

1 *Type of the Paper (Article)*

2 **Investigation of heat and pressure treatments on**
3 **almond protein stability and immunoreactivity after**
4 **simulated human digestion**

5 **Elisabetta De Angelis^{1†}, Simona L. Bavarro^{1†}, Graziana Forte¹, Rosa Pilolli¹, and Linda Monaci^{1*}**

6
7 ¹ Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola
8 122/O, 70126, Bari, Italy; elisabetta.deangelis@ispa.cnr.it; simona.bavarro@ispa.cnr.it; grazianaforte@hotmail.it;
9 rosa.pilolli@ispa.cnr.it; linda.monaci@ ispa.cnr.it

10 * Correspondence: linda.monaci@ispa.cnr.it; Tel.: +39 080 592 9343

11 [†] Equal contributors

12

13

14 **Abstract.** Almond is worldwide consumed and renowned as a valuable healthy food. In spite of this,
15 it is also a potent source of allergenic proteins able to trigger several mild to life-threatening
16 immunoreactions. Food processing proved to alter biochemical characteristics of proteins, thus
17 affecting the respective allergenicity. In this paper we investigated the effect of autoclaving, preceded
18 or not by a hydration step, on the biochemical and immunological properties of almond proteins.
19 Any variation in the stability and immunoreactivity of almond proteins extracted from the treated
20 materials, were evaluated by total protein quantification, ELISA assay and protein profiling by
21 electrophoresis-based separation (SDS-PAGE). The autoclaving alone was found to weakly affect
22 almond proteins stability, despite what observed for the combination of hydration and autoclaving,
23 which resulted in a loss of approximately 70% of total protein content compared to untreated sample,
24 and in a final negligible immunoreactivity, as well. The final SDS-PAGE protein pattern recorded for
25 almonds hydrated and autoclaved disclosed significant changes. In addition, the same samples were
26 further submitted to *in vitro* simulated gastro-duodenal (GI) digestion to evaluate potential changes
27 induced by these processing on allergens digestibility. Digestion products were identified by HPLC-
28 HRMS/MS analysis followed by software-based data mining, and complementary information were
29 provided by analyzing the proteolytic fragments lower than 6 kDa in size. The autoclave based
30 treatment was found not to alter the allergens digestibility, whereas an increased susceptibility to
31 proteolytic action of digestive enzymes was observed in almonds subjected to the combination of
32 prehydration and autoclaving. Finally, the residual immunoreactivity of the GI resistant peptides
33 was investigated *in-silico* by bioinformatic tools, confirming that by following both approaches, no
34 epitopes survived the almond digestion, thus demonstrating the potential effectiveness of these
35 treatments to reduce almond allergenicity.

36 **Keywords:** Almond, Thermal/pressure treatment, Autoclave, Food allergens, High Resolution Mass
37 Spectrometry (HR-MS), Immunoreactivity reduction, *In vitro* digestion.

38

39

40

41

42

1. Introduction

43 Tree nuts are cultivated and consumed around the world due to their pleasant taste and
44 nutritional/health properties and among these almond (*Prunus dulcis* or *Amygdalus communis* L.)
45 represents one of the most commonly consumed [1]. Almond is considered a valuable source of lipids
46 (mainly represented by monounsaturated fatty acids), proteins, dietary fibers, vitamins (e.g. vitamin
47 E), minerals, phenolic compounds and phytosterols [2-4]. Globally, in 2016 America represented the
48 main almond producer (63%) followed by Asia (16%), Europe (10%), Africa (9%) and Oceania (2%)
49 [5]. Despite its economic and health importance, almond is renowned to trigger immunological
50 reactions in sensitive individuals, indeed, according to studies on the prevalence of tree nuts allergies,
51 almond allergy usually ranks fourth [6, 7]. Until now, eight groups of allergens have been identified
52 in almonds, namely Pru du 1, Pru du 2, Pru du 2S albumin, Pru du 3, Pru du 4, Pru du 5, Pru du 6,
53 and Pru du γ -conglutin. Among these eight groups, only Pru du 3 (nsLTP), Pru du 4 (profilin), Pru
54 du 5 (60 S ribosomal protein) and Pru du 6 (legumin) are recognized and included in the WHO-IUIS
55 list of allergens [8]. Pru du 6, also named amandin or prunin, accounts for about 70% of the total
56 soluble proteins and being the major almond protein component as well as its major almond allergen
57 [9, 10]. Pru du 6 is a hexameric protein comprising six subunits with a total molecular weight of about
58 360 kDa. By isolating and sequencing cDNA clones from almond, it has been inferred that prunin
59 consists in two seed storage proteins of 61.0 and 55.9 kDa, named prunin-1 (Pru-1) and prunin-2 (Pru-
60 2), respectively, that are assembled by means of disulfide bonds [11, 12]. Both Pru-1 and Pru-2 have
61 two polypeptides linked by disulfide bonds. Specifically, Pru-1 is composed of an acidic α -chain of
62 40.1 kDa (pI of 5.4) and a basic β -chain of 20.9 kDa (pI of 9.6). While Pru-2 is divided into two subunits
63 of 34.5 kDa (pI 4.6) and 21.4 kDa (pI 9.5), corresponding to the α - and β -chains, respectively [11]. Pru-
64 1 is highly water-soluble and it has been recently identified as the major component of almond prunin
65 [12]. Several studies demonstrated that prunin was thermally stable, suffering from partial unfolding
66 only at temperatures >94 °C. In addition, it tends to aggregate to food matrix producing different
67 structures. In the presence of water, prunin easily denaturates with consequent decrease of its
68 allergenicity [1].

69 Generally, almond can be consumed either raw (snacks) or processed and as ingredient of a
70 number of food products (spreads, bakery, pastry, chocolates, and confectionary products) [13]. As
71 ingredient and food allergen, almond could be inadvertently present in food as a result of cross
72 contact or production error, representing a risk for sensitized and/- or allergic individuals. For this
73 reason, a strict labeling regulation have been put in place in Europe [14] which imposes the obligatory
74 label for 14 allergenic ingredients, among which tree nuts. So far, strict avoidance of allergenic
75 proteins remains the most effective mean to prevent the occurrence of allergic reactions. In this
76 scenario, a number of analytical methods, relied on the most advanced techniques, have been
77 developed to keep under control food manufacturing chain and prevent accidental episode of
78 allergenicity [15-18]. In addition, the development of new strategies for allergenicity reduction, could
79 represent a good alternative to protect allergic consumers' health. A variety of foods (almonds
80 included) are submitted to different processes before their consumption that may entail some changes
81 in food proteins, including unfolding, aggregation or chemical modification which can significantly
82 affect the final proteins immunoreactivity [19]. Different strategies were investigated to reduce
83 almond allergenicity, including microwave heating [20, 21], thermal processing [20-23], chemical
84 processing [24], gamma irradiation [25] with partial alteration or no reduction in almond
85 allergenicity. Recently, pulsed ultraviolet light and high pressure were demonstrated to significantly
86 reduce prunin immunoreactivity [22, 26, 27]. Typically employed in sterilization procedure,
87 autoclaving treatments (mainly performed at 121°C, 15psi – 1 atm) were largely investigated for its
88 potential to alter the intrinsic almond allergenicity. Anyway, scarce results were obtained [9, 20, 21,
89 25] with only exception shown by almonds autoclaved in presence of water [22].

90 Resistance to digestion by gastrointestinal protease represents another important parameter to
91 consider when assessing the residual immunoreactivity of a protein. To sensitize an individual via
92 the gastrointestinal (GI) tract, an allergen must preserve its structure during digestion process, thus
93 allowing the intact epitopes to be taken up by the gut to sensitize the mucosal immune system.

94 Therefore, an assessment of the stability of a protein along digestion is important to understand its
95 potential to trigger an immunoreaction [28].

96 With the final aim to develop an effective technological strategy to reduce almond allergenicity,
97 in the present work we investigated the effect of autoclaving, preceded or not by a hydration step
98 and performed in harsh conditions (134 °C and 2 atm) on almond seeds. The stability of almond
99 proteins was evaluated by electrophoretic separation and any change in their final immunoreactivity
100 was assessed by ELISA assay. In addition, autoclaved almonds were submitted to a standardized
101 static *in-vitro* digestion protocol and any alteration in allergen proteins digestibility, as a consequence
102 of the technological process applied, was investigated by SDS-PAGE and HPLC-MS/MS analysis.
103 Finally, with the aid of online bioinformatics tool, the low molecular weight fraction of the GI digest
104 was browsed, looking for resistant peptides encrypting full-length linear epitopes that survived
105 enzymatic proteolysis, thus assessing *in-silico* the potential residual immunogenicity of autoclaved
106 almonds.

