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Abstract: Novel sensing technologies for liquid biopsies offer a promising prospect for the early 

detection of metabolic conditions through -omics techniques. Indeed, high-field NMR facilities are 

routinely used for metabolomics investigations on a range of biofluids in order to rapidly recognize 

unusual metabolic patterns in patients suffering from a range of diseases. However, these 

techniques are restricted by the prohibitively large size and cost of such facilities, suggesting a 

possible role for smaller, low-field NMR instruments in biofluid analysis. Herein we describe 

selected biomolecule validation on a low-field benchtop NMR spectrometer (60 MHz), and present 

an associated protocol for the analysis of biofluids on compact NMR instruments. We successfully 

detect common markers of diabetic control at low-to-medium concentrations through optimized 

experiments, including glucose (≤ 2.6 mmol./L) and acetone (25 mol./L), and additionally in 

readily-accessible biofluids. We present a combined protocol for the analysis of these biofluids with 

low-field NMR spectrometers for metabolomics, and offer a perspective on the future of this 

technique appealing to point-of-care applications. 
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1.0 Introduction 

 

Although now recognized as a powerful tool in translational medicine, the principles of 

metabolomics were arguably first described by ancient Chinese scholars, who used ants to evaluate 

the glucose level in the urine of diabetic patients [1]. The ancient Egyptian and Greek societies (circa. 

300 BC) developed this further to detect differences in the taste of urine as a means of disease 

diagnosis [2]. Etymologically-derived from the Greek language words for change, and body or rule, 

metabolomics and metabonomics respectively involve the measurement of metabolic responses to 

perturbation; metabolomics is centered on measurements of the entire metabolome, whereas 

metabonomics concentrates on longitudinal changes across the metabolome ascribable to 

interventional stimuli [3]. 
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The early metabolomics revolution effectively began with De Statica Medicina, published in 1614 by 

Santorio Santorio, who described his quantitative approach to modern medicine and the first 

systematic study of basal metabolism [4]. Both mass-spectrometric (MS) and nuclear magnetic 

resonance (NMR) strategies, two of the most common modern analytical techniques for metabolic 

measurements, were first described in the early part of the 20th century; MS by J. J. Thomson and F 

Aston in 1913 [5], and NMR by Bloch and Purcell in 1946 [6]. Although not described as such, the first 

analytical measurement of metabolites was published by Pauling in 1971 [7], before the pioneering 

work of Nicholson and Sadler in the early 1980s [8,9], and Willmitzer in 1987 [10]. 

Metabolic profiling now includes the measurement of a range of biofluids, including blood plasma 

and serum, saliva, urine, knee-joint synovial fluid, semen and cerebrospinal fluid [11]. Indeed, 

biological media will vary in suitability for each disease/condition investigated, with a wide range 

and high volume of metabolic data being extracted from each [12]. For example, common high-field 

(HF) NMR metabolomics studies performed at operating frequencies of 600 MHz and above can 

detect more than 150 metabolites in human urine, and quantify almost 70 metabolites in human blood 

serum [3]. Moreover, with these practices becoming commonplace, tools and repositories such as the 

Human Metabolome database (HMDB) [13] and Metaboanalyst [14] have been developed to serve 

the –omics community. 

With the rapidly expanding functional improvements in both NMR and MS techniques, additional 

avenues for the incorporation of metabolite profiling in medicine have arisen [15], based on 

miniaturization of these technologies [16], biomarker discovery [17], and prognostic monitoring [18]. 

Although MS and NMR are both considered standard techniques for metabolomics and 

metabonomics studies [19], this investigation will focus on the latter, and more specifically, low-field 

(LF) compact, or mobile, benchtop NMR facilities. In general, these instruments operate at 

frequencies below 100 MHz, and are based on permanent magnets as opposed to the large, HF 

superconducting magnets commonly found in analytical characterization suites [20]. These facilities 

operating at LF suffer from the same issues of sensitivity which plagued early designs of NMR 

spectrometers [21]; however, with the employment of approaches such as solvent suppression [22], 

and magnet arrays [23], it is possible to simultaneously observe and monitor 20 or more metabolites 

in saliva and urine at LF, as demonstrated here for the first time. Although this limits the detection 

capabilities of NMR when compared to those of larger, high-field instruments, the advantages of 

more compact, mobile NMR instruments incorporating applications of chemometric/metabolomics 

approaches to the multivariate analysis of complex mixtures, have been demonstrated in fields such 

as materials science, [24] forensic chemistry, [25] chemical education [26] and biomedical sciences. 

Herein, we present an updated protocol for the analysis of biofluids through compact, benchtop 

NMR measurements. Comprehensive protocols for metabolite measurement and profiling are 

currently available, and these rely on HF NMR or LC/MS techniques, such as that described in the 

pioneering works of Nicholson et al [27]. We describe a complete procedural development for the 

analysis of biofluids by LF NMR analysis, including validation and quantification experiments, 

experimental guidelines, and metabolomics data analysis, and these are experimentally 

demonstrated by an appropriate example based in the area of diabetes. 
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2.0 Materials and Reagents 

 

All materials were purchased from Sigma-Aldrich Ltd. (UK) unless otherwise stated. 5-mm Diameter 

NMR tubes were purchased from Norell. Sodium phosphate monobasic (99%) for analysis 

(anhydrous) and sodium phosphate, dibasic, heptahydrate 99%+ for analysis were purchased from 

Acros Organics, Fisher Scientific, (UK). Eppendorf micropipettes and tips were purchased from 

Eppendorf (UK), and sterile universal containers were purchased from Starlab Ltd. (UK).  

 

3.0 Equipment 

 

60 MHz Magritek Spinsolve Benchtop NMR spectrometer (similar instruments may be employed: 

Pulsar from Oxford Instruments, NMReady from Nanalysis, and PicoSpin from ThermoFisher 

Scientific). A Bruker 400 MHz Avance-I NMr spectrometer fitted with a Quadruple nucleus probe (A 

similar spectrometer can be utilised: JEOL) / Centrifuge / Rotamixer. 

 

 

3.1 Sample acquisition 

 

Samples were inserted into the instrument manually with an approximate acquisition period of 10 

min. However, with recent advancements, automation is now a possibility within benchtop 

instrumentation through the use of a robotic arm autosampler. This allows for a larger number of 

samples to be prepared, and a reduction in commonplace onerous hands-on user periods between 

sampling. 

 

Samples were acquired on a 60 MHz Magritek Spinsolve Ultra Benchtop system (Leicester School of 

Pharmacy, De Montfort University, Leicester UK). The instrument gives the option to shim to sample 

or shim to a standard 10%/90% D2O/H2O solution. Samples should ideally be acquired at a constant 

ambient temperature, i.e. between 18-30°C, and a magnet temperature of 18-30°C. Shimming to 

sample optimises resolution within a single minute, and therefore is recommended, but excellent 

results are achieved with the default shim settings. Both urine and saliva samples are dominated by 

a large water signal at ~4.8 ppm in 1H NMR spectra; these require a preliminary 1D proton spectrum 

to be acquired (~10 seconds), in order to identify the exact position of this resonance. This intense 

water signal must be sufficiently suppressed in order to explore the dynamic range of metabolites, 

therefore identifying the signal (δ = ~4.80 ppm) and inputting the exact resonance into the water 

suppression sequence optimises signal-to-noise and significantly reduces signal overlap. 

Appropriate repetition times between scans are determined using a T1 experiment on the sample in 

order for the optimum relaxation time to be determined (5*T1). Signal-to-noise ratios can be improved 

by increasing the number of scans, scaling with a factor to √2, i.e. quadrupling the number of scans 

will result in a doubling of the signal-to-noise ratio. Spectra were acquired using a 1D PRESAT 

sequence to allow for efficient saturation of the water signal, without perturbing the remaining 

signals in the spectrum. The parameters used for these analyses are as follow: 64 scans, an acquisition 

time of 6.4 seconds, a repetition time of 10 seconds and a pulse angle of 90o. CPMG pulse sequences 
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are recommended for plasma samples. The option is provided for these pulse sequences to be scripted 

and therefore full automation is possible.   

High-field spectra of urine samples were also acquired using a Bruker Avance-I 400 MHz NMR 

(Leicester School of Pharmacy, De Montfort University, Leicester, UK) spectrometer operating at a 

frequency of 399.93MHz. The samples were analysed using the noesygppr1d pulse sequence in order 

to suppress the water signal (δ = ~4.80 ppm) in the urinary samples with irradiation at the water 

frequency during the recycle and mixing time delays. The free induction decay (FID) was acquired 

with 32K data points using 128 scans and 2 dummy scans, and 3 µs 1H pulses, over a sweep width of 

4,844 Hz (12.1 ppm) and a receiver gain automatically adjusted to each sample.  

 

4.0 60 MHz Spectrometer Biomarker Validation 

 

4.1 Calibration 

 

Specific calibration samples of biomolecules relating to diabetes chemopathology were prepared at 

various concentrations including 1.00-400.00 mmol./L (and 1.00 mol./L), in HPLC-Grade water. For 

selected metabolites, concentration ranges of 15-800 µM were typically employed. Samples contained 

50 µl of 0.05% (w/v) sodium azide, 50 µl of D2O containing 0.05% (w/v) sodium 3-

(trimethylsilyl)[2,2,3,3-d4] propionate (TSP), 50 µl of 1.00 M phosphate buffer, and 500 µl of analyte. 

This mixture was then rotamixed and added to new 5-mm NMR tubes ready for analysis. 2H2O 

containing TSP was used in this case, since sample spectra were acquired on both the 400 and 60 MHz 

instruments. For the benchtop instrument employed here, 2H2O is not required as a field-frequency 

lock solvent. However, as we sought to compare the datasets acquired from both 60 and 400 MHz 

instruments, 2H2O was added to facilitate this. TSP is an appropriate internal standard for 

quantification, (∂ = 0.00 ppm); therefore it does not interfere with other signals. Sodium azide is added 

to suppress bacterial growth during periods of sample preparation and storage. Phosphate buffer is 

used to maintain a constant pH value in order to avoid pH-mediated signal shifts: pH 7.00 or 7.40 is 

recommended [28]. The purpose of the calibration curve is for analytical quantification, and also to 

determine the limit of detection (LOD); this represents a resonance intensity which is 3 times the 

background noise value, and the limit of quantification (LOQ), which is derived from a ratio of 10 

times this noise level. 

 

 

5.0 60 MHz Benchtop Spectrometer Protocol: Biofluid Analysis Recommendations 

 

[1] Experimental Design and Research Ethics Approval 

Prior to sample collection, ethical factors and experimental design should be carefully considered. 

All samples in our example study were collected with informed consent and approved by the 

appropriate Research Ethics Committee, specifically the Faculty of Health and Life Sciences Research 

Ethics Committee, De Montfort University, Leicester, UK (reference no. 1936). All participants were 

primarily provided with a participant information sheets (PISs), and were then required to sign a 

project consent form in the presence of a researcher witness. The PIS clearly informed those recruited 
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that since their participation was voluntary, they had the freedom to withdraw from the investigation 

at any stage of its progress. Essentially, all ethics considerations were in accord with those of the 

Declaration of Helsinki of 1975 (revised in 1983).  

 

A pre-established experimental design is crucial prior to starting sample collection, since factors such 

as age, sex, BMI, fasting, exercise, stress, drug intake and supplements all affect the metabolome. 

Samples can be collected over a period of time to monitor the pharmacokinetics and metabolism of 

drugs, and samples may be collected randomly, or under pre-fasted or non-fasted conditions. 

Essentially, the fewer lateral variables available, the more precise the study of the metabolome 

becomes for that particular disease manifestation. Validation of specific markers includes the 

performance of larger trials, and/or repetition of the trial by a different laboratory.  

 

Contradictions in metabolomics experiments may commonly arise from experimental error, caused 

primarily from the high turnover rate of metabolites in terms of stability, solubility and volatility. 

Therefore, experimental design is critical for preparation of the experiment itself. Repeat freeze/thaw 

cycles should be avoided for all sample types [15], and factors such as maintaining samples at room 

temperature for a long period of time should be kept to a minimum. Buffering procedures should be 

kept uniform. It is also important to reduce the number of experimental steps, limit sample handling, 

process samples rapidly, maintain samples at a cold or frozen state prior to analysis, and analyse as 

soon as possible thereafter.  

 

[2] Sample Collection and Sample Storage 

Sample preparation can be automated or manually performed. Automation of samples involves a 

barcoding system which ensures participant anonymity in such studies. Robotic processing of the 

samples is also possible, allowing for samples to be prepared and analysed in bulk quantities. This 

increases productivity, but more importantly displays applicability and viability in a point-of-care 

setting. It is important to define and follow experimental design and Standard Operational 

Procedures (SOPs) in order to avoid erroneous results.    

 

Urine 

 

Participants should fast for a 12-hour period prior to providing a sample, since diet is known to affect 

the urinary metabolome, for example a higher intake of fruit leads to elevations in rhamnitol, 4-

hydroxyhippurate, tartarate, hippurate and glycolate in urine [29]. Urine samples should be collected 

in sterile, plastic universal containers. Urine specimens should be transported to the laboratory on 

ice, and then centrifuged immediately (3,500 rpm at 4°C for 15 min.). The supernatants are then stored 

at -80°C prior to analysis, although temperatures below -25°C are usually adequate [30]. 

 

Saliva   

 

Volunteers should fast for a 12-hour period prior to providing a sample, and it is preferable that 

participants provide samples immediately after awakening in the morning. Participants should 
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refrain from activities such as smoking, eating, drinking, brushing teeth etc. during the period 

between waking and sampling, in order to avoid analytical interference from external activities 

[31,32]. Saliva samples should be collected in sterile, plastic, universal containers. Specimens should 

be transported to the laboratory on ice and then centrifuged immediately (3,500 rpm for 15 min.) to 

remove cells and debris. The supernatants are then stored at -80°C prior to analysis.  

 

Blood Plasma/Serum 

 

Blood should be collected following a 12-hour fasting period. Blood samples are collected by a fully 

trained phlebotomist via venepuncture. For plasma, lithium heparin tubes should be used for 

collection to avoid analytical complications arising from the use of tubes containing EDTA or citrate 

anticoagulants. EDTA or citrate present in collection tubes will not only give rise to interfering 

resonances themselves, but will also chelate metal ions, i.e. Mg2+ and Ca2+, which themselves generate 

interfering signals in the 1H NMR spectra acquired; those of the Ca2+-EDTA and Mg2+-EDTA 

complexes, which are distinct from those of EDTA itself in view of a slow exchange of this chelator 

on the NMR timescale. However, often it is preferable to allow the blood to clot and isolate serum 

samples therefrom via a simple centrifugation step. Samples should be immediately centrifuged at 

4°C, 4,300 rpm for 15 min. Serum and plasma samples are then stored at -80°C prior to analysis.  

 

[3] Sample Preparation  

 

Biofluid samples are thawed at ambient temperature and then immediately prepared. Preparation 

for the test set of samples described herein involved centrifuging 500 µl volumes of sample (plasma, 

serum, urine or saliva) and removing 450 µl supernatant for analysis. A 50 µl aliquot of phosphate 

buffer at pH 7.00 (1.00 mol./L) was added to the supernatant, which contained 0.05% (w/v) sodium 

azide (prepared in HPLC-grade water), and then 50 µl of 2H2O, also containing 0.05% (w/v) TSP 

(Sigma-Aldrich, UK), was then added to the solution, so that the final v/v content of this deuterated 

solvent was 10%. The final added TSP concentration for these mixtures was therefore 264 µmol./L. 

Exceptionally for plasma and serum samples, and also other high protein content biofluids such as 

knee-joint synovial fluid, the TSP singlet resonance is substantially broadened in view of its binding 

to proteins therein, and hence is best avoided (although it may be included as a standard solution 

placed in a capillary insert within an NMR tube). Therefore, only 2H2O was added in this case. This 

mixture was then rotamixed and transferred to newly-purchased NMR tubes ready for analysis.  

 

 

[4] Sample acquisition 

 

Please refer to recommended acquisition parameters in section 4.2.  

 

[5] Preprocessing 
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A variety of software modules can be used for the essential preprocessing of bioanalytical 1H NMR 

data prior to multivariate metabolomics analysis: Mestranova, JEOL Delta, Bruker Topspin 4.0 and ACD 

Labs 12.0. Free induction decays (FIDs) acquired by such instrumentation can be automatically 

preprocessed, including a correction of linewidth (apodisation), Fourier transformation, phase 

correction, baseline correction and data alignment. Fourier transformation is a mathematical process 

which converts the Free Induction Decay (FID) time functions into frequency ones, which yield the 

commonly observed format of NMR spectra where, depending on operating frequency, each signal 

is resolved in view of their differing chemical shift values. This allows for a comparison between a 60 

and 400 MHz spectra. In this format, further preprocessing strategies can be applied to optimise the 

quality of acquired spectra.  

 

Preferably, signals should be as symmetrical as possible, with a consistent baseline of ~ 0, and have 

clear, defined and narrow line shapes. Baseline and phase corrections can be manipulated manually 

for more precise corrections, or automatically using predefined coefficient parameters. Baseline 

correction allows for manipulation of the spectral baseline, adjusting the entire spectrum to start at a 

set value of 0. Without baseline corrections, data may show a non-uniform signal area when 

integrated, which is attributable to fluctuations in the baseline and does not arise from the 

concentration of particular metabolites present in samples investigated. Phase correction allows for 

the manipulation of the spectrum to reduce the effect of phase shifting. A poorly adjusted phase 

correction can result in the absorption signal dipping beneath the spectral baseline, which can lead 

to the erroneous integration of negative resonance areas. Using a phase correction, the signal region 

can be manipulated from its negative absorption into the desired pure absorption signal. Apodisation 

involves multiplying the free induction decay pointwise by a defined function in order to improve 

the line shape within the spectrum. A Gaussian function is commonly used in view of its ability to 

improve the resolution of signals by narrowing their linewidths; however this also increases the 

spectral noise intensity. On occasion, it is prudent to apply a Lorentzian function to improve the 

signal-to-noise ratio, at a cost of broadening the signals and hence reducing resolution and sine bell 

functions. The weakness of apodisation occurs when applying a correctional function, causing the 

resonance to broaden; as such, deformation of signals may occur, potentially leading to the 

misidentification of multiplets. 

 

[6] Metabolite assignment 

 

TSP acts as a reference signal (∂ = 0.00 ppm) for aqueous biofluid analyte samples in order to ensure 

that metabolites can be chemical shift-aligned accordingly, although alternative or study-specific 

NMR reference agents, which may also serve as quantitative internal standards, may also be 

employed. Databases for reference samples include the Human Metabolome Database (HMDB) [13], 

Madison metabolomics consortium database (MMCD) [33], and COLMAR metabolomics web server [34], 

which aid metabolite assignments. Further experiments for structural elucidation include the use of 

two-dimensional (2D) techniques such as COSY and TOCSY strategies, both of which are available 

on LF, benchtop instruments. Essentially, 2D techniques can show 1H-1H and where appropriate, 1H-

13C correlations using a grid style map so that investigators may readily determine intramolecular 
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connectivities between nuclei of interest therein. Limitations of databases for authentic biomolecule 

reference compounds include metabolites predominantly determined at 500-600 MHz operating 

frequencies, which could lead to problems interpreting spectral data at LF. However, the use of NMR-

SIM and Guided Ideographic Spin System Model Optimisation (GISSMO) software strategies enables 

structural calculations, i.e. simulations of spins at different magnetic fields, and can also afford 

valuable information on both individual molecules and relatively complex mixtures [35,36]. Thus, a 

combination of databases and simulations are the most appropriate approach for structural 

elucidation strategies using LF instrumentation.  

 

[7] Integration and data manipulation  

 

Manual bucketing requires the user to observe signals and bucket accordingly; intelligent bucketing 

is automated and buckets integral datasets according to programming software and the parameters 

provided, using an algorithm to integrate selected bins. Manual bucketing was performed in the 

experiments used as examples herein. Since 1H NMR shifts are critically dependent on temperature, 

pH and ionic strength, the bucketing step must be carefully performed. Hence, manual integration 

ensures that only one metabolite signal is incorporated into its corresponding bucket, although there 

are obviously limitations with may be achieved from this with LF benchtop NMR profiles. Uniform 

binning was not performed, since this can lead to issues such as signal splitting between and the 

inclusion of > 1 signal within single buckets.  

The buckets were then imported into MS Excel in order to create a 1H NMR data matrix, and data 

were normalised by constant sum accordingly. Any buckets attributed to baseline noise, water or 

other interfering agents were eliminated prior to analysis. Normalisation was also performed by the 

expression of resonance intensities relative to that of the internal reference (TSP), in order to calculate 

urinary metabolite concentrations. However, for diabetic urine samples, it was not possible to 

normalise biomolecule concentrations to those of urinary creatinine at a LF benchtop spectrometer 

operating frequency of 60 MHz, since the high glucose levels therein significantly overlapped with 

creatinine’s characteristic >N-CH3 and -CH2- function resonances, unlike the 1H NMR profiles 

obtained on 400 MHz facilities.  

Data filtering was performed in order to primarily remove variables which are unlikely to be of value 

to the modelling of 1H NMR datasets. 

 

[8] Reproducibility 

 

To ensure results are reproducible and reliable, within-assay run and between-assay run precisions 

should be assessed. This is usually performed via the computation of their corresponding 

components of variance in a pre-designed random effects or mixed model analysis of 

variance/covariance (ANOVA/ANCOVA) experimental design. Indeed, this ensures that the 

metabolites being monitored are consistently reported, and avoids any batch-related errors. 
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[9] Univariate and Multivariate Statistical Analyses 

 

Statistical analysis can be performed using XLSTAT, Metaboanalyst 4.0, ROCCET, MetATT, Statistica, 

Python and R software packages, amongst others. Data can be analysed in a univariate or multivariate 

manner, depending on whether one or more metabolites are targeted. Univariately, each metabolite 

can be compared using standard deviation, box-and-whisker plots, Student’s t-tests and ANOVA or 

ANCOVA to assess any differences found. The ‘step-down’ Holm model of the Bonferroni correction, 

or corrections for false discovery rate (FDR) for the univariate analysis of multidimensional datasets 

should be adhered to. Multivariate data, which is acquired from 1H NMR metabolomic studies, and 

considers many metabolites simultaneously, can be analysed using statistical techniques such as 

Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), 

Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), Self-Organising Maps (SOMs) 

and/or Correlated Component Regression (CCR), for example. 

 

PCA is an unsupervised technique which helps to detect any statistical ‘outliers’ in  datasets, and 

following their removal, PC clusterings can be explored for each classification group, if indeed there 

are any distinguishing metabolic features present. PLS-DA, however, is a supervised technique 

which is able to seek and evaluate any significant distinctions between datasets using permutation 

and further testings. PLS-DA is able to distinguish between metabolites causing the most separation 

between the datasets, and these are statistically validated and cross-validated in order to confirm that 

the testing performed is sound. Moreover, the CCR technique has the ability to generate reliable 

metabolomics predictions from datasets in which the number of correlated explanatory metabolite 

variables (P) is greater or much greater than the sample size (n), irrespective of any multicollinearities 

between these predictor variables. 

Validation of these statistical techniques can be performed using the leave-one-out cross-validation 

(LOOCV) approach, the Q2 statistic and area under the receiver operating characteristic (AUROC) 

curve. AUROC describes the validity of a model based on sensitivity and specificity, i.e. the extent of 

objects correctly identified within a model, and that of samples correctly classified as ‘foreign’, 

respectively. A plot of sensitivity vs. (1-specificity), i.e. true positives vs. false positives, is described 

as a ROC curve, which extends to a multidimensional hypersurface should there be multiple classes 

considered. The area under the ROC curve (or AUROC value) acts as a measure of class separation, 

where a value of unity corresponds to optimal separation between two classes of classification, whilst 

a value of 0.50 indicates no separation whatsoever [37]. 

 

[10] Computational intelligence (Neural Networks) 

 

Computational intelligence techniques (CITs), including support vector machines (SVMs), 

optimization algorithms (genetic algorithms, Ants) and machine-learning algorithms (supervised 

and unsupervised neural networks), can be employed for the analysis of multivariate (MV) 1H NMR 

datasets acquired in order to recognize metabolic classification patterns for diseases, as well as 
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disease severity indices for each of several biofluids investigated, i.e. as non-probabilistic binary 

classifiers. Optimization algorithms can be used to select the most relevant (discriminatory) 

biomarker variables from the datasets for use in constructing a machine-learning classification model. 

Random forest (RF) techniques can also be employed for classification and variable selection, in 

which data is divided into training and test sets. The performance is assessed using an out-of-the-bag 

(OOB) error value, and the accuracy, specificity and sensitivity can be obtained from the test set. Self-

organising maps (SOMs) can explore self-similarities between spectra and hence clusterings that arise 

from each source of variation involved. The RF model can be repeated multiple times in order to 

prevent bias arising from the random sub-sampling of the training and test sets. Unsupervised 

learning methods can also be employed in order to perform data-mining and hence uncover any 

‘hidden’ patterns. 

 

[11] Pathway Identification  

 

The Kyoto Encyclopedia of Gene and Genomics (KEGG), MetaCyc and HMDB each aim to aid in ascribing 

significant biomolecular modifications identified to imbalances of or perturbations to established 

metabolic pathways, and can also identify any linkages between cycles. Upregulation and 

downregulation of cycles can be analysed using these platforms which enable areas of the 

body/cell/organism to be assessed metabolically. Metaboanalyst also interfaces with these databases. 

Moreover, the connectivities of biofluid metabolites that potentially distinguish between diseases and 

corresponding healthy controls, and also disease severity classification groups, can, in principle, be 

explored through the Metabolomics software module of Ingenuity Pathways Analysis (IPA, Ingenuity 

Systems, www.ingenuity.com). Indeed, canonical pathways analysis can be employed to identify 

those that are the most significantly different between the above disease or severity group 

classifications. 

 

Case Study: Urinary Profiles of Fasted Diabetic Patients with Elevated Glucose levels 

 

As an example of the above protocol, a case study was performed monitoring glucose levels in type 

2 diabetic urine samples, together with additional metabolites which parallel such a marked 

upregulation in patients with this conditions. Samples were collected and acquired using the above 

protocols and parameters. 
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Figure 1: 1H NMR Diabetic urinary profile acquired on a 60 MHz benchtop instrument ,highlighting 

a clearly distinguishable β-Glucose-CH resonance (d, ∂ = 4.63 ppm),  in addition to the α-Glucose-

CH one located at ∂ = 5.22 ppm (d), and all further  bulk glucose ring structure protons within the 

3.20-3.95 ppm chemical shift range for both anomers. Moreover, resonances arsing from a range of 

further metabolites such as hippurate-CH, indoxyl sulphate-CH, urea-NH2, creatinine-CH3/-CH2, 

creatine-CH3/-CH2, citrate-CH2A/B, glutamine-CH2, acetoin-CH3, acetate-CH3, lactate-CH3, 3-

aminoisobutyrate-CH3, alanine-CH3,, isoleucine-CH3 and leucine-CH3 are also visible in this 

spectrum. Chemical shifts were referenced to internal TSP (∂ = 0.00 ppm). Abbreviations: 3-D-HB, 3-

D-hydroxybutyrate.  

