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17  Abstract

18  Members of the genus Mycoplasma and related organisms impose a substantial burden of
19 infectious diseases on humans and animals, but the last comprehensive review of

20  mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now
21  begun to support the discovery and detailed molecular biological characterization of a

22 number of specific mycoplasmal virulence factors. This review covers three categories of
23  defined mycoplasmal virulence effectors: 1) specific macromolecules including the

24  superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell-
25  activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2)
26  the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3)
27  several putative mycoplasmal orthologs of virulence effectors documented in other

28  Dbacteria. Understanding such effectors and their mechanisms of action at the molecular
29 level connects the biology of the bacteria to direct effects on the host and host responses
30 they elicit, and is expected to translate into new interventions for human and veterinary
31 mycoplasmosis.

32

33  Keywords: mycoplasma, virulence effectors, pathogenesis


http://dx.doi.org/10.20944/preprints201809.0533.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1

34  Introduction

35 Members of the genus Mycoplasma and related wall-less organisms are among the smallest
36 free-living eubacteria and have genomes thought to encode little more than the minimal
37  information essential for independent cellular life (Brown et al., 2010). Despite their

38 consequent anatomic and metabolic simplicity, mycoplasmas nevertheless impose a

39  substantial burden of infectious diseases on humans and animals. The respiratory and

40  urogenital tracts are most commonly affected but conjunctivitis, arthritis, mastitis and

41  numerous other chronic inflammatory manifestations result from mycoplasmosis. The

42  intrinsic resistance of mycoplasmas to all cell wall-targeting antibiotics plus sulfonamides,
43  trimethoprim, rifampicin, and polymixins, as well as their emerging resistance to

44  macrolides and quinolones (Bébéar and Kempf, 2005), combined with limited success in
45  developing effective vaccines especially for common conditions such as primary atypical
46  pneumonia (Waites and Talkington, 2004) highlight the importance of understanding

47  individual mycoplasmal virulence factors as potential alternative targets of specific

48  therapeutic interventions (Butt et al., 2012).

49 When the last comprehensive review of mycoplasmal pathogenicity was published
50 20 years ago, although much was known about the biology of the bacteria and host

51 responses they elicit, the identity of any specific mycoplasmal virulence effectors and their
52  mechanisms of action at the molecular level remained “largely elusive” (Razin et al., 1998).
53  Written at the dawn of the microbial genomics era, that review was necessarily limited in
54  general to non-specific factors affecting colonization, evasion of the host immune system,
55 and pro-inflammatory outcomes of infection that lead to disease. Since then, the complete

56 annotated genomes of about 70 species of mycoplasma have been published, and
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57  sophisticated epigenetic (Lluch-Senar et al., 2013), transcriptomic (Madsen et al., 2008;

58  Vivancos et al., 2010; Mazin et al., 2014; Siqueira et al., 2014), proteomic (Balasubramanian
59 etal, 2000; Catrein & Herrmann, 2011; Parraga-Nifo et al., 2012; Leal Zimmer et al., 2018;
60 Paesetal, 2018) and metabolomic analyses (Maier et al., 2013; Vanyushkina et al., 2014;
61  Lluch-Senar et al., 2015; Ferrarini et al., 2016; Masukagami et al., 2018) are now

62  accelerating the detailed characterization of pathogenic mycoplasmas. This new dawn of
63  post-genomic mycoplasmology is an occasion to summarize the current state of knowledge
64  about exactly how mycoplasmas cause diseases, and what remains to be discovered

65  through new molecular approaches.

66 This review focuses on three categories of defined mycoplasmal virulence effectors:
67 1) specific protein and lipid macromolecules; 2) small molecule effectors; and 3) putative
68 mycoplasmal orthologs of virulence effectors documented in other bacteria. Pre-requisites
69 for virulence of some mycoplasmas that may factor in pathogenicity but fall outside the

70  scope of this review because they are not yet linked to specific effectors or diseases

71  include: transmission or colonization factors, or related mechanisms (e.g., adhesins or

72  biofilms); persistence factors (e.g., CRISPR-Cas systems); in vitro competition for host

73  cellular nutrients (e.g., arginine acquisition); host defense evasion factors (e.g., capsules,
74  Dbiofilms, anti-oxidants of host-generated ROS, immunoglobulin-binding proteins,