107 2. Materials and Methods

108 2.1 Chemicals

109 Raw almonds kernels (*Prunus dulcis*, syn. *Prunus amygdalus*, var. California) were obtained from
110 Besana S.p.A. (San Gennaro Vesuviano (NA), Italia). Sodium chloride, Trizma-base, urea, ammonium
111 bicarbonate (AMBIC), iodoacetamide (IAA), dithiothreitol (DTT), along with chemicals for
112 electrophoresis, namely sodium dodecyl sulfate-SDS, glycine, glycerol, Coomassie brilliant blue-G
113 250 were provided by Sigma Aldrich (Milan, Italy). Methanol (HPLC grade) were obtained from
114 VWR International S.r.l. (Milan, Italy) while Acetonitrile (Gold HPLC ultragradient), trifluoroacetic
115 acid (TFA) and Bromophenol blue were purchased from Carlo Erba Reagents (Cornaredo, Milan,
116 Italia). Ultrapure water used was produced by a Millipore Milli-Q system (Millipore, Bedford, MA,
117 USA). Formic acid (MS grade) was purchased from Fluka (Milan, Italy) whilst filters in
118 Polytetrafluoroethylene (PTFE) from 0.45 µm were purchased from Sartorius (Göttingen, Germania)
119 and syringe filters in cellulose acetate (CA) 1.2 µm from Labochem Science S.r.l. (Catania, Italy).
120 Trypsin (proteomic grade) for *in gel* protein digestion was purchased from Promega (Milan, Italy).
121 As for *in vitro* digestion experiments, potassium chloride (KCl), potassium dihydrogen phosphate
122 (KH₂PO₄), sodium bicarbonate (NaHCO₃), sodium chloride (NaCl), magnesium chloride hexahydrate
123 ((MgCl₂(H₂O)₆), ammonium carbonate ((NH₄)₂CO₃), sodium hydroxide (NaOH), hydrochloric acid
124 (HCl) and calcium chloride (CaCl₂) along with other chemicals and enzymes (salivary α-amylase,
125 pepsin, trypsin, chymotrypsin, pancreatic α-amylase, pancreatic lipase plus phospholipid, bile, serine
126 protease inhibitor (PMSF=methyl-phenyl-sulfonyl fluoride) were obtained from Sigma-Aldrich
127 (Milan, Italy).

128 2.2 Autoclave processing

129 A total of 8 raw almond seeds (corresponding to approximately 10 g) were placed into a
130 centrifuge tube and then submitted to autoclaving treatment. Two different processing schemes were
131 investigated i) autoclaving and ii) sample pre-hydration followed by autoclaving. The hydration step
132 was performed by adding 50 mL of ultrapure water to raw almond kernels followed by 2 hours of
133 shaking at room temperature in an orbital shaker (KS 4000 i-control shaker, IKA Works GmbH & Co.
134 KG, Staufen, Germany). Water was discarded before autoclaving. Autoclave treatments were set as
135 following: temperature at 134 °C at the pressure of 2 atm and two time intervals were explored,
136 namely 10 and 20 min. The system took about 40 min to reach the final temperature of 134 °C. In
137 summary, four different treatments were studied :

138 a) Almond autoclaved for 10 min (AC10),
139 b) Almond autoclaved for 20 min (AC20),
140 c) Almond prehydrated + autoclaved for 10 min (H₂O_AC10),
141 d) Almond prehydrated + autoclaved for 20 min (H₂O_AC20).

142 As positive control, raw almonds not undergoing any treatment was also included in the study
143 (CTRL).

144 *2.3 Protein extraction and quantification*

145 After treatment, raw and processed almond kernels were milled by using an electric miller
146 (Mulinex, Milan, Italy) and 1.2 g of flour were extracted by adding 30 mL of TBS (50 mM Tris-HCl,
147 150 mM NaCl, pH 8) buffer containing 1M Urea. Samples were left shaking for 2h at room
148 temperature in an orbital shaker (KS 4000 i-control shaker, IKA Works GmbH & Co. KG, Staufen,
149 Germany) and then centrifuged for 15 min at 3082 g at 4°C. The upper phase was discarded and the
150 supernatant was carefully collected and filtered through 1.2 µm CA syringe filters. The total protein
151 content of raw and autoclaved almonds was calculated by Bradford assay (Quick Start™ Bradford
152 Protein Assay, Bio-Rad Laboratories s.r.l., Segrate MI, Italy) that was accomplished according to the
153 manufacturer's instruction. Bovine serum albumin (BSA, 0.125-1 mg/ml) was used as the reference
154 standard. Samples were stored at -20°C until its use and filtered through 0.45 µm PTFE filters just
155 before electrophoretic analysis.

156 *2.4 Sandwich Enzyme linked Immunosorbent assay (ELISA) for almond immunoreactivity*

157 Immunoreactivity of almond allergens in processed and unprocessed samples was determined
158 by using a commercially available almond ELISA kit (RidaScreen Fast/Almond, R-Biopharm AG,
159 Darmstadt, Germany). Kit instructions were followed and three replicates of the controls and the
160 samples previously diluted 1:10000 were plated. Absorbance values ($\lambda=450$ nm) were read on a
161 microplates reader (BioTek Instruments Inc. USA).

162 *2.5 Almond in vitro-digestion*

163 Raw and selected treated almond flours, were successively subjected to *in-vitro* simulated
164 human digestion according to a standardized static model proposed by Minekus et al. in 2014 with
165 chew, gastric and duodenal digestion mimicking the physiological conditions [29]. Simulated
166 salivary fluid (SSF, pH 7), simulated gastric fluid (SGF, pH 3), and simulated intestinal fluid (SIF, pH
167 7) were prepared according to the harmonized conditions. The whole digestion procedure was
168 accomplished according to the protocol described by Bavaro et al., 2018 [30]. As for duodenal phase,
169 bile salts were added and single enzymes (trypsin, chymotrypsin, pancreatic lipase and pancreatic α -
170 amylase) were used in alternative to pancreatin. The reaction was stopped by addition of a protease
171 inhibitor (phenylmethylsulfonyl fluoride) and the resulting digests were centrifuged at 2360 g for 5
172 min at 4°C. The collected supernatant was stored at 20°C until further analysis. A parallel experiment
173 was carried out by submitting untreated almonds to GI fluids (SSF, SGF and SIF) without the
174 addiction of enzymes, in order to assess the proteins extractable by digestive fluids that would
175 represent the amount to be digested. In summary the samples obtained after GI digestion, with or
176 without the addiction of enzymes were the following:

- 177 a) untreated almonds submitted only to biological fluids, no enzymes (CTRL-NE),
- 178 b) untreated almonds undergoing the whole GI digestion (CTRL-GI),
- 179 c) AC10 almonds subjected to complete GI digestion (AC10-GI),
- 180 d) H₂O-AC10 almonds subjected to the whole GI digestion (H₂O-AC10-GI).

181 *2.6 Electrophoretic analysis of almond proteins*

182 Fifteen micrograms of protein were extracted from raw and treated almonds, along with
183 supernatants aliquots of the gastric and duodenal digesta (obtained with or without the addiction of
184 enzymes in SSF, SGF, SIF and corresponded to 10 µg of proteins) and separated under reducing
185 condition, by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on

186 8-16% polyacrylamide pre-cast gels (13.3 cm x 8.7 cm x 1.0 mm) using a Criterion™ Cell equipment
187 (Bio-rad Laboratories, Segrate, MI, Italy). While whole protein extracts were submitted to
188 electrophoresis separation without any preliminary treatment, digestive fluids were purified by
189 means of ReadyPrep™ 2-D Cleanup Kit (Bio-Rad Laboratories, Segrate, MI, Italy) before separation,
190 in order to remove lipid and saline components which could interfere with SDS-PAGE analysis.
191 Digests clean-up was performed according to the manufacturer's instruction. Before electrophoresis
192 analysis, samples were denatured with Laemmli buffer (62.5mM TrisHCl, pH 6.8, 25% glycerol, 2%
193 SDS, 0.01% Bromophenol Blue, 100 mM DTT) (1:1 ratio) for 5 min at 100 °C. As running buffer a
194 TGS (25 mM Tris, 192 mM Glycine, 0.1% SDS) solution was used. Electrophoretic separation was
195 performed at 60V for the first 20 min and then at 100V until the end of the run. Finally, gels were
196 stained with Coomassie Brilliant Blue G-250 solution and the protein profiles detected on a
197 ChemiDoc™ Imaging System (Bio-Rad Laboratories, Segrate, MI, Italy). Precision Plus Protein™ all
198 blue standards (10-250 kDa, Bio-Rad Laboratories, Segrate, MI, Italy) was used as protein reference
199 for molecular weight.

200 *2.7 In-gel tryptic digestion*

201 The most relevant protein bands detected along the electrophoretic gel of almond samples
202 submitted to GI in vitro experiments, including or not digestive enzymes, were excised from the
203 polyacrylamide gels and in-gel trypsin digested according to the protocol described by De Angelis et
204 al., 2017 [31]. After drying, each sample was resuspended in 100 µl of H₂O/ACN 95/5+0.1% formic
205 acid (v/v) and 20 µl were injected into LC/MS apparatus.

206 *2.8 Separation of low molecular weight fractions of duodenal samples*

207 Polypeptides and small peptides produced by submitting untreated and processed almonds to
208 simulated GI digestion, were separated via size exclusion chromatography by passing samples
209 through Bio-Spin®6 Tris Columns (Bio-Rad Laboratories, Segrate, MI, Italy) whose cut-off is around
210 6 kDa. Specifically, after column conditioning (addition of 500 µL of H₂O+0.1% FA to the column and
211 centrifugation at 1000 g for 1 min, repeated for 5 times) 100 µL of sample were loaded onto the column
212 and centrifuged for 4 min at 1000 g to collect the protein fraction with a molecular weight higher than
213 6 kDa. Low molecular weight components (< 6 kDa) were withdrew by washing the column with
214 100µL of H₂O+0.1% FA (addition of solvent to the column and centrifugation at 1000 g for 4 min).
215 This procedure was repeated twice and the eluted volumes were pooled together (total volume 200
216 µL) and dried up to the final volume of 100 µL. Finally, extracts were filtered through a cellulose
217 syringe filter (0.45 µm) and stored at -20°C before untargeted LC-HRMS/MS analysis. Samples were
218 diluted 1:1 (v/v) with H₂O+0.1% FA just before LC/MS analysis.

