Preprint
Article

In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures

Submitted:

05 October 2018

Posted:

05 October 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The alignment of nanostructures in materials such as lyotropic liquid crystals (LLCs) templated materials has the potential to signicantly improve their performances. However, accurately characterising and quantifying the alignement of such fine structures remains very challenging. In situ small angle X-ray scattering (SAXS) and molecular dynamics were employed for the first time to understand the hexagonal LLC alignment process with magnetic nanoparticles under a magnetic field. The enhanced alignment has been illustrated from the distribution of azimuthal intensity in the samples exposed to magnetic field. Molecular dynamics simulations reveal the relationship between the imposed force of the magenetic nanoparticles under magnetic field and the force transferred to the LLC cylinders which leads to the LLC alignment. The combinational study with experimental measurement and computational simulation will enable the development and control of nanostructures in novel materials for various applications.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

391

Views

409

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated