hz); 4.03 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 7.56 Hz); 4.65 (1H, s, C<sub>4</sub>-H); 6.20 (2H, br.s, NH<sub>2</sub>) and 7.13, 7.33 (4H, 2d,  
322 Ar-H). <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.21 (CH<sub>2</sub>CH<sub>3</sub>); 27.36, 29.10 (2CH<sub>3</sub>); 32.25 (C<sub>7</sub>); 33.44 (C<sub>4</sub>); 40.63 (C<sub>8</sub>);  
323 50.65 (C<sub>6</sub>); 59.79 (CH<sub>2</sub>CH<sub>3</sub>); 80.22 (C<sub>3</sub>); 116.30 ( C<sub>4a</sub> ) ; 119.64 (C<sub>3</sub> , C<sub>5</sub>'); 130.07 (C<sub>2</sub> , C<sub>6</sub>'); 130.84 (C<sub>4</sub>');  
324 144.93 (C<sub>1</sub>'); 158.31 (C<sub>8a</sub>); 161.55 ,196.46 (2 C=O); and 168.94 (C<sub>2</sub>) . Anal. Calcd. for C<sub>20</sub>H<sub>23</sub>BrN<sub>2</sub>O<sub>3</sub>  
325 (419.31): C, 57.24; H, 4.48; N, 6.68; O,11.45. Found : C, 57.40; H, 4.33; N, 6.43; O, 11.30 .  
326

327 **Ethyl-2-amino-4-(4-florophenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-carboxylate  
328 ( IV<sub>c</sub>)**

329 Off – white crystals (1.08 gm, 84.65 % yield); m.p 154 °C. FTIR; 3398,3285, 3200 (-NH, NH<sub>2</sub>);  
330 1689,1652 (2C=O ); and 1601 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.96, 1.09 (6H, 2s, 2CH<sub>3</sub>);  
331 1.14 (3H, t, -CH<sub>2</sub>CH<sub>3</sub>, J=7.65 Hz); 2.06 (1H,br.s, -NH); 2.17 (2H, dd, C<sub>8</sub>-H, J = 16.15 Hz); 2.41 ( 2H, d.d ,  
332 C<sub>6</sub>-H, J = 17.83 HZ ); 4.03 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 6.8 Hz); 4.67 (1H, s, C<sub>4</sub>-H); 6.26 (2H, br.s, NH<sub>2</sub>) and 6.87,  
333 7.23 (4H, 2d, Ar-H). <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.21 (CH<sub>2</sub>CH<sub>3</sub>); 27.33, 29.08 (2CH<sub>3</sub>); 32.23 (C<sub>7</sub>); 33.24 (C<sub>4</sub>);  
334 40.62 (C<sub>8</sub>); 50.68 (C<sub>6</sub>); 59.71 (CH<sub>2</sub>CH<sub>3</sub>); 80.53 (C<sub>3</sub>); 114.54 ( C<sub>4a</sub> ) ; 116.61 (C<sub>3</sub> , C<sub>5</sub>'); 129.65 (C<sub>2</sub> , C<sub>6</sub>'); 141.65  
335 (C<sub>4</sub>'); 158.32(C<sub>1</sub>'); 160.65 (C<sub>8a</sub>); 161.42 ,196.53 (2 C=O); and 169.03 (C<sub>2</sub>) . Anal. Calcd. for C<sub>20</sub>H<sub>23</sub>FN<sub>2</sub>O<sub>3</sub>  
336 (358.41): C, 66.96 ; H, 6.42; N, 7.81; O, 13.39. Found : C, 66.98; H, 6.27; N, 7.40; O, 13.11.  
337

338 **Ethyl-2-amino-4-(3-nitrophenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-carboxylate  
339 (IV<sub>d</sub>)**