75 immunoglobulin-specific proteases, or variable surface antigen systems); host immune

76  dysregulation by heterogeneous factors that collectively include monocyte, lymphocyte or
77  TLR agonists/antagonists (e.g., “lipid-associated membrane protein [LAMP] antigen”

78  fractions); endogenous DNA-modifying enzymes (e.g., methylases, endonucleases or

79  recombinases); and endogenous metabolic attenuation factors (e.g., iron-sulfur cluster
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80  biosynthesis proteins or dihydrolipoamide dehydrogenase). Entrypoints to the extensive

81 primary literature on those aspects of mycoplasma-host interactions have been provided

82  elsewhere (Brown et al,, 2010; May et al., 2014).

83

84  Specific Effector Proteins and Lipids

85

86 The superantigen Mycoplasma arthritidis mitogen (MAM). Findlay et al. (1939)

87  confirmed a causal relationship of certain strains of mycoplasma, subsequently named

88  Mpycoplasma arthritidis, with acute or chronic relapsing polyarthritis in rats. The

89  mitogenicity of live or cell-free extracts of M. arthritidis for cultured rodent lymphocytes

90  was established (Cole et al,, 1975, 1977; Naot et al., 1977), and Cole et al. (1981) found that

91 the transforming factor was secreted into cell-free M. arthritidis culture supernatant (MAS).

92  The specific effector identified through fractionation of MAS was a soluble protein that

93  became known as M. arthritidis mitogen, or MAM (Atkin et al., 1986). The M. arthritidis

94  gene mam (Marth_orf036; Dybvig et al., 2008) encodes a 238 a.a. basic (pl 10.1) protein

95 including a 25 a.a. signal peptide that is cleaved from the mature MAM (Cole et al., 1996).

96  Two functional domains, predicted through competitive lymphocyte proliferation

97 inhibition assays using a series of overlapping synthetic MAM peptides, were similar to

98 those of microbial superantigens, and to the “B” motif responsible for T cell activation by

99 lectins such as concanavalin A, respectively. This finding supported the large body of
100 detailed evidence that MAM is an MHC class II  chain and T cell receptor (TCR) V[ chain
101  haplotype-restricted superantigen that interacts directly with murine or human T cells

102  without any processing by antigen presenting cells (APC). MAM can also induce polyclonal
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103  plasma cell proliferation and antibody secretion by bridging T cells to resting B

104 lymphocytes (Cole and Atkin, 1991; Cole et al., 1993, 1997), and can induce cytokine and
105 nitric oxide secretion by APC possibly through dimerization of MHC class I molecules by
106  binding to the a chain of one molecule and to the a or B chain of a second (Bernatchez et al.,
107  1997; Ribeiro-Dias et al., 2003; Shio et al., 2008). Crystallographic analyses of MAM

108 monomers and dimers, complexed with TCR and MHC class Il molecules either unloaded or
109 loaded with a peptide antigen, showed that MAM adopts a conformation entirely different
110 than that of the “pyrogenic toxin” superantigens from Staphylococcus and Streptococcus,
111  and also that in the complex MAM directly interacts with the TCR a chain (Zhao et al., 2004;
112  Wangetal,, 2007; Liu et al., 2010). For example, the crystal structure of MAM in ternary
113  complex with a murine single-chain T-cell receptor and a human MHCII receptor bound to
114  asynthetic hemagglutinin peptide was depicted by Wang et al. (2007). In addition, Mu et al.
115 (2005,2011) used TLR blocking antibodies and TLR2 or TLR4 deficient mice to show that
116 MAM interacts directly with certain TLRs, possibly by cross-linking them with MHC class II
117  molecules. The interaction is potentiated by co-expression of the MHC class II cell-surface
118  receptor HLA-DR (Shio et al., 2014). The TLR2*/TLR4* mouse Ty cytokine response to

119 MAM is anti-inflammatory, dominated by IL-4, IL-6 and IL-10, but in TLR4- mice a pro-

120  inflammatory IFNy, TNFa and IL-12 response dominates. TLR4-blocking antibodies

121  suppressed IL-17, but TLR2- mice exhibited enhanced production of IL-17 in response to
122  MAM, showing that interactions between MAM and TLRs can directly modulate Ty type 1,
123  type 2 or IL-17/Th17 responses in disease (Mu et al.,, 2011, 2014). No ortholog of mam has
124  been recognized in any other species of bacteria, although a candidate paralog,