 

 

 

 

 

 

The α-glucose anomer C1-H signal at ∂ = 5.23 ppm (d) was detected and integrated, and its intensity 

expressed relative to that of TSP (s, δ = 0.00 ppm). This particular resonance was employed for 

quantification purposes since urinary 1H NMR profiles contain many overlapping signals within the 

crowded 3.00-4.00 ppm range where its C2-H to C6-H proton resonances are located, and in view of 

their poor resolution at 60 MHz, this was selected as the optimal resonance to monitor in  diabetic 

and prospectively diabetic patients. Moreover, β-glucose’s C1-H resonance (δ = 4.63 ppm) is too 
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closely overlapped with the residual water signal for quantification purposes (Figure 1). However, it 

should be noted that glucose’s α-anomer only represents 36% of the total glucose concentration 

present (the remaining 64% being the β-anomer), and therefore the factor 100/36% (= 2.78) should be 

employed for converting α-anomer concentrations to total glucose ones. The limit of quantification 

for glucose was (3.60 mmol/L), and the limit of detection of glucose was (2.88 mmol/L). The 

calibration curve exhibited a clear linear relationship (r = 0.9911). The limitations of monitoring this 

α-glucose resonance using LF benchtop NMR analysis is ascribable to potential interference of the 

closely-located residual water signal. However, we successfully detected and created calibrations for 

other biomolecules at lower concentrations through optimized experiments, such as acetone, which 

we found had a LOQ value of ≤ 25 µmol./L using a 60 MHz benchtop facility.  

 

 

Figure 2: Calibration curve plot of the α-Glucose:TSP resonance integral ratio vs. total glucose 

concentration in phosphate-buffered aqueous solutions (pH 7.00) containing 10% (v/v) 2H2O. Glucose 

concentrations ranged from 10.0-600.0 mmol./L, and that of the TSP internal standard was maintained 

at 8% (v/v) 2H2O TSP concentration 0.05% w/v (223 µmol./L final concentration ).  

 

 

The α-glucose signal is easily identified in the 1H NMR spectral profiles of urine samples collected 

from non-rigorously controlled type 2 diabetic patients. However, there is a small level of overlap 

between the water signal and the α-glucose signal, a phenomenon complicating integration and 

hence quantification of this key biomarker at concentrations < 8.00 mmol./L. Optimisation was 

attempted by moving the driver signal to ∂ = 4.80 ppm to ensure the best clarity between these two 

signals; however, there was still a residual level of overlap. Despite these problems, we found that 

integration of glucose’s α-anomeric proton resonance (δ = 5.26 ppm) was affected negligibly if the 

urinary concentration of this anomer was ≥ 2.8 mmol./L (corresponding to a total glucose level of ≥ 

ca. 8 mmol./L).  To date, urinary profiles have not previously been acquired on LF, benchtop NMR 

systems for metabolomics analysis such as in this example. Indeed, additional 1H NMR signals in 

addition to those of glucose and assignable in LF 60 MHz spectra may also be employed for 
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metabolomics analysis, notably ketone bodies which arise from the use of lipid sources as a fuel in 

patients with poorly controlled diabetes. Such a multivariate metabolomics analysis of our LF 60 

MHz 1H NMR dataset was therefore performed, and results arising thereform are outlined below.  

 

 

Figure 3: 2D 1H-1H COSY NMR diabetic urinary profile acquired on a 60 MHz instrument 

highlighting connectivities between α-Glucose C1-H and C2-H resonances at ∂ = 5.22 ppm (d) and 

3.52 ppm (dd) respectively (labelled in red), and correspondingly those of the β-anomer at δ = 4.63 (d) 

and 3.23 ppm (dd) respectively (labelled in green. A further 1H-1H COSY connectivity between signals 

located at δ = 3.06 and 4.08 ppm is also clearly visible.   

 

Using 2D 1H-1H COSY analysis, the identity of glucose in diabetic urine samples was readily 

confirmed, since this revealed connectivities between the C1-H and C2-H resonances of both its 

anomeric forms. Moreover, further glucose and other biomolecule connectivities were visible. This 

demonstrates the usefulness of 2D 1H-1H COSY analysis of human urine as a confirmatory tool for 

LF benchtop NMR-based metabolomics applications.  

 

Both univariate and multivariate analysis of the LF benchtop 60 MHz NMR dataset revealed clear 

and highly statistically significant differences between of urine samples collected from a cohort of 

diabetic patients (n = 10) and those from healthy controls. The dataset acquired, comprising of 27 

manually-selected and electronically integrated buckets ranging from 1.03-8.52 ppm, was normalized 

to the TSP internal standard (of final concentration 264 µmol./L), and then potential predictor 
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variables within chemical shift bucket columns were generalized-logarithmically (glog)-transformed, 

and Pareto-scaled (Pareto-scaling involves subtraction of the mean bucket value from all bucket 

observations followed by their division by the square root of that variable’s standard deviation, so 

that each one has a mean value of 0 and a variance not equivalent but similar to unity.  

 

Primarily, 27 univariate two-sample t tests were performed, and when corrected for FDRs, these 

revealed that there were very highly significant increases in the urinary concentrations of a range of 

biomolecules in type 2 diabetic patients. Key biomarkers detected using the LF 1H NMR technique 

were: citrate, i.e. -CH2CO2- functions within the relatively spectroscopically-clear 2.53-2.70 ppm 

bucket (p = 1.87 x 10-6); N-acetyl storage compounds, i.e. N-acetylsugar- and N-acetylamino acid-

NHCOCH3 function protons in the relatively clear 1.99-2.13 ppm bucket (p = 1.87 x 10-6); lactate as its 

-CH3 group protons in the 1.25-1.34 ppm region (p = 2.15 x 10-6), which has potential interferences 

arising from threonine- and acetoin-CH3 functions; alanine as its -CH3 function doublet resonance at 

1.48 ppm with minimal potential interferences; creatinine, i.e. as its >N-CH3 proton singlet within the 

2.98-3.14 ppm bucket (p = 5.0 x 10-6), with potential interferences arising from creatine-CH3, lysine-ε-