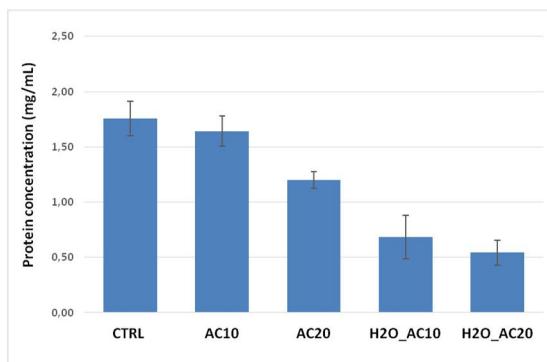
219 *2.9 Untargeted HPLC-HRMS/MS analysis*

220 HPLC-MS/MS data were acquired on a Q-Exactive™ Plus Hybrid Quadrupole-Orbitrap™ Mass
221 Spectrometer coupled to a UHPLC pump systems (Thermo Fisher Scientific, Bremen, Germany).
222 Peptides mixture obtained from protein bands in-gel digested referred to samples CTRL-NE, CTRL-
223 GI, AC10-GI and H₂O-AC10-GI, along with the low molecular weight molecules arisen from raw and
224 treated almonds completely digested (CTRL-GI, AC10-GI and H₂O-AC10-GI), were separated on a
225 reversed phase Aeris peptide analytical column (internal diameter 2.1 mm, length 150 mm, particle
226 size 3.6 µm, porosity 100 Å, Phenomenex, Torrance, CA, US) at a flow rate of 200 µl/mL. The elution
227 gradient used for peptide separation was the following: from 0-50 min solvent B increased from 5%
228 to 60%, 50-51 min further increase from 60% to 80%, then kept constant for 13 min, 63-80 min at a
229 constant 5% for column conditioning before next injection. Solvent A = H₂O+0.1% FA, solvent B= Acetonitrile+0.1% FA. Volume injection was set to 20 µL and each sample was injected twice in MS.
230 Spectra were acquired in the mass range of 180-2000 m/z by applying the data dependent (FullMS-
231 dd2) acquisition mode analysis and only positive ions were considered. Other MS parameters were
232

234 the same as described in Bavaro et al., 2018 [30], with exception of dd-setting maximum AGC target
235 value that was here set at 5.00 e1. Moreover, in the current work, ions with charge higher than 4 were
236 excluded.

237 MS data were then simultaneously processed via the commercial software Proteome Discoverer™
238 version 2.1.1.21 (Thermo-Fisher-Scientific, San Josè, US) and protein identification was achieved by
239 SequestHT search against a customized database including almond proteins extracted by Swiss Prot
240 DB on the base of the taxonomy code of *Amygdalus dulcis* (ID: 3755, containing about 450 sequences),
241 along with the sequences of all specific enzymes used for GI digestion. Due to the complexity of
242 enzyme mixtures used for gastro-duodenal digestion simulation, an unspecific cleavage was set for
243 peptide identification of low molecular weight fraction of GI samples. For other samples, trypsin was
244 selected as cleavage enzyme. In all cases, mass tolerance on the precursor and fragment ions was set
245 to 5 ppm and 0.05 Da, respectively. Moreover only trustful peptide-spectrum matches were accepted
246 and in particular a minimum of three peptides was set as threshold for protein identification, after
247 filtering the peptide list to the sequences assigned with at least medium confidence (FDR<5%).

248 *2.10 Bioinformatics analysis for assessing the residual immunoreactivity of almond proteins after GI digestion*

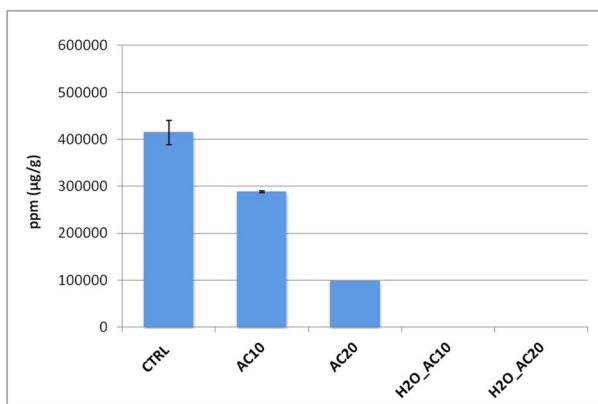

249 Peptide sequences identified in the low molecular weight fraction of duodenal digests of
250 untreated and processed samples were finally screened in IEDB database in order to detect epitope
251 linear sequences surviving gastro-duodenal digestion. The IEDB results were filtered as follows:
252 linear sequence for epitope structure, exact match for BLAST option and human as host.

253 **3. Results and discussion**

254 In the current study a common food processing treatment based on the combined effect of heat
255 and pressure, namely autoclaving, was investigated on almond seeds, with the final aim to reduce
256 their allergenic potential. Almond kernels were submitted to two autoclaving schemes differing for
257 the presence, or not, of a preliminary hydration step (for 2h) before autoclaving. Samples were
258 autoclaved at the temperature of 134°C, pressure of 2 atm for 10 or 20 min in both schemes. Any
259 changing in protein solubility, because of thermal/pressure treatments, was assessed by estimating
260 the almond protein contents with a Bradford assay, as previously reported in other works [27, 30]. In
261 addition, the direct comparison of the SDS-PAGE profiles of treated and untreated almonds provided
262 information about the proteins mainly involved in the autoclave-induced modification. Then, a
263 commercial sandwich ELISA kit against almond proteins was used to evaluate the variation in the
264 total immunoreactivity of almonds after the thermal/pressure treatments explored. Finally, we
265 tracked the fate of almond proteins differently processed upon *in vitro* simulated human gastro-
266 duodenal digestion by a static digestion model. The residual immunoreactivity of peptides arisen
267 from GI digests was finally estimated *in-silico* by bioinformatic tools.

268 *3.1 Effect of thermal/pressure treatments on solubility/content of almond proteins*

269 As well known, food processing can often cause some changes in proteins structures with a
270 resulting decrease in their solubility, and the extent of these phenomena largely depends on the
271 severity and duration of the process. Besides, autoclaving treatments may affect protein stability,
272 modifying their final solubility. In order to have more insights on this, the protein content of raw and
273 autoclaved almonds submitted to the different schemes, was estimated by Bradford assay and
274 compared each other. Results are displayed in figure 1.


275

276 **Figure 1.** Protein content estimated with Bradford protein assay referred to untreated almond (CTRL) and
277 almond submitted to autoclaving for 10 min (AC10) and 20 min (AC20), prehydration/autoclaving for 10 min
278 (H₂O_AC10) and 20 min (H₂O_AC20).

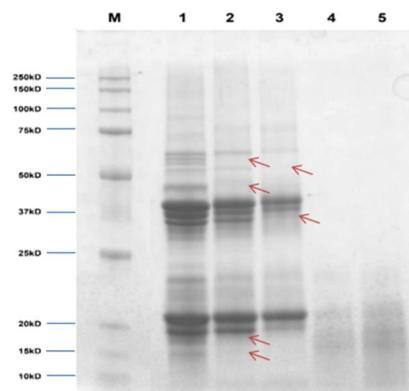
279 Almonds subjected to autoclaving at 134°C, 2 atm, for 10 min (AC10) provided a relative protein
280 recovery similar to the untreated samples' one. Whereas, the recovery was significantly reduced
281 when autoclaving was prolonged up to 20 min (AC20), in this case a reduction by 30% was calculated
282 compared to the untreated sample. A higher loss in protein recovery was observed in almonds
283 kernels submitted to hydration before autoclaving. In fact, protein content dropped down to 30%
284 after combination of prehydration/autoclaving for 10 min (H₂O_AC10) compared with the raw
285 almonds, and this trend remained constant also extending the treatment up to 20 min (H₂O_AC20).
286 Our results are in accordance with what described by Zhang et al., 2016 [22] who investigated the
287 changes in the solubility and immunological properties of almond proteins submitted to different
288 heat and pressure treatments, including dry/moist heat, autoclave sterilization (121°C, 0.15MPa) and
289 high pressure treatment, each tested under different conditions. For autoclaving experiments, they
290 found a little change in protein solubility after 10 min of treatment and a clear decrease in protein
291 recovery in samples autoclaved in presence of PBS, suggesting that the presence of water, in
292 combination with heat and pressure applied, enhanced such reduction in protein solubility. A
293 decrease in almond protein solubility due to boiling and autoclaving was already reported by
294 Venkatachalam (2002) [21]. These phenomena were explained taking into account the numerous
295 biochemical and structural modifications that proteins underwent during heat and pressure
296 treatments. It should be hypothesized that this processing cause protein unfolding due to the loss of
297 secondary and tertiary structures. In addition, precipitation or aggregation phenomena due to the
298 formation of intra- or inter-molecular covalent and non-covalent interactions between proteins or
299 protein-food matrix could occur, with a consequent decrease in protein solubility [19]. The general
300 decrease in protein content observed in treated almonds (Figure 1) demonstrated that autoclave-
301 based treatment altered somehow the structure of almond proteins promoting a reduction of their
302 solubility, and this effect appears even more enhanced by preceding autoclaving with exposition to
303 water.