340 Dark green crystals (1.04 gm, 75.89 % yield); **m.p** 147 °C. FTIR; 3449,3332, 3200 (-NH, NH<sub>2</sub>); 1371  
341 (NO<sub>2</sub>); 1686,1657 (2C=O) ; and 1621 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.96, 1.09 (6H, 2s,  
342 2CH<sub>3</sub>); 1.14 (3H, t, -CH<sub>2</sub>CH<sub>3</sub>, J=7.65 Hz); 2.10 (1H,br.s, -NH); 2.17 (2H, dd, C<sub>8</sub>-H, J = 16.15 Hz); 2.47 (2H, s , C<sub>6</sub>-H ); 4.03 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 6.8 Hz); 4.79 (1H, s, C<sub>4</sub>-H); 6.31 (2H, br.s, NH<sub>2</sub>) and  
344 7.37(1H,d,d,C<sub>5</sub>-H, J=7.65, J=8.5 Hz of Ar) ; 7.64 (1H, d, C<sub>4</sub>-H , J=7.65 of Ar) ;7.98(1H, d, C<sub>6</sub>-H , J=8.5  
345 Hz of Ar) ; 8.09(1H, S, C<sub>2</sub>-H of Ar) . (<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.19 (CH<sub>2</sub>CH<sub>3</sub>); 27.37, 29.06 (2CH<sub>3</sub>); 32.31  
346 (C<sub>7</sub>); 34.15 (C<sub>4</sub>); 40.61 (C<sub>8</sub>); 50.58 (C<sub>6</sub>); 59.91 (CH<sub>2</sub>CH<sub>3</sub>); 79.51 (C<sub>3</sub>); 115.56 ( C<sub>4a</sub>); 121.35(C<sub>4</sub><sup>1</sup>, C<sub>6</sub><sup>1</sup>); 123.16  
347 (C<sub>5</sub><sup>1</sup>); 128.51 (C<sub>2</sub><sup>1</sup>); 134.91 (C<sub>3</sub><sup>1</sup>); 148.14 (C<sub>3</sub><sup>1</sup>);158.36 (C<sub>8a</sub>); 162.15,196.43 (2 C=O); and 168.66 (C<sub>2</sub>) . Anal.  
348 Calcd. for C<sub>20</sub>H<sub>23</sub>N<sub>3</sub>O<sub>5</sub> (385.41): C, 62.27; H, 5.97; N, 10.89; O, 20.76 . Found : C, 62.48; H, 5.53; N, 10.45;  
349 O, 12.63.

350

351 **Ethyl-2-amino-7,7-dimethyl-5-oxo-4-(thiophen-3-yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate  
(IV<sub>e</sub>)**

353 Drak brown powder (1.22 gm, 98.53% yield); m.p 123 °C. FTIR; 3427,3310, 3208 (-NH, NH<sub>2</sub>);  
354 1688,1654 (2C=O) ; and 1636 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 1.01 , 1.12 (6H, 2s, 2CH<sub>3</sub>);  
355 1.20 (3H, t, -CH<sub>2</sub>CH<sub>3</sub>, J=6.8 Hz); 2.13 (1H,br.s, -NH); 2.26 (2H, dd, C<sub>8</sub>-H, J = 16.15 Hz); 2.42 ( 2H, s , C<sub>6</sub>-  
356 H ); 4.10 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 7.65 Hz); 4.89 (1H, s, C<sub>4</sub>-H); 6.19 (2H, br.s, NH<sub>2</sub>) and 6.95(1H, d, C<sub>5</sub>-H of  
357 thiophene ), 7.10 (1H, S, C<sub>2</sub>-H of thiophene ), 7.12(1H, m , C<sub>4</sub>-H of thiophene) . <sup>13</sup>C NMR (CDCl<sub>3</sub>):  
358 δ<sub>C</sub> = 14.18 (CH<sub>2</sub>CH<sub>3</sub>); 27.44, 28.65 (2CH<sub>3</sub>); 32.24 (C<sub>7</sub>); 40.67 (C<sub>8</sub>); 41.21 (C<sub>4</sub>); 50.74 (C<sub>6</sub>); 59.73 (CH<sub>2</sub>CH<sub>3</sub>);  
359 80.38 (C<sub>3</sub>); 116.61 (C<sub>4a</sub>); 120.92 (C<sub>3</sub><sup>1</sup>); 124.55 (C<sub>2</sub><sup>1</sup>); 127.71 (C<sub>4</sub><sup>1</sup>); 147.76 (C<sub>1</sub><sup>1</sup>); 158.73 (C<sub>8a</sub>); 162.03,197.34  
360 (2 C=O); and 169.35 (C<sub>2</sub>) . Anal. Calcd. for C<sub>18</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub> S(346.44): C, 62.35; H, 6.35;N, 8.08; O, 13.85;  
361 S,9.24 . Found : C, 62.22; H, 6.16; N, 8.01; O, 13.46; S, 9.17.