125  Marth_orf729, occurs in M. arthritidis. Neither of these proteins is essential for growth of M.
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126  arthritidis (Dybvig et al., 2008), and MAM overexpressing or knockout strains grew at the
127  same rate as wildtype M. arthritidis (Luo et al., 2008). MAM was surprisingly reported also
128  to exhibit potent DNase activity (Diedershagen et al., 2007), but this could not be confirmed
129  using MAM overexpressing or knockout strains of M. arthritidis (Luo et al., 2008).

130 Due to their capacity to induce profound immune dysregulation, superantigens have
131 been proposed to play important roles in a number of infectious or autoimmune diseases
132  including arthritis. Although MHC class II haplotype with respect to sensitivity to MAM

133  predicts the severity of reactions of rats or mice to experimental inoculation with M.

134  arthritidis, no specific natural disease or syndrome has been attributable solely to MAM
135  (Cole, 1988; Cole and Atkin, 1991; Cole et al., 2000). Both virulent and avirulent strains of
136 M. arthritidis produce MAM. Conversely, MAM knockout strains of M. arthritidis colonized
137  and persisted in the joints of experimentally infected mice as well as controls did (Luo et
138 al, 2008). Intra-articular injection of MAM caused rat synovitis that resolved

139  spontaneously in a few days with no residual deficits, but had no effects on the joints of
140 mice (Cannon et al., 1988; Sustackova et al., 1995). Systemic administration of MAM did
141  exacerbate the severity of collagen-induced autoimmune arthritis in mice, and also induced
142  the onset of arthritis in mice previously exposed to a sub-arthritogenic dose of collagen
143  (Cole and Griffiths, 1993). Splenic lymphocytes recovered from mice injected with MAM
144  become anergic in vitro, and such mice were less susceptible to experimental atopic

145  dermatitis and rejected skin allografts more slowly than controls (Cole and Atkin, 1991;
146  Cole et al, 1993). MAM is not toxic (Cole, 1988; Cole et al., 2000), but a MAM

147  overexpressing strain of M. arthritidis was lethal to mice having a defect in the complement

148  C5 protein (Luo et al,, 2008). Antibodies crossreactive with MAM antigen occur in sera of
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149  healthy humans as well as patients affected by rheumatoid arthritis or systemic lupus

150 erythematosus (Sawitzke et al., 2000; da Rocha Sobrinho et al., 2011). Despite the lack of
151  direct evidence for it, the misconception that MAM itself can induce spontaneous chronic
152  arthritis in rodents has been regrettably perpetuated in some recent papers (Zhao et al.,
153  2004; Liu et al., 2010).

154

155 The community-acquired respiratory distress syndrome (CARDS) toxin. Exploration
156  of M. pneumoniae binding to alternative host ligands led to the discovery of a hypothetical
157  protein (MPN372) that bound human surfactant protein A (Kannan et al., 2005) and

158 annexin A2 (Somarajan et al., 2014). Further characterization of this protein indicated that
159 it belongs to the superfamily of toxins that includes pertussis toxin, diphtheria toxin and
160 cholera toxin (Becker et al,, 2015), and functional analysis indicated that it mediates ADP-
161 ribosylation of at least five host proteins (Kannan et al., 2014). MPN372 was renamed

162 community-acquired respiratory distress syndrome (CARDS) toxin, and appears to be

163  unique to M. pneumoniae among mycoplasmas (Kannan and Baseman, 2006). Convalescent
164  serafrom M. pneumoniae-infected patients reacted strongly to purified CARDS toxin,

165 indicating that it is synthesized during infection and contains immunogenic epitopes.