304 3.2 Impact of thermal/pressure process on immunoreactivity of almond proteins by ELISA assay

305 Food processing is also renowned to affect protein allergenic potential. Indeed, the numerous
306 chemical and structural modifications that proteins underwent during processing techniques, could
307 result in a destruction, masking or unmasking of conformational epitopes, thus altering the final food
308 immunoreactivity [19]. In light of this, the effect of autoclaving process (accomplished with or
309 without incubation with water) on the final allergenicity of almonds was firstly assessed via
310 commercial sandwich ELISA kit (RidaScreen Fast/Almond, R-Biopharm). Due to the lack of
311 manufacturer's information about the almond allergen which the antibody is raised against, the levels
312 of immunoreactivity recorded for each sample were considered representative of the total
313 allergenicity of the food tested. The histograms in figure 2 illustrated the ELISA results obtained.

314

315 **Figure 2.** Immunoreactivity of almond proteins estimated by ELISA referred to raw (CTRL), autoclaved samples
316 for 10 (AC10) and 20 min (AC20) and pre-hydrated and autoclaved samples for 10 (H₂O_AC10) and 20 min
317 (H₂O_AC20) at 134 °C, 2 atm.


318 With respect to untreated almonds (CTRL) where a very high reactivity was recorded, a general
319 decrease in the IgG reactivity was observed after autoclaving. In particular, an immunoreactivity
320 reduction by 30% and 75% was observed for almond AC10 and AC20, respectively. On the contrary,
321 a minimal response antigen-antibody was recorded for prehydrated/autoclaved samples at both
322 times investigated.

323 Several papers [9, 21, 22] reported the effect of autoclave processing applied to almond, with
324 negligible effects on the final allergenicity. Venkatachalam et al., in 2002, reported that submitting
325 almonds to autoclaving at 121°C, 1 atm for different time lengths (5-30 min) was not sufficient to
326 produce a consistent reduction in almond allergenicity [21]. Roux et al. in 2001 confirmed this trend,
327 observing that although prunin content was reduced within first minutes of autoclaving (121°C/ 1
328 atm, 2-60 min), the total allergenicity of almond protein extract remains constant. Interestingly, they
329 found that after prolonging autoclaving for 40 and 60 min a more intense signal was highlighted in
330 the higher molecular weight area in Western blot analysis, suggesting heat-induced protein
331 aggregation [9]. Zhang et al. (2016) further confirmed that autoclaving treatments (121°C, 0.15MPa,
332 10 min) was not able alone to produce a significant reduction in almond allergenicity [22]. Conversely
333 to what previously reported, we observed a consistent reduction in IgG response in our autoclaved
334 samples by approximately 75% if treatment was kept for 20 min (Figure 2). This result may be due to
335 the harsher autoclaving conditions (134°C, 2 atm) applied in our experiments. Concerning
336 prehydrated-autoclaved almonds (Figure 2, H₂O_AC10, H₂O_AC20), we observed that
337 immunoreactivity levels dropped down to a minimum detectable level, suggesting that soaking
338 kernels with water before treatment could promote a better displacement of allergenic proteins or,
339 alternatively, their aggregation thus allergenic epitopes are not available any more to IgG binding.
340 Zhang et al. (2016) found similar results in flour almond autoclaved in presence of PBS, inferring that
341 higher temperature and pressure applied during autoclaving in presence of water resulted in a
342 greater loss of immunoreactivity [22]. Autoclaving preceded by water incubation was successfully
343 investigated also for allergenicity reduction in peanuts [30].

344 3.3 SDS-PAGE analysis

345 The protein/peptides profiles of untreated and autoclaved (including or not pre-hydration step)
346 almonds at different times were compared in Figure 3, and the respective differences were marked
347 with arrows. For each sample, a quantity of proteins equal to 8 µg was loaded onto the gel. As known
348 by the literature, in absence of reducing agent, the major almond allergen, prunin (Pru du 6) has two
349 major polypeptides with estimated MWs of 61 and 63 kDa, namely Prunin 1 (Pru-1) and Prunin 2
350 (Pru-2). Each polypeptide is composed of an acidic subunit (42-46 kDa) and a basic subunit (20-22
351 kDa) linked by disulphide bonds [10].

352

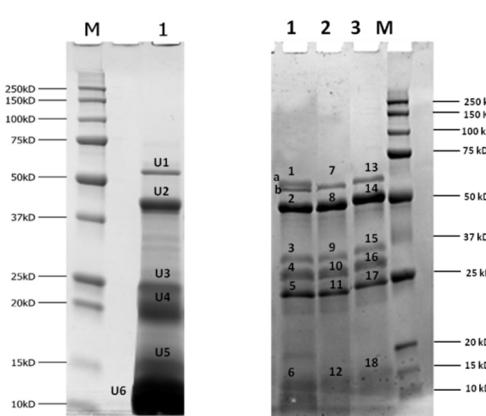
353

354 **Figure 3.** Comparison between SDS-PAGE protein profiles of almonds untreated (lane 1), autoclaved for 10 (lane 2) and 20 min (lane 3) and pre-hydrated and autoclaved for 10 (lane 4) and 20 min (lane 5) at 134 °C, 2 atm. M: 355 MW reference standard.

356 In the presence of DTT reagent, acid and basic subunits of Pru-1 and Pru-2 are released and they can 357 be clearly seen in the lanes of untreated samples (CTRL, lane 1). Other bands are visible over 50 kDa 358 region and below 20 kDa, these latter are likely to be attributed to Pru du 4 and Pru du 5 which MWs 359 were reported to be approximately 14 and 11 kDa, respectively. In 10 min autoclaved almonds (AC10, 360 lane 2), a general decrease in bands intensity was displayed, with a concomitant disappearance of 361 some signals in the 60 kDa region and below 50 kDa and 20 kDa. By prolonging autoclaving to 20 362 min (AC20, lane 3), a further reduction in some bands signals (25-50 kDa and 20-25 kDa regions) as 363 well as a clear disappearance of two bands with MW approximately of 52 and 37 kDa were observed. 364 On the contrary, protein profiles referring to samples autoclaved for 10 and 20 min after incubation 365 with water (H₂O-AC10, lane 4, H₂O-AC20, lane 5) appeared as a smear of peptides with low MW (15- 366 20 kDa), probably produced by fragmentation phenomena occurring during the applied treatments. 367 Results obtained by SDS-PAGE analysis are in agreement with what obtained by ELISA assay, where 368 a gradual reduction of allergenicity of almonds autoclaved for 10 and 20 min (30 and 75%, 369 respectively), followed by a drastic drop of IgG response in prehydrated-autoclaved samples, was 370 pointed out. As previously discussed, protein bands comprised between 25 and 50 kDa, along with 371 those ranging around at 20-22 kDa, were putatively attributed to acidic and basic subunits of Pru-1 372 and Pru-2 polypeptides that composed Pru du 6. This is the most abundant protein in almond and 373 represents the main allergen of this nut. In the light of this, it is reasonable to assume that, in samples 374 AC10 and 20 min, the gradual signal decrease of these bands was caused by a gradual reduction of 375 Pru du 6 content, which could explain the decrease of immunoreactivity recorded during ELISA test 376 in the same samples. Although with a reduced content, Pru du 6 bands persisted after 20 min of 377 autoclaving, confirming the thermostable nature of this protein [32]. The allergenicity decrease 378 observed in autoclaved almonds, could be due to the degradation of Pru du 4 (14 kDa) and Pru du 5 379 (11.4 kDa) induced by this processing, as demonstrated by the disappearance of the corresponding 380 bands along the AC10 and AC20 profiles.

381 As for autoclaved almonds pre-incubated with water, only small peptides were observed along the 382 SDS-PAGE profile, suggesting that Pru du 6 was completely degraded by the treatment applied with 383 a consequent decrease in the final allergenicity, proved by the low reactivity detected in ELISA test. 384 Protein degradation and fragmentation induced by autoclaving was already reported in literature by 385 Cabanillas et al. (2014, 2015) and Bavaro et al. (2018) on walnuts and peanuts, respectively [30, 34, 386 35]. Similarly to what reported in the present work, Bavaro et al. explored the effect of the pre- 387 hydration before autoclaving on peanut and they obtained a similar reduction in IgG 388 immunoreactivity of processed peanuts. They explains these phenomena taking into account that 389 water absorbed by seeds facilitated heat propagation in the inner part of the seed, as well as exert a 390 mechanical effect during high pressure autoclaving, which promoted the disaggregation and 391

392 decrease in spot intensity. It is not excluded that the allergenicity reduction observed in autoclaved
393 food should be attributable to a loss of proteins solubility, likely induced by the several structural
394 changes (conformational changes in the protein, formation of intra and/or inter-molecular covalent
395 and non-covalent interactions, etc.) promoted by the combination of heating and pressure. However
396 recent studies have demonstrated that extensive proteins solubilization of the pressure/heated food
397 materials produces the same SDS-PAGE profile of protein degradation, with an overall decreased of
398 the response antigen-antibody [30, 33].


399 *3.4 In vitro gastro-duodenal digestion of heat/pressured almonds and evaluation of residual immunoreactivity*

400 The effect on the biochemical and structural modification occurring on proteins undergoing food
401 processing may largely affect their susceptibility to gastro-duodenal digestion, absorption kinetics
402 and consequently the allergic response of the immune system. In this section, we investigated
403 whether autoclaving (including or not the preliminary water incubation) might alter almond proteins
404 digestibility by performing in vitro simulated human gastro-duodenal digestion experiments.
405 Finally, the residual immunoreactivity of the final digests was evaluated by bioinformatic approach.

