Preprint Article Version 1 This version is not peer-reviewed

Environmental Effects on the Electrical Characteristics of Back-Gated WSe2 Field Effect Transistors

Version 1 : Received: 4 October 2018 / Approved: 5 October 2018 / Online: 5 October 2018 (09:55:00 CEST)

A peer-reviewed article of this Preprint also exists.

Urban, F.; Martucciello, N.; Peters, L.; McEvoy, N.; Di Bartolomeo, A. Environmental Effects on the Electrical Characteristics of Back-Gated WSe2 Field-Effect Transistors. Nanomaterials 2018, 8, 901. Urban, F.; Martucciello, N.; Peters, L.; McEvoy, N.; Di Bartolomeo, A. Environmental Effects on the Electrical Characteristics of Back-Gated WSe2 Field-Effect Transistors. Nanomaterials 2018, 8, 901.

Journal reference: Nanomaterials 2018, 8, 901
DOI: 10.3390/nano8110901

Abstract

We study the effect of polymer coating, pressure, temperature and light on the electrical characteristics of monolayer WSe2 back-gated transistors with quasi-ohmic Ni/Au contacts. We prove that the removal of a layer of poly(methyl methacrylate) or a decrease of the pressure change the device conductivity from p to n-type. We demonstrate a gate-tunable Schottky barrier at the contacts and measure a barrier height of ~70 meV in flat-band condition. We report and discuss a temperature-driven change in the mobility and the subthreshold slope which we use to estimate the trap density at the WSe2/SiO2 interface. We study the spectral photoresponse of the device, that can be used as a photodetector with a responsivity of ~0.5 AW-1 at 700 nm wavelength and 0.37 mW/cm2 optical power.

Subject Areas

2D materials, field effect transistors, PMMA, tungsten diselenide

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.