166  Treatment of mammalian cells and tracheal rings with CARDS toxin resulted in

167  vacuolization and cell death, and exposure of mice and baboons to purified toxin resulted in
168  pulmonary lesions reminiscent of M. pneumoniae disease (Hardy et al., 2009; Kannan and
169 Baseman, 2006). CARDS toxin was associated with airway hyperresponsiveness

170 characterized by eosinophil and lymphocyte infiltration in exposed animals, and marked

171  increasesinIL-1a, 1B, 6,12, 17, TNF-a and IFN-y (Hardy et al., 2009; Medina et al., 2012).
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172  Interestingly, detection of CARDS toxin was deemed the most sensitive way to diagnose
173  persistent M. pneumoniae infection in patients with refractory asthma (Peters et al., 2011).
174  CARDS toxin production was found to be significantly variable between strains, and strains
175  producing the highest levels of toxin were associated with more severe clinical

176  presentation as measured by colonization, replication, persistence, and lung histopathology
177  in a murine model (Techasaensiri et al., 2010). Taken together, these findings present the
178  possibility that the airway hyperresponsiveness associated with high levels of CARDS toxin
179  contributes to reactive airway disease, and explains the successful use of this molecule as a
180  diagnostic antigen in refractory asthma cases.

181 CARDS toxin is not constitutively expressed in vitro. Its mRNA is most abundant
182  during log-phase growth, and infection of mammalian cells leads to enhanced expression
183  versus broth-grown cultures. In addition, quantitation of CARDS toxin in the lung tissue of
184  experimentally infected animals demonstrated further increases in expression, indicating
185  that CARDS toxin production is carefully regulated by M. pneumoniae (Kannan et al., 2010).
186  Though purified toxin elicits lung pathology, CARDS toxin produced by M. pneumoniae

187  during both in vitro and in vivo infection remains exclusively associated with the bacterial
188  cells, with a small percentage exposed on the surface and the majority remaining

189  intracellular (Kannan and Baseman, 2006; Kannan et al., 2010). Despite the lack of

190  secretion, CARDS toxin is likely internalized by host cells using clathrin-mediated

191 endocytosis. Recombinant CARDS toxin is readily internalized via this mechanism,

192  although cell-associated toxin uptake exploiting the same mechanism has yet to be

193  described (Krishnan et al., 2013). Following internalization, vacuole formation associated

194  with the host endosomal GTPase Rab9 occurs (Johnson et al., 2011), and CARDS toxin
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195  stimulates the NLRP3 inflammasome complex by catalyzing the ADP-ribosylation of NLRP3
196 (Boseetal, 2014). Manipulation of host Rab GTPases including Rab9 has been implicated
197  in pathogen-mediated uptake and intracellular survival for other bacteria and enveloped
198  viruses (Smith et al., 2007; Murray et al., 2005). Given the observation of intracellular M.
199  pneumoniae during infection and the association of CARDS toxin with increased bacterial
200 persistence, it is plausible that toxin-mediated endocytosis and vacuolization represents a
201  strategy unique among mycoplasmas to promote host cell invasion and intracellular

202 survival.

203

204  Sialidase. Carbohydrate cleavage from complex substrates is associated with virulence in
205 many pathogens. Formerly thought to be absent or rare among mycoplasmas, sialidase
206  (neuraminidase) is presently the best-characterized mycoplasmal effector of virulence in
207  the category of glycosidases. The surface-anchored exo-a-sialidase expressed by the avian
208  pathogen Mycoplasma synoviae cleaves terminal a-2,6-linked sialic acid from IgG and other
209  serum glycoproteins, and can remove «-2,3-linked sialic acid from tracheal mucus to

210 promote colonization and persistence in the avian trachea [Bercic et al., 2011]. Quantitative
211 measurements of sialidase activity among strains of M. synoviae indicated that the level of
212 activity varies significantly among strains and correlates significantly with strain virulence
213  (Mayetal, 2007). Activity level is also proportional to the avidity of M. synoviae binding to
214  sialylated host erythrocyte surface receptors, suggesting a functional balance between the
215  two activities (May and Brown, 2011).

216 Because the proportions of a-2,3- and «-2,6-linked sialo-conjugates expressed at

217  various anatomical sites differ among hosts, glycosidic linkage specificities may be an

10
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218 important determinant of host range and anatomical niche tropisms. For the avian

219  pathogen M. gallisepticum the preferred receptors are a-2,6-linked sialo-conjugates

220  [Glasgow and Hill, 1980], and its sialidase, a true homolog of that expressed by M. synoviae
221  (May and Brown, 2009), degrades a-2,6-linkages more efficiently than a-2,3-linked

222 substrates (Sethi and Miiller, 1972). Disruption of the sialidase gene in M. gallisepticum
223  resulted in an attenuated phenotype as measured by bacterial recovery rates, tracheal
224 lesion scores, and tracheal thickness measurements in experimentally infected Leghorn
225  chickens, although virulence could not be completely restored by genetic complementation
226  of sialidase activity (May et al., 2012).