406 *3.4.1 Simulated gastric and duodenal digestion of almond seeds*

407 Grounding on the ELISA results, we decided to submit to gastro-duodenal digestion, only the
408 following samples namely raw almonds (CTRL), almonds autoclaved for 10 min (AC10) and
409 prehydrated/autoclaved for 10 min (H₂O-AC10). The longer treatments (20 min) were excluded
410 because harsher conditions may results in detrimental alteration of almond organoleptic properties.
411 Digestion experiments were accomplished according to a standardized protocol mimicking chewing,
412 gastric and intestinal compartments [29]. A complementary experiment aimed to investigate the
413 composition of the protein fraction in biological fluids, representing the actual amount of proteins
414 solubilized in the digestive fluids and potentially susceptible to enzymatic hydrolysis, was performed
415 on raw almonds. Specifically, raw almond flour was submitted to chew (2 min), gastric (2 hours) and
416 duodenal (2 hours) phases (simulated by the respective fluids), but no digestive enzymes were added
417 during the procedure. Concerning the simulation of the physiological digestion, raw, autoclaved and
418 prehydrated/autoclaved almond flours were submitted to the original procedure where all the
419 enzymes, specific for each compartment, were added. Total proteins resulting at the end of the two
420 different experiments were analysed by SDS PAGE and the respective profiles are reported in Figure
421 4 (panel A and B). Each relevant protein band was further analysed by HPLC-MS/MS and identified
422 via bioinformatic searching using a commercial software (table 1). A typical protein profile of raw
423 almonds extracted with biological fluids (SSF, SGF and SDF at physiological conditions 37°C) is
424 reported in Figure 4, lane 1. This protein pool could represent our point "0", namely the protein
425 profile present in undigested sample extract. Different bands were displayed, specifically above 50
426 kDa and in the ranges of 37-50 kDa, 20-25 kDa and below 16 kDa. According to LC-MS/MS analysis
427 protein banding above 50 kDa (Panel A, U1) was assigned to (R)-mandelonitrile lyase isoenzyme 2
428 as well as band named U2 of MW of approximately 50 kDa. Band U3 was attributed to a protein
429 involved in response to water stimulus, namely the abscisic acid response protein. Unexpectedly,
430 prunin was assigned to the bands tagged as U4, U5 and U6 with MW around 20, 15 and 10 kDa,
431 respectively. Moreover, the high intensity of band U6 suggested that the protein was already partially
432 fragmented by passing from SSF into SGF and SIF fluids, although no enzymes were added at this
433 step.

434

435
436
437
438
439
440
441

442 (a) (b)

443 **Figure 4.** Panel A: SDS-PAGE protein profile of raw almonds submitted to chew, gastric and intestinal
444 environments without adding enzyme mixture. Lane 1: untreated almond. Panel B: Electrophoretic profiles of
445 digestive fluids of almond raw (lane 1), autoclaved for 10 min (lane 2) and pre-hydrated and autoclaved for 10
446 min (lane 3). M: MW reference standard. Bands submitted to in gel tryptic digestion for further HPLC-MS/MS
447 analysis, were marked with letters and numbers.

448 Prunin was recognized as the major water soluble storage protein in almonds, and it is likely that the
449 drastic pH change occurring from the neutral environment of SSF (pH 7) and acidic compartment of
450 SGF (pH 3) affected prunin stability, resulting in the spontaneous protein hydrolysis (fragments
451 banding below 20 kDa). Such hypothesis appeared consistent with the work authored by Tiwari et
452 al. in 2010, who reported that some denaturation or destruction phenomena of the pruning protein
453 occurred at acidic pH [35].

454 In addition, in figure 4, panel B, we presented the electrophoretic profiles of raw (lane 1), autoclaved
455 (lane 2) and prehydrated autoclaved (lane 3) almonds submitted to the entire digestion protocol
456 (chew, gastric and intestinal phase with the addition of all digestion enzymes). The more relevant
457 protein bands displayed in raw and autoclaved digested sample were identified by HPLC-MS/MS
458 experiments followed by bioinformatics search, with the respective results listed in table 1. By quick
459 comparison of the protein profiles shown in panel A and B of Figure 4, we can clearly appreciate the
460 change in almond protein profile after digestion, along with the effect of the treatments tested on
461 protein digestibility. Focusing on digested raw almonds (Figure 4, panel B, lane 1), protein profiles
462 obtained in the beginning and at the end of the simulated gastro-duodenal digestion appeared to be
463 very different. Firstly, an additional band with MW of approximately 50 kDa was displayed in
464 almond digests (panel B, lane 1) along with the protein banding above 50 kDa, already detected in
465 undigested sample (U1 of panel A, lane 1). In both samples (undigested: panel A, lane 1, band U1;
466 and digested: panel B, lane 1, band 1a) this band was attributed to R-mandelonitrile lyase isoenzyme
467 2, while the additional band detected in digested samples (panel B, lane 1, band 1b) was assigned to
468 one of the digestive enzyme (pancreatic alpha-amylase). In addition, new proteins bands appeared
469 after digestion of raw samples banding around at 25-37 kDa, marked as 3, 4, and 5 (panel B, lane 1).
470 All these bands were attributed to a mixture of digestive enzymes (table 1). Interestingly, the intense
471 protein bands in the region of 10-20 kDa, visible in undigested sample and attributed to prunin (panel
472 A, lane 1, bands U4, U5 and U6) were missing in the digested samples, suggesting that likely the full
473 degradation upon digestion of this allergenic protein occurred. In the same place, only a smear band
474 was visible (panel B, lane 1, band 6) attributed to trypsin. Autoclaved almond digests (Figure 4, panel
475 B, lane 2) provided protein profiles similar to that of raw samples, a part from one band
476 corresponding to R-mandelonitrile lyase enzyme that disappeared after digestion (see band 1a in lane
477 1, Figure 4, panel B, corresponding to digested raw almond). Other detectable bands (panel B, lane 2,
478 bands 7-12) referred to digestive enzymes (table 1). Digestion of prehydrated/autoclaved samples
479 (panel B, lane 3) produced an electrophoretic profile similar to what already observed for autoclaved

480 sample digest. The few bands detected in the gel (panel B, lane 3, bands 13-18) were assigned to
481 digestive enzymes (table 1).

482

483 **Table 1.** List of proteins identified by HPLC-MS/MS analysis followed by software data processing of selected
484 bands in-gel digested referred to raw almond samples undigested (CTRL-NE) and digested (CTRL-GI) along
485 with digested almond autoclaved (AC10-GI) and prehydrated autoclaved (H2O-AC10-GI). All the relevant
486 software parameters were also included.

487

Sample	Band	Accession	Type of protein (organism)	Allergen	Coverage (%)	Peptides (unique)	Score
CTRL-NE	U1	Q945K2	(R)-mandelonitrile lyase 2 (Prunus dulcis)		30.37	18 (18)	30.34
	U2	Q945K2	(R)-mandelonitrile lyase 2 (Prunus dulcis)		11.55	7(7)	0
	U3	Q9SW89	Abscisic acid response protein (Prunus dulcis)		43.07	8 (8)	19.35
	U4	Q43607	Prunin (Prunus dulcis)	Pru du 6	12.16	8 (8)	1.65
		Q43607	Prunin (Prunus dulcis)	Pru du 6	8.53	6 (1)	8.59
	U5	E3SH28	Prunin 1 (Prunus dulcis)	Pru du 6, 6.0101	8.17	6 (1)	6.94
		Q43607	Prunin (Prunus dulcis)	Pru du 6	16.33	11 (2)	21.8
		E3SH28	Prunin 1 (Prunus dulcis)	Pru du 6, 6.0101	15.25	10 (1)	16.56
	U6	A7Y7K3	Putative lipid transfer protein (Prunus dulcis)		40.91	3 (3)	9.77
		E3SH29	Prunin 2 (Fragment) (Prunus dulcis)	Pru du 6, 6.0201	13.10	7 (7)	4.43
CTRL-GI	1	Q945K2	(R)-mandelonitrile lyase 2 (Prunus dulcis)		36.41	31 (31)	17.64
		P06278	Alpha-amylase (Bacillus licheniformis)		9.96	10 (10)	1.77
		P00690	Pancreatic alpha-amylase (Sus scrofa)		70.45	55 (28)	100.16
	2	P04745	Alpha-amylase (Homo sapiens)		33.27	26 (4)	58.45
		Q945K2	(R)-mandelonitrile lyase 2 (Prunus dulcis)		21.31	12 (12)	1.83