CH2 and γ-aminobutyrate’s γ-CH2 functions, and also β-glucose’s C3-H 3.21 ppm signal; acetone as 

its -CH3 groups’ singlet resonance within the 2.14-2.29 ppm bucket (p = 5.53 x 10-6), which has 

conceivable interferences from glutamine-C3-CH2 and acetoin-CH3 proton signals; acetate as its -CH3 

function in the 1.87-1.99 ppm bucket (p = 4.53 x 10-5), which has a potential interference from the 

thymine-CH3 resonance, although it should be noted that the latter metabolite has a substantially 

lower urinary concentration than the former; 3-D-hydroxybutyrate within the 1.14-1.25 ppm bucket 

(p = 4.55 x 10-5), with potential interferences arising from 3-aminoisobutyrate-CH3 and L-fucose-CH3 

function resonances; indoxyl sulphate in the 7.15-7.33 ppm bucket (p = 6.27 x 10-3), with a potential 

interference from tyrosine’s C2/C6 aromatic proton doublet signal; and hippurate as its signal 

localized within the 7.55-7.71 ppm bucket, the only potential interfering agent being 1-

methylhistidine’s C4 imidazole ring proton singlet (p = 0.037). Most importantly, glucose, which was 

determined firstly as a composite bulk carbohydrate ring proton (i.e. C2-H to C6-H) bucket (δ = 3.14-

3.99 ppm, p = 2.15 x 10-6), and secondly as the more specific alpha-anomeric proton (i.e. α-C1-H) 

resonance bucket (δ = 5.17-5.36 ppm, p = 0.038) was also found to be a key biomarker, as expected. 

However, as noted above, a complication of the α-C1-H glucose signal is its small fractional overlap 

with the residual water signal at 60 MHz operating signal. Although the bulk 3.14-3.99 ppm glucose 

sugar ring proton bucket intensity can be expected to be influenced by those of a range of further 

urinary metabolite signals also present within this spectral region, we found that when glucose 

concentrations were > 10 mmol./L, as indeed it was in all 6 of the type 2 diabetic urine samples 

explored which had detectable glucose levels (it was non-1H NMR-detectable in 4/10 samples 

investigated), such interferences were limited in view of the much lower intensities of these further 

biomolecule signals within this broad spectral region (such as those arising from choline, betaine, 

trimethylamine N-oxide, taurine, glycine, creatine, glycolate, guanadinoacetate, etc.) than those of 

the relatively intense α- and β-glucose anomers (i.e. C2-H to C6-H resonances combined). 

 

As an example of multivariate analysis, OPLS-DA was utilized to explore the ability of this strategy 

to distinguish between the type 2 diabetic and healthy control urinary 1H NMR profiles acquired. 
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Figure 4 shows an OPLS-DA scores plot with associated 95% confidence ellipses, and this 

demonstrates clearly distinctive clusterings for these two groups of participants. In order to evaluate 

the performance of this multivariate classification system, a 10-fold cross-validation procedure was 

applied. R2X, R2Y and Q2 values obtained from this analytical model were 0.522, 0.674 and 0.634 

respectively, and the Q2 value obtained was highly significant (values of this index ≥ 0.40 are routinely 

employed as a cut-off for this model, as previously described by Worley and Powers [38]). Moreover, 

a permutation test conducted with 2,000 permutations gave p values of < 5 x 10-4 for both Q2 and R2Y. 

Variable importance in projection (VIP) scores and S-plots were utilized in order to identify the most 

important 1H NMR bucket variables for discrimination between healthy and type 2 diabetic 

participants, and those assigned to methylsuccinate (upregulated) and formate (downregulated) 

were also found to serve as key biomarker features of this discrimination, in addition to the majority 

of those detected via the univariate t test analysis described above (including glucose itself, the ketone 

bodies acetoacetate, acetone and 3-D-hydroxybutyrate, acetate, N-acetyl storage compounds, citrate, 

creatinine and lactate). 
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Figure 4. OPLS-DA scores plot of orthogonal T score vs. T score demonstrating a clear metabolomics-

based distinction between type 2 diabetic patients and healthy controls. 95% confidence ellipsoids 

are also shown. The type 2 diabetic patient cluster sample T score values (+2.5 to +6) are all greater 

than those of the control cohort (-6 to +1).    

 

Secondly, ROC curves produced via Monte Carlo Cross-Validation (MCCV) and based on the SVM 

strategy demonstrated that the overall mean classification success rate was 97.5% for this model.The 

most effective SVM models were those which incorporated the total number of 10 ISB intensity 

features, the AUROC value obtained being 0.975 (95% confidence intervals 0.81-1.00), as shown in 

Figure 5. Therefore, with the above overall classification reliability and AUROC values, this model 

applied served as one with a highly effective discriminatory ability (these values are considered 

effective, highly discriminatory and exceptional for models when they are > 0.70, 0.87-0.90 and > 

0.90 respectively [39]. 

 

Key discriminatory biomarker variables identified from this form of multivariate analysis were citrate 

> 3-D-hydroxybutyrate > hippurate > N-acetyl storage compounds > alanine > total bulk glucose (C2-

H to C6-H resonances only) > lactate > α-glucose (C1-H resonance only) > 3-(3-hydroxyphenyl)-3-

hydroxypropanoate (C1/C6-CH resonances) > indoxyl sulphate > urea in that  order of effectiveness.    

 

 

 

 

 

 

 

 

(a) 
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(b) 
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Figure 5. (a) ROC curve (plot of true positive vs. false positive rates) with an AUROC value of 0.975 

obtained from the SVM model building system explored with 10 out of a possible 27 variables. ROC 

curves were developed via Monte Carlo Cross-Validation (MCCV) involving a balanced sub-

sampling processes involving application of an SVM model builder. The inset shows mean AUC 

values estimated for increasing sampling sizes, together with 95% confidence intervals for these 

values. (b) Probability view arising from a balanced sub-sampling approach for SVM model 

training (predicted class probabilities for each sample employed the most effective AUC-based 

classification system).  

 

Finally, a Random Forest analysis performed with 1,000 trees and 7 distinguishing variables per node 

successfully classified 9 out of 10 type 2 diabetic samples, and 12 out of 14 healthy control ones, on 

the basis of their urinary 1H NMR metabolic profiles, i.e. an overall classification accuracy of 0.875 

(data not shown).  
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Figure 6. Diabetic urinary 1H NMR profile acquired at 60 (red) and 400 MHz (blue) operating 

frequencies. Assignments: 1; TSP 2; Citrate-CH2A/B 3; creatinine/creatine >N-CH3; 4; Glucose-C2-H 

5; Glucose-C4/C2/C5-CH 6; Glucose-C3/C5/C6 –CH 7; creatinine-CH2 8; β-glucose-C1-H; 9; Water-

OH 10: α-glucose-C1-H.  