227 Comparative genome sequencing of the hypervirulent Mycoplasma alligatoris

228 revealed the presence of two orthologous sialidase genes, one surface-associated and the
229  other cytosolic, whereas closely-related Mycoplasma crocodyli lacked these genes, a key
230 difference between these otherwise similar genomes (Brown et al., 2011). This is

231 meaningful because M. crocodyli tends to cause disease with a classical course for

232  mycoplasmosis, whereas M. alligatoris has a degree of lethal virulence that is

233  unprecedented in the genus (Brown et al., 2004, 2011). Infection of alligator fibroblasts
234  with M. alligatoris induces apoptosis, and the induction of cell death can be blocked by the
235 addition of the sialidase competitive inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic
236  acid (Hunt and Brown, 2005, 2007). The sialidases of M. alligatoris were specific for

237  terminal a-2,3-linked sialic acids; cleavage of a-2,6-linked residues from galactose was not
238  observed (Shama SM, Brown DR, unpublished).

239 Strains of Mycoplasma canis, Mycoplasma cynos and Mycoplasma molare express an

240  alternative form of sialidase that is secreted into culture supernatant fluid (May and

11
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241  Brown, 2009). The secreted sialidase of M. canis cleaved a-2,3-linked sialic acid rapidly
242  from fetuin, and a-2,6-linked sialic acid from transferrin at a slower rate (D. L. Michaels et
243  al., submitted). Sialidase (either the enzymatic activity, putative genes, or both) has also
244  been reported for strains of Mycoplasma anseris, Mycoplasma cloacale, Mycoplasma

245  corogypsi, Mycoplasma meleagridis, Mycoplasma neurolyticum and Mycoplasma pullorum,
246  but contribution of the activity to virulence of those species is unexplored (Bercic et al.,
247 2008, 2011). Aretrospective survey indicated that sialidase is not a virulence factor in M.
248  pneumoniae mycoplasmosis (May and Brown, 2011).

249

250  Cytotoxic nucleases. Cytotoxic nucleases have been described for Mycoplasma

251  gallisepticum (MGA_0676), Mycoplasma genitalium (MG_186), Mycoplasma penetrans (P40),
252 Mycoplasma hyorhinis and Mycoplasma hyopneumoniae (Mhp379). Though not encoded by
253  homologous genes, in each case nuclease activity was membrane-associated, relied on

254  divalent cations (Ca2+, Mg2+, or both), and contributed to classical apoptotic cell death in
255  vitro (Paddenberg et al., 1998; Bendjennat et al., 1999; Schmidt et al., 2007; Xu et al,,

256  2014). In contrast, the cytotoxic nuclease Mpn133 of M. pneumoniae was found to bind
257  directly human lung cells and mediate apoptosis through a caspase-independent

258  mechanism. Host cell attachment and Mpn133 internalization is distinct from nuclease
259  activity, and is attributed to a glutamic acid-, lysine- and serine-rich (EKS) region. Mpn133
260 s distinct not only from the cytotoxic nucleases of M. gallisepticum, M. penetrans, M.

261  hyorhinis, and M. hyopneumoniae, but also from its homologue MG_186 of M. genitalium by

262  possessing the EKS region. The ability to translocate only the nuclease protein rather than

12
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263  the entire bacterial cell is a unique feature associated with this motif (Somarajan et al.,
264  2010).

265 The genetic disruption by random mutagenesis of multiple M. gallisepticum genes
266 identified the uncharacterized lipoprotein MslA as a factor important in virulence, though
267  the mechanism for attenuation of knockout mutants in the Leghorn chicken model was not
268 immediately obvious (Szczepanek et al., 2010). The mslA gene is part of an operon

269  encoding a predicted nuclease, leading Masukagami et al. (2013) to hypothesize that the
270  genetic locus was important for interactions with nucleic acids. Recombinant MslA was
271  found to bind random oligonucleotides composed of either single-stranded RNA, single-
272  stranded DNA, or double-stranded DNA, presumably for nuclease degradation and

273  subsequent transport across the M. gallisepticum membrane. Thus, MslA appears to

274  contribute to virulence by conferring an advantage to M. gallisepticum rather than inflicting
275  damage on the host cells (Masukagami et al. 2013).