362

363

364 **Ethyl-2-amino-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-  
365 carboxylate (IV<sub>f</sub>)**

366 Off – white powder (1.17 gm, 81.59 % yield); m.p 128 °C. FTIR; 3429,3314, 3200 (-NH, NH<sub>2</sub>);  
367 1687,1663 (2C=O) ; and 1588 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.98, 1.10 (6H, 2s, 2CH<sub>3</sub>);  
368 1.19 (3H, t, -CH<sub>2</sub>CH<sub>3</sub>, J=6.8 Hz); 2.13 (1H,br.s, -NH); 2.19 (2H, dd, C<sub>8</sub>-H, J = 16.9 Hz); 2.41 ( 2H, d.d ,  
369 C<sub>6</sub>-H, J =17.85 Hz ); 3.96,3.97(6H,2S,2-OCH<sub>3</sub>); 4.38 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 7.65 Hz); 4.65 (1H, s, C<sub>4</sub>-H);  
370 6.69 (2H, br.s, NH<sub>2</sub>) and 7.74,7.80,8.16 (3H, d,d, s, Ar-H).<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.22 (CH<sub>2</sub>CH<sub>3</sub>); 27.30,  
371 29.27 (2CH<sub>3</sub>); 32.24 (C<sub>7</sub>); 33.29 (C<sub>4</sub>); 40.67 (C<sub>8</sub>); 50.81 (C<sub>6</sub>); 55.65,56.07 ( 2-OCH<sub>3</sub> ) ; 59.69 (CH<sub>2</sub>CH<sub>3</sub>); 80.92  
372 (C<sub>3</sub>); 110.995 ( C<sub>4a</sub> ) 111.66 (C<sub>5</sub><sup>1</sup>); 112.02 (C<sub>2</sub><sup>1</sup>); 138.71 (C<sub>1</sub><sup>1</sup>); 147.15 (C<sub>4</sub><sup>1</sup>);148.36(C<sub>3</sub><sup>1</sup>); ;149.29 (C<sub>8a</sub>); 161.26  
373 ,196.62(2 C=O); and 163.13(C<sub>2</sub>) . Anal. Calcd. for C<sub>22</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub> (400.47): C, 65.92; H, 6.99; N, 6.99; O,  
374 19.98. Found: C, 65.99; H, 6.61; N, 6,36; O, 19.44.

375

376 **Ethyl-2-amino-4-(benzo[d][1,3]dioxol-5-yl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydro- quinoline-3-  
377 carboxylate (IV<sub>g</sub>)**