 

The difference between the 1H NMR metabolic profiles of urine acquired at 60 and 400 MHz operating 

frequencies for metabolomics analysis is substantial (Figure 6). Indeed, in 1D single-pulse spectra 

acquired at 60 MHz, the -glucose signal is influenced by the residual water signal at concentrations 

< 2.8 mmol./L, and increasingly so with decreasing α-glucose level. Moreover, the difference in 

resolution from 400 MHz to 60 MHz causes significant expansion of multiplet resonances, especially 

complex second-order ones, at the lower operating frequency. This, in turn, gives rise to resonance 

overlap problems at 60 MHz, particularly for complex biofluid spectra. Indeed, this resonance δ value 

expansion would be 400/60 times greater for 60 MHz spectra than it is for 400 MHz ones. For example, 

the ethanol-CH3 function triplet resonance located at δ = 1.19 ppm, which has a J value of 7.07 Hz, 

would wholly encompass 2 x 7.07 Hz/60 Hz = 0.235 ppm of the spectral profile at 60 MHz, but only 2 

x 7.07 Hz/400 Hz = 0.035 ppm at 400 MHz. The more challenging signals to assign include those from 

higher-order multiplets and more highly split first-order ones, such as the lactate C-H quartet 

resonance (δ = 4.13 ppm). 

 

Glucose was clearly 1H NMR-detectable in 6 out of a total of n = 10 type 2 diabetic urine samples at 

an operating frequency of 60 MHz, and integration of the 5.26 ppm α-anomeric proton signal 
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followed by its normalisation to internal TSP provided estimates of total urinary glucose levels in our 

cohort of type 2 diabetic patients. Mean±SEM glucose concentrations were 145±70 mmol./L (range 0-

660 mmol./L). Using a mean urinary creatinine (Cn) concentration of 10.09 mmol./L [40], these 

mean±SEM values convert to 14.4±6.9 mmol./mmol. Cn. These urinary glucose level values concord 

with those previously reported in diabetic patients, as noted in Table 1, although it should be noted 

that these data correspond to type 1 diabetes or diabetic ketosis. This Table also lists mean glucose 

concentrations for healthy control subjects, which vary from 9-40 µmol./mol. Cn for adults, 32 

µmol./mol. Cn for children, 7-144 µmol./mol. Cn for infants, and 15 µmol./mmol. Cn for new-borns. 

 

A paired sample t test found no significant differences between total glucose concentration 

determinations performed on a LF benchtop 60 MHz spectrometer and our more conventional HF 

400 MHz NMR facility (p = 0.079, n = 10). Moreover, there was an excellent correlation between 

determinations made on these two analytical systems (r = 9986).  

 

 

 

 

Disease Age 

Group 

Gender Mean±Error* 

Creatinine-

Normalised 

Concentration  

Range  

 

Reference 

Healthy 

Control 

Adult (> 

18 years 

old) 

healthy 

control 

M/F 36.6 µmol./mmol. 

Cn 

10.3-56.7 

µmol./mmol. 

Cn 

[41] 

Healthy 

Control 

Newborns 

(0-30 days 

old) 

M/F 15.0 µmol./mmol. 

Cn 

0.0-50.0 

µmol./mmol. 

Cn 

[42] 

Healthy 

Control 

Adult (> 

18 years 

old) 

healthy 

control 

M/F 9.0 µmol./mmol. Cn  0.0-19.0 

µmol./mmol. 

Cn 

[42] 

Healthy 

Control 

Adult (> 

18 years 

old) 

healthy 

control 

M/F Unavailable  16.7-111.1 

µmol./mmol. 

Cn 

[43] 

Healthy 

Control 

Adult (> 

18 years 

old) 

M/F 37.5 µmol./mmol. 

Cn (error bars 

unavailable) 

12.5-58.4 

µmol./mmol. 

Cn 

[41] 
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healthy 

control 

Healthy 

Control 

Adult (> 

18 years 

old) 

healthy 

control 

Male 

M 31.1 µmol./mmol. 

Cn 

Unavailable [44] 

Healthy 

Control 

Infant (0-1 

year old) 

 7.0 µmol./mmol. Cn 0.0-15.0 

µmol./mmol. 

Cn  

[42] 

Healthy 

Control 

Adult (> 

18 years 

old) 

healthy 

control 

M/F 25.8±13.8 

µmol./mmol. Cn 

Unavailable [42] 

Healthy 

Control 

Infant (0-1 

year old) 

Female 

F 143.1±399.8 

µmol./mmol. Cn 

Unavailable [45] 

Healthy 

Control 

Children 

(1-13 

years old)  

Unspecified 31.6±16.0 

µmol./mmol. Cn 

Unavailable [13] 

Diabetes Adult (> 

18 years 

old)  

M/F 19.7 mmol./mmol. 

Cn (error bars 

unavailable)  

Unavailable [9] 

Diabetic 

ketosis 

Adult (> 

18 years 

old)  

M/F 79.6 

mmol./mmol.Cn 

68.3-19.9 

mmol./mmol. 

Cn 

[46] 

Type 1 

Diabetes 

Adult (> 

18 years 

old)  

M/F 17.5 mmol./mmol. 

Cn 

0.1-129.9 

mmol./mol.Cn 

[47] 

Eosinophilic 

Esophagitis 

Children 

(1 - 13 

years old) 

 

Unspecified 30.0±27.8 

µmol/mmol. Cn 

 [13] 

Fanconi 

Bickel 

Syndrome 

Children 

(1 - 13 

years old) 

F >5.55 mmol/mmol. 

Cn (error bars 

unavailable) 

 [48] 

 

 

Table 1. Previously reported creatinine (Cn)-normalised urinary glucose concentrations in healthy 

controls and patients with diabetes, eosinophilic esophagitis and Fanconi Bickel syndrome. *Error 

bars unspecified. These data were obtained from the Human Metabolome Database (HMDB) [13].    

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 October 2018                   doi:10.20944/preprints201810.0089.v1

http://dx.doi.org/10.20944/preprints201810.0089.v1


 22 of 30 

 

 

The significance of urinary glucose levels is not only evident in diabetes patients, but also in patients 

with conditions such as eosinophilic esophagitis and Fanconi Bickel Syndrome (Table 1).  Therefore, 

potential applications for using LF-benchtop NMR reach far beyond screening for one disease, a 

metabolic ‘fingerprint’ is able to be formed to successfully diagnose multiple diseases. Moreover, 

monitoring urinary glucose levels is just a single example of what can be achieved using LF NMR 

analysis. Investigations of other biofluids and corresponding metabolites are possible, and therefore 

an abundance of metabolic disturbances may be explored with this novel technique.   

 

 

 

 

6.0 Discussion 

 

Whilst metabolite analysis in intact biofluids by LF NMR spectroscopy is a newly-advanced 

technique, it has the potential to impact on ‘point-of-care’ clinical chemistry diagnosis and 

monitoring, especially with the increasingly rapid development of spectrometers with operating 

frequencies > 60 MHz. In comparison, high-field NMR analysis at operating frequencies of 400-800 

MHz has become a standard probing tool for the multicomponent analysis of complex  biofluids 

collected from humans and other organisms. Indeed, a variety of important biological information 

regarding the molecular nature and concentrations of a wide range of endogenous biomolecules, 

together with exogenous agents present in such fluids, can be obtained from such investigations. 