		P00690	Pancreatic alpha-amylase (Sus scrofa)	15.66	8 (8)	0
		P00690	Pancreatic alpha-amylase (Sus scrofa)	25.83	21 (20)	10.21
4		Q7M3E1	Chymotrypsin-C (Bos taurus)	7.09	3 (2)	3.18
	6	P00761	Trypsin (Sus scrofa)	22.08	5 (4)	3.73
	7	P06278	Alpha-amylase (Bacillus licheniformis)	3.32	3 (3)	2.05
	8	P00690	Pancreatic alpha-amylase (Sus scrofa)	60.86	47 (23)	80.76
	9	P00690	Pancreatic alpha-amylase (Sus scrofa)	33.86	24 (23)	18.86
	10	P00690	Pancreatic alpha-amylase (Sus scrofa)	19.37	13 (13)	10.92
	11	P00766	Chymotrypsinogen A (Bos taurus)	15.10	5 (4)	3.53
		P00761	Trypsin (Sus scrofa)	18.61	5 (4)	6.36
	12	P00690	Pancreatic alpha-amylase (Sus scrofa)	13.50	10 (9)	5.46
	14	P00690	Pancreatic alpha-amylase (Sus scrofa)	50.68	44 (22)	58.65
	15	P00690	Pancreatic alpha-amylase (Sus scrofa)	30.14	20 (19)	9.4
	16	P00690	Pancreatic alpha-amylase (Sus scrofa)	19.77	14 (14)	9.04
		Q7M3E1	Chymotrypsin-C (Bos taurus)	7.09	3 (3)	5.08
	17	P00766	Chymotrypsinogen A (Bos taurus)	11.02	3 (2)	9.49
		P00761	Trypsin (Sus scrofa)	39.83	9 (9)	11.92
	18	P00690	Pancreatic alpha-amylase (Sus scrofa)	12.72	7 (7)	6.03

488
489
490

491 Digestibility of almond proteins, specifically prunin (Pru du 6 allergen), was already investigated by
492 other authors. Mandalari et al., in 2014 studied the kinetics of digestion of prunin during simulated
493 gastro-duodenal digestion finding that at the end of the process, the only almond protein detectable
494 was a R-oxynitrile lyase isoenzyme 1. Prunin remaining after gastric digestion was broken down after
495 0.2 min of duodenal digestion, thus no trace of that protein was visible in SDS-PAGE [36]. On the
496 contrary Toomer et al., in 2013 reported that prunin was only partially hydrolyzed by digestive

497 enzymes, preserving the integrity of a protein at 20-22 kDa after pancreatin digestion [37]. Our results
498 are in agreement with the investigation accomplished by Mandalari et al. (2014), showing that no
499 bands corresponding to prunin (comprised in the range 10-20 kDa) were detectable at the end of the
500 gastro-duodenal digestion in raw almond digests, confirming the susceptible behavior of this protein
501 to digestive enzymes. Similar results were obtained also when treated samples, namely autoclaved
502 and prehydrated/autoclaved almonds, underwent digestion, pointing out that both approaches
503 showed not to alter the final digestibility of almond proteins, specifically in the case of prunin that is
504 the major almond allergen.

505 Finally, in order to have complementary information about the digestibility of almond proteins, raw
506 and treated almond samples, collected at the end of the duodenal phase, were loaded on SEC
507 cartridges (6 kDa cut off) and the peptide fraction with molecular weight (MW) lower than 6 kDa was
508 directly analyzed by HPLC-MS/MS. In Table 2 the allergenic proteins whose fragments were
509 identified in the low MW range of the duodenal samples are summarized. In raw almond digests
510 most of peptides were assigned to Pru du 6. The presence of this allergen in the <6 kDa fraction
511 underlined the high degree of fragmentation occurred to this molecule upon digestion, and thus its
512 high susceptibility to gastro intestinal enzymes. In addition, peptides assigned to other allergenic
513 proteins were identified in the low MW fraction of digested raw almonds, such as Pru du 3, Pru du
514 4, Pru du 5 and Pru 2S Albumin, which probably were not highlighted in the electrophoretic pattern
515 because of the low MW of intact proteins (9, 14, 11 and 12 kDa, respectively). Pru du AP allergen (also
516 named Pru du γ -conglutin, original MW 45kDa) was also identified in the low MW protein fraction
517 of raw almonds, confirming the susceptibility of this allergen to digestive enzymes. Proteins
518 identified in this fraction corresponding to autoclaved and prehydrated/autoclaved digested
519 almonds were similar to that reported in raw almond digests, although a different number of
520 peptides was found for each allergen (table 2). Interestingly, in comparison with raw almond digest,
521 the number of unique peptides attributed to Pru du 6 remained stable in autoclaved samples, but
522 increased in prehydrated/autoclaved samples, suggesting that the combined effect of this
523 technological approach and digestive enzymes lead to a higher fragmentation of the protein. A
524 different trend was found for Pru du 3, Pru du 4, Pru du 5 and Pru du AP where total peptides
525 number appeared to decrease when passing from raw to treated almond digests (table 2). It should
526 be hypothesize that heat/pressure effect, combined with the proteolytic activity of digestive
527 enzymes, promoted the extensive degradation of peptides down to fragment lower than 5 AA in
528 length, which missed the software-based identification, resulting in a reduced number of total
529 detected peptides. As for Pru du 2S albumin, no difference in peptide number was displayed between
530 raw and processed samples, likely due to a high resistance of the protein to the investigated
531 treatments. In general, these results complemented the information provided by Table 1, supporting
532 the previous observation made on the electrophoretic profiles of undigested and digested almonds.
533 As discussed above, the content of prunin (Pru du 6), particularly abundant in the undigested
534 electrophoretic profile, disappeared upon gastro-duodenal digestion and as a confirmation, in this
535 low MW fraction, a large number of peptides belonging to this protein was detected. Similar results
536 were obtained in almonds thermally/pressure treated (with previous hydration or not)
537 demonstrating that these technological approaches did not impair the final digestibility of almond
538 allergens. On the contrary, in some case, they improved the protein fragmentation, with probable
539 potential influence in the final allergenicity. To the best of our knowledge, this is the first work
540 investigating the digestibility of almond proteins after thermal/pressure treatment. The digestibility
541 of blanched almond proteins was studied by Mandalari et al. in 2014, and, similarly to what here
542 reported, no significant differences were observed between the kinetics of digestion of natural and
543 blanched almond proteins [36].

544

545

546

547

548

549

550 **Table 2.** List of proteins identified by HPLC-MS/MS analysis followed by bioinformatic search via commercial
 551 software of low molecular weight fraction (< 6 kDa) isolated from fluid digest of raw almond (CTRL-GI),
 552 autoclaved (AC10-GI) and prehydrated autoclaved almond (H2O-AC-GI) along with the relevant parameters
 553 provided by software.

554

Sample	Accession	Type of protein (organism)	Allergen	Coverage (%)	Peptides (unique)	Score
CTRL-GI	C0L015	Non-specific lipid-transfer protein (<i>Prunus dulcis</i>)	Pru du 3, Pru du 3.0101	40.65	11 (10)	4.11
	P82944	Seed allergenic protein 1 (Fragments) (<i>Prunus dulcis</i>)	Pru du 2S Albumin	60.71	5 (4)	10.21
	Q43608	Pru2 protein (Fragment) (<i>Prunus dulcis</i>)	Pru du 6	71.83	195 (7)	297.12
	E3SH28	Prunin 1 (<i>Prunus dulcis</i>)	Pru du 6, Pru du 6.0101	80.76	323 (4)	672.17
	Q8GSL5	Profilin (<i>Prunus dulcis</i>)	Pru du 4	40.46	17 (17)	9.7
	P82952	Seed allergenic protein 2 (Fragment) (<i>Prunus dulcis</i>)	Pru du AP	48.00	15 (15)	39.02
	Q43607	Prunin (<i>Prunus dulcis</i>)	Pru du 6	81.85	335 (14)	697.42
	Q8H2B9	60S acidic ribosomal protein (<i>Prunus dulcis</i>)	Pru du 5, Pru du 5.0101	37.17	23 (22)	9.42
	E3SH29	Prunin 2 (Fragment) (<i>Prunus dulcis</i>)	Pru du 6, Pru du 6.0201	68.65	213 (4)	363.33
	C0L015	Non-specific lipid-transfer protein (<i>Prunus dulcis</i>)	Pru du 3, Pru du 3.0101	32.52	9 (9)	2.57
AC10-GI	P82944	Seed allergenic protein 1 (Fragments) (<i>Prunus dulcis</i>)	Pru du 2S Albumin	60.71	5 (4)	11.76
	Q43608	Pru2 protein (Fragment) (<i>Prunus dulcis</i>)	Pru du 6	69.05	209 (6)	359.74
	E3SH28	Prunin 1 (<i>Prunus dulcis</i>)	Pru du 6, Pru du 6.0101	78.40	292 (4)	700.81
	Q8GSL5	Profilin (<i>Prunus dulcis</i>)	Pru du 4	30.53	13 (13)	4.48
	P82952	Seed allergenic protein 2 (Fragment) (<i>Prunus dulcis</i>)	Pru du AP	48.00	10 (10)	17.94
	Q43607	Prunin (<i>Prunus dulcis</i>)	Pru du 6	78.77	300 (10)	712.31

H ₂ O-AC10-GI	Q8H2B9	60S acidic ribosomal protein (Prunus dulcis)	Pru du 5, Pru du 5.0101	37.17	13 (13)	5.05
	E3SH29	Prunin 2 (Fragment) (Prunus dulcis)	Pru du 6, Pru du 6.0201	78.97	272 (16)	630.16
	C0L0I5	Non-specific lipid-transfer protein (Prunus dulcis)	Pru du 3, Pru du 3.0101	27.64	7 (6)	1.43
	P82944	Seed allergenic protein 1 (Fragments) (Prunus dulcis)	Pru du 2S Albumin	78.57	6 (5)	8.77
	Q43608	Pru2 protein (Fragment) (Prunus dulcis)	Pru du 6	77.58	261 (10)	592.97
	E3SH28	Prunin 1 (Prunus dulcis)	Pru du 6, Pru du 6.0101	83.30	321 (8)	941.16
	Q8GSL5	Profilin (Prunus dulcis)	Pru du 4	21.37	10 (10)	8.1
	P82952	Seed allergenic protein 2 (Fragment) (Prunus dulcis)	Pru du AP	48.00	9 (9)	21.22
	Q43607	Prunin (Prunus dulcis)	Pru du 6	82.94	320 (5)	954.46
	Q8H2B9	60S acidic ribosomal protein (Prunus dulcis)	Pru du 5, Pru du 5.0101	37.17	16 (16)	8.63