378 Off – white crystals (1.20 gm, 87.36% yield); m.p 133 °C. FTIR; 3437, 3204 (-NH, NH<sub>2</sub>); 1688,1653  
379 (2C=O) ; and 1606 cm<sup>-1</sup> (C=C). <sup>1</sup>H NMR (850 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 0.99, 1.09 (6H, 2s, 2CH<sub>3</sub>); 1.18 (3H, t, -  
380 CH<sub>2</sub>CH<sub>3</sub>, J=7.65 Hz); 2.08 (1H,br.s, -NH); 2.19 (2H, dd, C<sub>8</sub>-H, J = 16.15 Hz); 2.41 ( 2H, s , C<sub>6</sub>-H ); 4.36  
381 (2H, q, -CH<sub>2</sub>CH<sub>3</sub>, J = 6.8 Hz); 4.62 (1H, s, C<sub>4</sub>-H); 5.87(2H,2d,-O-CH<sub>2</sub>-O);6.08 (2H, br.s, NH<sub>2</sub>) and  
382 6.65,6.74,6.90(3H, d,d,d,d, Ar-H).<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ<sub>C</sub> = 14.28 (CH<sub>2</sub>CH<sub>3</sub>); 27.52, 29.04 (2CH<sub>3</sub>); 32.25  
383 (C<sub>7</sub>); 33.29 (C<sub>4</sub>); 40.64 (C<sub>8</sub>); 51.23(C<sub>6</sub>); 59.72 (CH<sub>2</sub>CH<sub>3</sub>); 80.88 (C<sub>3</sub>); 100.68(-O-CH<sub>3</sub>-O); 107.59( C<sub>4a</sub> ) ;  
384 109.21(C<sub>5</sub><sup>1</sup>); 116.82(C<sub>2</sub><sup>1</sup>); 121.34 (C<sub>6</sub><sup>1</sup>); 139.98 (C<sub>1</sub><sup>1</sup>); 145.65(C<sub>4</sub><sup>1</sup>); 147.07(C<sub>3</sub><sup>1</sup>); 158.20 (C<sub>8a</sub>); 162.99  
385 ,196.56 (2 C=O); and 169.11 (C<sub>2</sub>) . Anal. Calcd. for C<sub>21</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub> (384.17): C, 65.59; H, 6.25; N, 7.29; O,  
386 20.82. Found: C, 65.92; H, 6.13; N, 7.01; O, 20.54.

387

388 **Ethyl-2-amino-4-(2-dimethylamino(phenyl)-7,7-dimethyl-5-oxo-1,4,5,6,7,8 hexahydroquinol ine-3-  
389 carboxylate (IV<sub>h</sub>)**

390



|       |                                          |
|-------|------------------------------------------|
| FT-IR | Fourier Transform Infrared Spectroscopy. |
| TEM   | Transmission Electron Microscopy.        |
| SEM   | Scanning Electron Microscopy.            |
| XPS   | X-ray Photoelectron Microscopy.          |
| NMR   | Nuclear Magnetic Resonance Spectroscopy. |
| XRD   | X-ray Powder diffraction.                |
|       | Thermogravimetric Analysis.              |

## TGA

|     |                                 |
|-----|---------------------------------|
| EDS | Energy dispersive spectroscopy. |
| TLC | Thin layer Chromatography.      |

437

438 **Availability of data and material**

439 All the data are submitted as supplementary data

440 **Competing interests**

441 The authors declare that they have no competing interests

442 **Funding**

443 The current research was funded by the authors themselves.

444 **Author's contributions**

445 M.M. and D.B have defined the research topic. K.S.A and N.S.A. involved in the preparation,  
446 characterization and data analysis. K.S.A., N.S.A. and M.M. wrote the scientific manuscript. D.B.  
447 provided important suggestions on the draft of the manuscript. All authors examined and approved  
448 the final manuscript.

449 **Acknowledgements**

450 K.S.A. acknowledges chemistry department, faculty of science, King Abdulaziz University for  
451 providing the lab facilities for doing the research during her MSc. Thesis.