Moreover, biomedical NMR analysis serves as a virtually non-invasive technique since it often has 

little or no requirement for the pre-treatment of samples, and generally requires only a limited 

knowledge of sample composition prior to analysis. These approaches offer significant potential 

regarding the investigation of metabolic processes, and can be coupled with multidimensional data 

analysis techniques within metabolomics workflows, serving as an extremely powerful means of 

probing, for example, the biochemical basis of human disease aetiology. These investigations can also 

provide substantial diagnostic and/or prognostic disease monitoring information, including the 

identification and validation of reliable biomarker molecules. This combined NMR-based 

metabolomics approach is also readily applicable to the simultaneous analysis of a wide range of 

metabolites in tissue biopsies and cultured cells (either intact via 1H high-resolution magic angle 

spinning (MAS)-NMR-based metabolic profiling strategies, or correspondingly as appropriate 

solution-state extracts), and/or cell culture media.  

 

Here, we have report for the first time the rapid, essentially or completely non-invasive analysis of a 

human biofluid sample (human urine) by a LF 60 MHz benchtop NMR facility. Whilst compact, LF 

NMR analyses of human plasma, serum, and whole blood can reveal trends in disease development 

and prognosis through inspection of longitudinal (T1) and transverse (T2) relaxation times,[49] the 

major purpose of these pilot studies reported herein was to (a) establish whether 60 MHz benchtop 

1H NMR spectra may be reliably employed to detect urinary biomolecules, and to determine their 

concentrations in this biofluid for future diagnostic and prognostic monitoring purposes, despite 
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some inherent resonance overlap phenomena arising from the lower operating frequency involved, 

and (b) provide a protocol ‘blueprint’ for future NMR-based metabolomics strategies available for 

the analysis of biofluids. Since the resonance frequencies of nuclei are dependent on the static 

magnetic field strength, resonances of the same linewidth (in Hz) will appear increasingly broader at 

decreasing field strengths when expressed relative to the overall spectral window range in ppm; as 

noted here, this gives rise to an enhancement of resonance overlap, particularly in spectra obtained 

from complex multianalyte samples such as biofluids and tissue biopsy extracts. 

 

From the protocols and case study described here, a schematic representation has been proposed 

(Figure 7) in order to allow researchers to follow a protocol for the LF benchtop NMR 

spectrometroscopc analysis of biolfuids, and which is combined with multivariate metabolomics 

analysis techniques. This aims to provide full considerations for metabolomics investigations to 

improve uniformity across the field when using LF benchtop NMR analysis, in order to ensure that 

some level of protocol uniformity is maintained. 
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Figure 7. Proposed scheme for biofluid analysis by LF benchtop NMR spectroscopy. Numbers refer 

to sections of the protocol relevant to each respective section of the scheme. 
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7.0 Conclusions 

Biomarkers can serve as powerful predictive indicators of the presence of metabolic diseases, 

together with a myriad of other conditions, and here we have presented, for the first time, the 

potential applications of LF benchtop 1H NMR analysis to the rapid diagnosis of type 2 diabetes in 

human urine samples. Therefore, this technique acts as a sensitive means of monitoring the urinary 

metabolic status of diabetes at ‘point-of-care’ sites, either type 1, type 2 or pre-diabetic conditions, 

together with gestational diabetes. In view of the very large, inconvenient sizes of HF NMR 

instruments, hospitals and laboratories do not tend to use these for the rapid, routine and 

multicomponent analysis for the detection of diseases, but instead may employ such small size LF 

instruments, rendering them suitable for the clinical chemistry analysis of patient samples directly 

on-site at healthcare settings. Herein, we have demonstrated the detection and quantification 

capabilities of LF 60 MHz, H2O-suppressed spectra acquired on such an NMR instrument, which is 

based on a rare earth magnet arranged within a Halbach array. In addition to its small size and 

portability, advantages of the technique regarding the diagnostic and prognostic screening of 

biofluids for selected human diseases include (1) no requirement for expensive deuterated NMR 

solvents for sample preparation purposes for some spectrometers available, which (2) most 

importantly, benefits from ease-of-use, with no requirement for specialist operational staff, and 

which can, at least in principle, detect very low concentrations of biomolecules present in intact 

biofluids within short timescales (less than 15 min). The applications of this technique continue to 

expand, and will likely develop further in the field of disease diagnosis and severity monitoring 

screening. 

 

8.0 Future Perspectives 

 

LF benchtop NMR has potential to be used as a point-of-care diagnostic and prognostic screening 

facility, if suitable protocols and the validation of biomarker analytes as outlined here are adhered to 

in clinical practices. The technique is advantageous in view of the low running costs and lack of 

cryogens required when compared to those of higher resolution, HF facilities commonly found in 

bioanalytical laboratories. Scripting and robotic sampling can ensure full automation of sample 

preparation and acquisition, which could later be linked to artificial intelligence techniques.   

LF benchtop NMR facilities are becoming more sophisticated, enabling multiple solvent suppression 

regimens on samples which have been extracted in different solvent systems, for example. This would 

be particularly applicable to extractions using methanol or chloroform from water-based samples 

subsequent to a lyophilisation procedure. Furthermore, gradients, which are now available on 

benchtop NMR systems, extend the availability of such techniques for further methodologies to be 

developed, such as pure shift, which can assist in the confirmation of signal assignments. 

Further NMR-active nuclei such as 13C can also be readily monitored in both simple and complex 

sample matrices using LF benchtop NMR facilities. However, at present sensitivity for such nuclei is 

poor, although LOD values for 19F are reasonably high. Using techniques such as hyperpolarisation 

could increase the sensitivity of such nuclei, and may be employed adjunctly with this technology.  
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Internal standard in instrument ERETIC (Electronic Reference To access In Vivo Concentrations) has 

emerged to remove the addition of internal standard reference agents completely, and reliance on 

external references such as TSP may become routine in the near future. Issues with internal reference 

standards may arise from their volatility (as in tetramethylsilane, TMS) and potential to bind to 

macromolecules in high protein content biofluids such as blood plasma/serum, factors which 

represent major analytical/bioanalytical disadvantages. The field of applications for these LF NMR 

techniques is substantial, ranging from food technology through to ‘at crime scene site’ forensics, and 

now biomedical imaging in addition to spectroscopy. Whilst miniaturisation of technology has led to 

improvements in the analytical performance of these facilities, improvements in sensitivity, and the 

field strength of the permanent rare earth magnets featured in LF benchtop NMR spectrometers, will 

lead to further advances in the range of applications of these instruments, and their effectiveness 

therein. 
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