555

556

557 3.4.2 Assessment of residual immunoreactivity of thermally/pressure treated almonds submitted to
 558 in vitro digested

559 As known, food processing may induce physical or chemical modifications that deeply affect the
 560 final structure/conformation of a proteins, often altering their final digestibility, that is strictly linked
 561 with their potential immunoreactivity. In light of this, the final section of our work was aimed at
 562 investigating the immunoreactive potential of the digested almond proteins raw and treated with
 563 autoclave (with or without hydration), scouting for full-length linear epitopes encrypted by the
 564 identified resistant peptide sequences, by means of bioinformatics tools. All peptides contained in
 565 the low MW fraction of the duodenal digest were taken into consideration. The IEDB database was
 566 screened in order to match detected peptides and almond linear epitopes recognized for the Homo
 567 sapiens host. For this investigation, only peptides with sequence lenght > 9 AA were considered, in
 568 accordance with the EFSA guidelines set up to test the allergenicity of *in-vitro* digested proteins [38].
 569 No intact epitopes reported in IEDB database were found to match with the peptides included in low
 570 MW protein fraction of digested almonds raw and treated with the two different approaches (table 1
 571 supplementary data). Although results appeared be very promising, they need to be further
 572 confirmed by specific immunological analysis (e. g. immunoblotting with patients' sera allergic to
 573 almonds). However this kind of approach substantially based on bioinformatics analysis could
 574 present limitations due to the restricted number of almond epitopes sequenced and deposited in
 575 IEDB database. Anyway, our preliminary results are in line with what reported by Mandalari et al.,
 576 2014 on the residual immunoreactivity of natural almonds digested by a dynamic digestion protocol.

577 They found that dot blot signals produced by probing materials with rabbit pAb and two murine
578 mABs (mAb 2A3 specific for a linear epitope of pruin and mAb 4C10 specific for a conformational
579 almond epitope) were significantly decreased with respect to undigested sample, and this trend was
580 confirmed by ELISA assay. On the contrary, the same authors stated that when incorporated into
581 processed food (victorian sponge cake and chocolate mousse), the digestibility of almond proteins
582 resulted slowed down by passing from gastric to duodenal compartments, with consequence
583 persistence of some immunoreactivity at the end of digestion, mainly visible in chocolate mousse
584 sample [36]. To the best of our knowledge, the effect of autoclaving treatment on the residual
585 immunological potential of almonds was never investigated before by tracking the fate of the
586 allergenic protein upon simulated gastro-duodenal digestion, therefore our promising results could
587 open the way for further analysis in this direction. Moreover, taking into account the importance of
588 the food matrix in the modulation of the digestibility, and consequently the allergenicity, of almond
589 proteins, further studies aimed at investigating the immunoreactivity of thermally/pressure treated
590 almonds-based composite food commodities should be very interesting from a toxicological point of
591 view.

592 4. Conclusion

593 In this study the combination of heat/pressure treatments (autoclave), performed at 134°C, 2 atm,
594 was investigated for its potential to reduce almond allergenicity. Almond seeds were submitted to
595 autoclave treatment, preceded or not by a hydration step, and the respective protein recovery was
596 assessed by Bradford assay, along with the evaluation of their immunoreactivity by ELISA tests.
597 Finally, any change induced by autoclaving treatments on almond proteins digestibility was
598 evaluated by *in-vitro* digestion experiments, and the persistence of digestive immunoreactive
599 peptides was assessed by bioinformatic analysis. Our results showed that the synergist effect of heat
600 and pressure resulted in a visible alteration of almond proteins stability, inducing a final reduction
601 of the total immunoreactivity in almonds. In particular, hydration before autoclaving proved to
602 increase the efficacy of the thermal/pressure treatment, contributing to the disappearance of the main
603 allergenic protein bands and altering significantly the final immunoreactivity. Furthermore, by
604 submitting the treated almonds to *in-vitro* digestion experiments a full degradation of the main
605 almond allergens took place and the residual immunoreactivity estimated by bioinformatics analysis
606 turn out to be negligible. This demonstrated that the autoclave-based treatment may induce a drastic
607 reduction of the overall allergenicity in almonds, especially when preceded by incubation in water.
608 In perspectives, this represents a first step towards the development of effective processing
609 techniques to reduce tree nut immunoreactivity and can turn useful in the development of strategies
610 for food tolerance induction and/or to establish threshold levels of sensitization/elicitation for
611 hypoallergenic foods. However, further investigations are requested, mainly employing
612 immunological techniques, to evaluate any loss of residual allergenicity of processed almonds on
613 allergic patients.

614 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Table S1: List of < 6
615 kDa peptides arisen for GI simulated digestion.

616 **Author Contributions:** L.M. conceived and designed the experiments, S.L.B., G.F. performed biochemical
617 analysis, E. De A run Mass Spectrometry experiments, S.L.B. E. De A., performed bioinformatics analysis,
618 R.P. and L.M. revised the manuscript. All authors read, critically revised and approved the final manuscript.

619 **Funding:** This research received funding from the national CL.AN-Cluster agroalimentare nazionale
620 programma area 2. Project SAFE&SMART (CTN01_00230_248064) “Nuove tecnologie abilitanti per la food
621 safety e l’integrità delle filiere agro-alimentari in uno scenario globale

622 **Acknowledgments:** Besana Group S.p.A. and in particular Dr. Renato Paladino and Dr. Maria Carbone are
623 kindly acknowledged for their valuable input on the project and for providing food samples.

624 **Conflicts of Interest:** The authors declare no conflict of interest.
625

626 **References**

- 627 1. Costa, J.; Mafra, I.; Carrapatoso, I.; Oliveira, M. B. P. P. Almond allergens: Molecular
628 characterization, detection, and clinical relevance. *J. Agric. Food Chem.* **2012**, *60*, 1337–1349,
629 doi:10.1021/jf2044923.
- 630 2. Bolling, B. W.; Chen, C. Y. O.; McKay, D. L.; Blumberg, J. B. Tree nut phytochemicals:
631 Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds,
632 Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. *Nutr. Res.*
633 *Rev.* **2011**, *24*, 244–275, doi:10.1017/S095442241100014X.
- 634 3. Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds:
635 Macronutrients and micronutrients. *J. Food Compos. Anal.* **2011**, *24*, 469–480,
636 doi:10.1016/j.jfca.2011.01.007.
- 637 4. Fernández-Cuesta, a.; Kodad, O.; Socias i Company, R.; Velasco, L. Phytosterol variability in
638 almond germplasm. *J. Am. Soc. Hortic. Sci.* **2012**, *137*, 343–348.
- 639 5. FAOSTAT, 2018. Food and Agriculture Organization of the United Nations – Statistics Division,
640 Rome, Italy.
- 641 6. Elizur, A.; Appel, M. Y.; Nachshon, L.; Levy, M. B.; Epstein-Rigbi, N.; Golbov, K.; Goldberg, M.
642 R. NUT Co Reactivity - ACquiring Knowledge for Elimination Recommendations (NUT
643 CRACKER) study. *Allergy Eur. J. Allergy Clin. Immunol.* **2018**, *73*, 593–601, doi:10.1111/all.13353.
- 644 7. McWilliam, V.; Koplin, J.; Lodge, C.; Tang, M.; Dharmage, S.; Allen, K. The Prevalence of Tree Nut
645 Allergy: A Systematic Review. *Curr. Allergy Asthma Rep.* **2015**, *15*, doi:10.1007/s11882-015-0555-8.
- 646 8. Allergen Nomenclature, Allergen Nomenclature IUIS Allergen Nomenclature Sub-Committee;
647 <http://www.allergen.org> (accessed Sept 18, 2018).
- 648 9. Roux, K. H.; Teuber, S. S.; Robotham, J. M.; Sathe, S. K. Detection and stability of the major almond
649 allergen in foods. *J. Agric. Food Chem.* **2001**, *49*, 2131–2136, doi:10.1021/jf001307k.
- 650 10. Sathe, S. K.; Wolf, W. J.; Roux, K. H.; Teuber, S. S.; Venkatachalam, M.; Sze-Tao, K. W. C.
651 Biochemical characterization of amandin, the major storage protein in almond (*Prunus Dulcis* L.).
652 *J. Agric. Food Chem.* **2002**, *50*, 4333–4341, doi:10.1021/jf020007v.
- 653 11. Garcia-Mas, J.; Messeguer, R.; Arús, P.; Puigdomènech, P. Molecular characterization of cDNAs
654 corresponding to genes expressed during almond (*Prunus amygdalus* Batsch) seed development.
655 *Plant Mol. Biol.* **1995**, *27*, 205–210, doi:10.1007/BF00019192.
- 656 12. Albillos, S. M.; Jin, T.; Howard, A.; Zhang, Y.; Kothary, M. H.; Fu, T. J. Purification, crystallization
657 and preliminary X-ray characterization of prunin-1, a major component of the almond (*Prunus*
658 *dulcis*) allergen amandin. *J Agric Food Chem* **2008**, *56*, 5352–5358, doi:10.1021/jf800529k.
- 659 13. Alasalvar, C.; Shahidi, F. *Tree nuts: composition, phytochemicals, and health effects* (Eds.). CRC Press
660 Taylor & Francis Group, Boca Raton, US, 2008. ISBN 13: 978-1-4200-1939 pp. 1-326.
- 661 14. EU Regulation No. 1169/2011 of the European Parliament and of the Council of 25 October 2011
662 on the provision of food information to consumers. *Official Journal of the European Union* **L 304**, 18–
663 63.
- 664 15. Monaci, L.; De Angelis, E.; Montemurro, N.; Pilolli, R.. Comprehensive overview and recent
665 advances in proteomics MS based methods for food allergens analysis. *TrAC, Trends Anal. Chem.*
666 **2018**, *106*, 21-36, doi: 10.1016/j.trac.2018.06.016.