452 **References**

- (1) Kwiek, J. J.; Haystead, T. A.; Rudolph, J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. *Biochemistry* **2004**, *43*, 4538-4547.
- (2) Kohn, L. K.; Pavam, C.; Veronese, D.; Coelho, F.; De Carvalho, J.; Almeida, W. P. Antiproliferative effect of Baylis–Hillman adducts and a new phthalide derivative on human tumor cell lines. *European journal of medicinal chemistry* **2006**, *41*, 738-744.
- (3) Ahmed, N.; Badahdah, K.; Qassar, H. Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. *Medicinal Chemistry Research* **2017**, *26*, 1201-1212.
- (4) Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. 1, 8-Naphthyridines IV. 9-Substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino)[1, 2, 4] triazolo [4, 3-a][1, 8] naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. *European journal of medicinal chemistry* **2000**, *35*, 1021-1035.
- (5) Bekhit, A. A.; El-Sayed, O. A.; Aboulmagd, E.; Park, J. Y. Tetrazolo [1, 5-a] quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. *European journal of medicinal chemistry* **2004**, *39*, 249-255.

467 (6) Dubé, D.; Blouin, M.; Brideau, C.; Chan, C.-C.; Desmarais, S.; Ethier, D.; Falgueyret, J.-P.; Friesen,  
468 R. W.; Girard, M.; Girard, Y. Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological  
469 profile of L-746,530. *Bioorganic & medicinal chemistry letters* **1998**, *8*, 1255-1260.

470 (7) Ko, T.-C.; Hour, M.-J.; Lien, J.-C.; Teng, C.-M.; Lee, K.-H.; Kuo, S.-C.; Huang, L.-J. Synthesis of  
471 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. *Bioorganic & medicinal chemistry*  
472 *letters* **2001**, *11*, 279-282.

473 (8) Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J. T. Synthesis,  
474 anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. *Biological and*  
475 *Pharmaceutical Bulletin* **2004**, *27*, 1683-1687.

476 (9) Das, B.; Ravikanth, B.; Ramu, R.; Rao, B. V. An efficient one-pot synthesis of polyhydroquinolines  
477 at room temperature using HY-zeolite. *Chemical and pharmaceutical bulletin* **2006**, *54*, 1044-1045.

478 (10) Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Nickel nanoparticle-catalyzed facile  
479 and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-  
480 free conditions. *Tetrahedron Letters* **2009**, *50*, 1754-1756.

481 (11) Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V. Multicomponent Hantzsch cyclocondensation as  
482 a route to highly functionalized 2-and 4-dihydropyridylalanines, 2-and 4-pyridylalanines, and their N-  
483 oxides: preparation via a polymer-assisted solution-phase approach. *Tetrahedron* **2004**, *60*, 2311-2326.

484 (12) Karade, N. N.; Budhewar, V. H.; Shinde, S. V.; Jadhav, W. N. L-proline as an efficient organo-  
485 catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction. *Letters in Organic*  
486 *Chemistry* **2007**, *4*, 16-19.

487 (13) Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.; Tyagi, R.; Surampalli, R. Ultrasonic pretreatment of  
488 sludge: a review. *Ultrasonics sonochemistry* **2011**, *18*, 1-18.

489 (14) Hussain, S.; Jadhav, S.; Rai, M.; Farooqui, M. ONE-POT NEDA CATALYZED KNOVENAGEL  
490 CONDENSATION UNDER ULTRASONIC IRRADIATION IN SOLVENT-FREE MEDIUM.  
491 *International Journal of Pharmaceutical, Chemical & Biological Sciences* **2014**, *4*.

492 (15) Polshettiwar, V.; Varma, R. S. Green chemistry by nano-catalysis. *Green Chemistry* **2010**, *12*, 743-  
493 754.

494 (16) Rostamizadeh, S.; Shadjou, N.; Azad, M.; Jalali, N. ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>)-MCM-41 as a magnetically  
495 recoverable nanocatalyst for the synthesis of pyrazolo [4, 3-c] pyridines at room temperature. *Catalysis*  
496 *Communications* **2012**, *26*, 218-224.

497 (17) Mokhtar, M.; Saleh, T.; Ahmed, N.; Al-Thabaiti, S.; Al-Shareef, R. An eco-friendly N-sulfonylation  
498 of amines using stable and reusable Zn-Al-hydrotalcite solid base catalyst under ultrasound irradiation.  
499 *Ultrasonics sonochemistry* **2011**, *18*, 172-176.

500 (18) Mokhtar, M.; Saleh, T. S.; Basahel, S. N. Mg-Al hydrotalcites as efficient catalysts for aza-Michael  
501 addition reaction: a green protocol. *Journal of Molecular Catalysis A: Chemical* **2012**, *353*, 122-131.

502 (19) Saleh, T. S.; Narasimharao, K.; Ahmed, N. S.; Basahel, S. N.; Al-Thabaiti, S. A.; Mokhtar, M. Mg-  
503 Al hydrotalcite as an efficient catalyst for microwave assisted regioselective 1, 3-dipolar cycloaddition of  
504 nitrilimines with the enaminone derivatives: A green protocol. *Journal of Molecular Catalysis A: Chemical*  
505 **2013**, *367*, 12-22.

506 (20) Narasimharao, K.; Al-Sabban, E.; Saleh, T. S.; Gallastegui, A. G.; Sanfiz, A. C.; Basahel, S.; Al-  
507 Thabaiti, S.; Alyoubi, A.; Obaid, A.; Mokhtar, M. Microwave assisted efficient protocol for the classic  
508 Ullmann homocoupling reaction using Cu-Mg-Al hydrotalcite catalysts. *Journal of Molecular Catalysis*  
509 *A: Chemical* **2013**, *379*, 152-162.

510 (21) Bagabas, A. A.; Mokhtar, M.; Akhmedov, V. M.; Narasimharao, K.; Basahel, S. N.; Al-Rabiah, A.  
511 Ru-C-ZnO Composite Catalysts for the Synthesis of Methyl Isobutyl Ketone via Single Step Gas Phase  
512 Acetone Self-Condensation. *Catalysis letters* **2014**, *144*, 1278-1288.

513 (22) Basahel, S. N.; Ahmed, N. S.; Narasimharao, K.; Mokhtar, M. Simple and efficient protocol for  
514 synthesis of pyrido [1, 2-a] pyrimidin-4-one derivatives over solid heteropolyacid catalysts. *RSC Advances*  
515 **2016**, *6*, 11921-11932.

516 (23) Koga, H.; Tokunaga, E.; Hidaka, M.; Umemura, Y.; Saito, T.; Isogai, A.; Kitaoka, T. Topochemical  
517 synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. *Chemical*  
518 *communications* **2010**, *46*, 8567-8569.

519 (24) Wang, X.; Hu, P.; Xue, F.; Wei, Y. Cellulose-supported N-heterocyclic carbene-palladium catalyst:  
520 Synthesis and its applications in the Suzuki cross-coupling reaction. *Carbohydrate polymers* **2014**, *114*,  
521 476-483.

522 (25) Rinaudo, M. Chitin and chitosan: properties and applications. *Progress in polymer science* **2006**, *31*,  
523 603-632.

524 (26) Baig, R. N.; Varma, R. S. Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne  
525 cycloaddition reactions in water. *Green Chemistry* **2013**, *15*, 1839-1843.

526 (27) Yang, B.; Mao, Z.; Zhu, X.; Wan, Y. Functionalised chitosan as a green, recyclable, supported  
527 catalyst for the copper-catalysed ullmann CN coupling reaction in water. *Catalysis Communications* **2015**,  
528 *60*, 92-95.

529 (28) Baig, R. N.; Nadagouda, M. N.; Varma, R. S. Ruthenium on chitosan: a recyclable heterogeneous  
530 catalyst for aqueous hydration of nitriles to amides. *Green Chemistry* **2014**, *16*, 2122-2127.

531 (29) Yan, K.; Chen, A. Selective hydrogenation of furfural and levulinic acid to biofuels on the  
532 ecofriendly Cu–Fe catalyst. *Fuel* **2014**, *115*, 101-108.

533 (30) Hardy, J. J.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Chitosan-based heterogeneous catalysts for  
534 Suzuki and Heck reactions. *Green Chemistry* **2004**, *6*, 53-56.