667 16. Andjelković, U.; Gavrović-Jankulović, M.; Martinović, T.; Josić, D. Omics methods as a tool for
668 investigation of food allergies. *TrAC, Trends Anal. Chem.* **2017**, *96*, 107–115. doi:
669 10.1016/j.trac.2017.07.011.

670 17. Pilolli, R.; De Angelis, E.; Monaci, L. Streamlining the analytical workflow for multiplex MS/MS
671 allergen detection in processed foods. *Food Chem.* **2017**, *221*, 1747–1753. doi:
672 10.1016/j.foodchem.2016.10.110.

673 18. Pilolli, R.; De Angelis, E.; Monaci, L. In house validation of a high resolution mass spectrometry
674 Orbitrap-based method for multiple allergen detection in a processed model food.
675 *Anal. Bioanal. Chem.* **2018**, *410*, 5653–5662. doi: 10.1007/s00216-018-0927-8.

676 19. Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of
677 food proteins related to allergenicity. *Trends Food Sci. Technol.* **2016**, *49*, 24–34,
678 doi:10.1016/j.tifs.2016.01.001.

679 20. Su, M.; Liu, C.; Roux, K. H.; Gradziel, T. M.; Sathe, S. K. Effects of processing and storage on
680 almond (*Prunus dulcis* L.) amandin immunoreactivity. *Food Res. Int.* **2017**, *100*, 87–95,
681 doi:10.1016/j.foodres.2017.06.061.

682 21. Venkatachalam, M.; Teuber, S. S.; Roux, K. H.; Sathe, S. K. Effects of roasting, blanching,
683 autoclaving, and microwave heating on antigenicity of almond (*Prunus dulcis* L.) proteins. *J. Agric. Food Chem.* **2002**, *50*, 3544–3548, doi:10.1021/jf020012z.

685 22. Zhang, Y.; Zhang, J.; Sheng, W.; Wang, S.; Fu, T. J. Effects of heat and high-pressure treatments on
686 the solubility and immunoreactivity of almond proteins. *Food Chem.* **2016**, *199*, 856–861,
687 doi:10.1016/j.foodchem.2015.12.063.

688 23. Shriner, S. K.; Yang, W. W. Thermal and Nonthermal Methods for Food Allergen Control. *Food Eng. Rev.* **2011**, *3*, 26–43, doi:10.1007/s12393-011-9033-9.

690 24. Albillos, S. M.; Menhart, N.; Fu, T. J. Structural stability of amandin, a major allergen from almond
691 (*prunus dulcis*), and its acidic and basic polypeptides. *J. Agric. Food Chem.* **2009**, *57*, 4698–4705,
692 doi:10.1021/jf803977z.

693 25. Su, M.; Venkatachalam, M.; Teuber, S. S.; Roux, K. H.; Sathe, S. K. Impact of γ -irradiation and
694 thermal processing on the antigenicity of almond, cashew nut and walnut proteins. *J. Sci. Food Agric.* **2004**, *84*, 1119–1125, doi:10.1002/jsfa.1748.

696 26. Li, Y.; Yang, W.; Chung, S. Y.; Chen, H.; Ye, M.; Teixeira, A. A.; Gregory, J. F.; Welt, B. A.; Shriner,
697 S. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond
698 Protein Extracts. *Food Bioprocess Technol.* **2013**, *6*, 431–440, doi:10.1007/s11947-011-0666-8.

699 27. Dhakal, S.; Liu, C.; Zhang, Y.; Roux, K. H.; Sathe, S. K.; Balasubramaniam, V. M. Effect of high
700 pressure processing on the immunoreactivity of almond milk. *Food Res. Int.* **2014**, *62*, 215–222,
701 doi:10.1016/j.foodres.2014.02.021.

702 28. Bøgh, K. L.; Madsen, C. B. Food Allergens: Is There a Correlation between Stability to Digestion
703 and Allergenicity? *Crit. Rev. Food Sci. Nutr.* **2016**, *56*, 1545–1567, doi:10.1080/10408398.2013.779569.

704 29. Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou,
705 R.; Corredig, M.; Dupont, D.; Dufour, C.; Egger, L.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le
706 Feunteun, S.; Lesmes, U.; MacIerzanka, A.; MacKie, A.; Marze, S.; McClements, D. J.; Ménard, O.;
707 Recio, I.; Santos, C. N.; Singh, R. P.; Vigarud, G. E.; Wickham, M. S. J.; Weitschies, W.; Brodkorb,
708 A. A standardised static in vitro digestion method suitable for food—an international consensus.
709 *Food Funct.* **2014**, *5*, 1113–1124, doi:10.1039/c3fo60702j.

710 30. Bavaro, S. L.; Di Stasio, L.; Mamone, G.; De Angelis, E.; Nocerino, R.; Canani, R. B.; Logrieco, A.
711 F.; Montemurro, N.; Monaci, L. Effect of thermal/pressure processing and simulated human
712 digestion on the immunoreactivity of extractable peanut allergens. *Food Res. Int.* **2018**, *109*, 126–
713 137, doi:10.1016/j.foodres.2018.04.021.

714 31. De Angelis, E.; Pilolli, R.; Bavaro, S. L.; Monaci, L. Insight into the gastro-duodenal digestion
715 resistance of soybean proteins and potential implications for residual immunogenicity. *Food Funct.*
716 **2017**, *8*, 1599–1610, doi:10.1039/c6fo01788f.

717 32. Masthoff, L. J.; Hoff, R.; Verhoeckx, K. C. M.; van Os-Medendorp, H.; Michelsen-Huisman, A.;
718 Baumert, J. L.; Pasmans, S. G.; Meijer, Y.; Knulst, A. C. A systematic review of the effect of thermal
719 processing on the allergenicity of tree nuts. *Allergy* **2013**, *68*, 983–993, doi:10.1111/all.12185.

720 33. Cabanillas, B.; Cuadrado, C.; Rodriguez, J.; Hart, J.; Burbano, C.; Crespo, J. F.; Novak, N. Potential
721 changes in the allergenicity of three forms of peanut after thermal processing. *Food Chem.* **2015**,
722 *183*, 18–25, doi:10.1016/j.foodchem.2015.03.023.

723 34. Cabanillas, B.; Maleki, S. J.; Rodríguez, J.; Cheng, H.; Teuber, S. S.; Wallowitz, M. L.; Muzquiz, M.;
724 Pedrosa, M. M.; Linacero, R.; Burbano, C.; Novak, N.; Cuadrado, C.; Crespo, J. F. Allergenic
725 properties and differential response of walnut subjected to processing treatments. *Food Chem.*
726 **2014**, *157*, 141–147, doi:10.1016/j.foodchem.2014.02.025.

727 35. Tiwari, R. S.; Venkatachalam, M.; Sharma, G. M.; Su, M.; Roux, K. H.; Sathe, S. K. Effect of food
728 matrix on amandin, almond (*Prunus dulcis* L.) major protein, immunorecognition and recovery.
729 *LWT - Food Sci. Technol.* **2010**, *43*, 675–683, doi:10.1016/j.lwt.2009.11.012.

730 36. Mandalari, G.; Rigby, N. M.; Bisignano, C.; Lo Curto, R. B.; Mulholland, F.; Su, M.; Venkatachalam,
731 M.; Robotham, J. M.; Willison, L. N.; Lapsley, K.; Roux, K. H.; Sathe, S. K. Effect of food matrix
732 and processing on release of almond protein during simulated digestion. *LWT - Food Sci. Technol.*
733 **2014**, *59*, 439–447, doi:10.1016/j.lwt.2014.05.005.

734 37. Toomer, O. T.; Do, A.; Pereira, M.; Williams, K. Effect of simulated gastric and intestinal digestion
735 on temporal stability and immunoreactivity of peanut, almond, and pine nut protein allergens. *J.
736 Agric. Food Chem.* **2013**, *61*, 5903–5913, doi:10.1021/f400953q.

737 38. Naegeli, H.; Birch, A. N.; Casacuberta, J.; De Schrijver, A.; Gralak, M. A.; Guerche, P.; Jones, H.;
738 Manachini, B.; Messéan, A.; Nielsen, E. E.; Nogué, F.; Robaglia, C.; Rostoks, N.; Sweet, J.; Tebbe,
739 C.; Vissioli, F.; Wal, J.-M.; Eigenmann, P.; Epstein, M.; Hoffmann-Sommergruber, K.; Koning, F.;
740 Lovik, M.; Mills, C.; Javier Moreno, F.; van Loveren, H.; Selb, R.; Dumont, A.F. EFSA Panel on
741 Genetically Modified Organisms (GMO). *EFSA J.* **2017** *15*, 4862–4911, doi: 10.2903/j.efsa.2017.4862.
742