535 (31) Qiu, Y.; Ma, Z.; Hu, P. Environmentally benign magnetic chitosan/Fe 3 O 4 composites as reductant  
536 and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. *Journal of Materials*  
537 *Chemistry A* **2014**, *2*, 13471-13478.

538 (32) Zhou, J.; Dong, Z.; Yang, H.; Shi, Z.; Zhou, X.; Li, R. Pd immobilized on magnetic chitosan as a  
539 heterogeneous catalyst for acetalization and hydrogenation reactions. *Applied Surface Science* **2013**, *279*,  
540 360-366.

541 (33) Frindy, S.; el Kadib, A.; Lahcini, M.; Primo, A.; García, H. Copper Nanoparticles Stabilized in a  
542 Porous Chitosan Aerogel as a Heterogeneous Catalyst for C– S Cross - coupling. *ChemCatChem* **2015**, *7*,  
543 3307-3315.

544 (34) Manikandan, A.; Sathiyabama, M. Green synthesis of copper-chitosan nanoparticles and study of its  
545 antibacterial activity. *Journal of Nanomedicine & Nanotechnology* **2015**, *6*, 1.

546 (35) Huang, H.; Yang, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of  
547 tripolyphosphate. *Biomacromolecules* **2004**, *5*, 2340-2346.

548 (36) Abdollahi-Alibeik, M.; Hoseinkhah, S. S. ClO 4-/Zr-MCM-41 nanoparticles prepared at mild  
549 conditions: a novel solid acid catalyst for the synthesis of polyhydroquinolines. *Journal of the Iranian*  
550 *Chemical Society* **2016**, *13*, 1339-1347.

551 (37) Abdollahi-Alibeik, M.; Rezaeipoor-Anari, A. Fe<sub>3</sub>O<sub>4</sub>@ B-MCM-41: A new magnetically recoverable  
552 nanostructured catalyst for the synthesis of polyhydroquinolines. *Journal of Magnetism and Magnetic*  
553 *Materials* **2016**, *398*, 205-214.

554 (38) Kassaee, M.; Masrouri, H.; Movahedi, F. ZnO-nanoparticle-promoted synthesis of  
555 polyhydroquinoline derivatives via multicomponent Hantzsch reaction. *Monatshefte für Chemie-Chemical*  
556 *Monthly* **2010**, *141*, 317-322.

557 (39) Webb, J. D.; MacQuarrie, S.; McEleney, K.; Crudden, C. M. Mesoporous silica-supported Pd  
558 catalysts: An investigation into structure, activity, leaching and heterogeneity. *Journal of Catalysis* **2007**,  
559 *252*, 97-109.

560 (40) Sudheesh, N.; Sharma, S. K.; Shukla, R. S. Chitosan as an eco-friendly solid base catalyst for the  
561 solvent-free synthesis of jasminaldehyde. *Journal of molecular catalysis A: Chemical* **2010**, *321*, 77-82.

562 (41) Kumari, S.; Pathak, D. D. Synthesis and development of Chitosan anchored copper (II) Schiff base  
563 complexes as heterogeneous catalysts for N-arylation of amines. *Tetrahedron Letters* **2015**, *56*, 4135-4142.

564 (42) Antony, R.; David, S. T.; Saravanan, K.; Karuppasamy, K.; Balakumar, S. Synthesis,  
565 spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff  
566 base modified chitosan. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2013**,  
567 *103*, 423-430.

568 (43) Tirkistani, F. A. Thermal analysis of some chitosan Schiff bases. *Polymer degradation and stability*  
569 **1998**, *60*, 67-70.

570 (44) Kumar, S.; Dutta, P.; Koh, J. A physico-chemical and biological study of novel chitosan-  
571 chloroquinoline derivative for biomedical applications. *International journal of biological macromolecules*  
572 **2011**, *49*, 356-361.

573 (45) Roberts, G. A.: *Chitin chemistry*; Macmillan International Higher Education, 1992.