276

277  Cell-activating lipopeptides. The chance observation that live or heat-killed Mycoplasma
278  orale could activate cytolytic activity of cultured murine macrophages (Loewenstein et al.,
279  1983) led to a number of studies showing that lipoprotein fractions from several other
280  species of mycoplasma have similar capabilities. This has been studied most extensively in
281  Mycoplasma fermentans, motivated in part by the early observation that an extract of M.
282  fermentans induced IL-6 production by murine macrophages and human monocytes

283  (Quentmeier et al., 1990), because M. fermentans was long suspected to be an agent of

284  rheumatoid arthritis (Jonsson, 1961; Mardh et al., 1973) and high concentrations of IL-6

285  are present in the synovial fluid of many affected individuals. Also, M. fermentans was later

13
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286  suspected to be a significant co-factor in the progression of AIDS (Montagnier and

287  Blanchard, 1993; Blanchard and Montagnier, 1994). The specific effector identified through
288 fractionation of M. fermentans lipophilic proteins was a diacylated 2-kD macrophage

289  activating lipopeptide named MALP-2 (Miihlradt et al., 1997). Individual clones of M.

290  fermentans differed by as much as 50 fold in the amount of specific activating activity they
291  produced. The single M. fermentans gene malp in fact encodes an amphiphilic, N-terminal
292  membrane-anchored 428 a.a. precursor lipoprotein called P48 (Kostyal et al., 1994; Hall et
293  al.,, 1996), M161Ag (Matsumoto et al., 1998) or MALP-404 (Calcutt et al,, 1999). MALP-404
294  is post-translationally cleaved to generate the residual diacylated 14 a.a. MALP-2

295 lipopeptide S-[2,3-bisacyl(C16:0/C18:0+C1s:1)0xypropyl]cysteinyl-GNNDESNISFKEK (Figure
296  1; Mihlradt et al., 1997). The soluble C-terminal fragment is thus permanently released
297  from the mycoplasmal cell surface (Calcutt et al., 1999; Davis and Wise, 2002). Candidate
298  orthologs of malp are present in Mycoplasma agalactiae, Mycoplasma bovis and Mycoplasma
299  gallisepticum (Rosati et al., 1999; Markham et al., 2003; Lysnyansky et al., 2008), and

300 suspected to occur in certain other mycoplasmas (Hall et al., 1999). Similar diacylated

301 lipopeptides S-[2,3-bisacyl(C16:0/C1s:0)oxypropyl]cysteinyl-GQTDNNSSQSQQPGSGTTNT and
302  S-[2,3-bisacyl(C1i6:0/C1s:0)oxypropyl]cysteinyl-GQTN, derived from alleles of the variable
303 lipoprotein vip genes of Mycoplasma hyorhinis (Citti et al., 2000), were comparable to

304 MALP-2 in their potent capacity to stimulate macrophages (Miihlradt et al., 1998). This was
305 significant because M. hyorhinis is a proven agent of arthritis in swine, and it was suggested
306 thatsuch lipopeptides may be the cause of mixed inflammatory reactions to many species
307 of mycoplasma. A fibroblast-activating example called LP44, having the N-terminal

308  structure S-[2,3-bisacyloxypropyl]-cysteinyl-GDPKHPKSFTEWV-, occurs in Mycoplasma

14
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309  salivarium (Shibata et al., 2000). These lipopeptides are all distinctive in their lack of a third
310 N-terminal fatty acid, which was shown to account for their exceptional potency, versus
311 other bacterial lipopeptides, to stimulate macrophages and several other cell types

312  (Miihlradtet al, 1997, 1998; Weigt et al., 2003; Link et al., 2004; Borsutzky et al., 2005;
313 Wilde et al., 2007). The lipid moieties are the effective agonists, which specifically engage
314  co-expressed TLR2/TLR6 or orthologs with MyD88-dependent NFxB and MAP protein

315 kinase activation as pro-inflammatory consequences (Garcia et al., 1998; Calcutt et al.,

316  1999; Takeuchi et al., 2000, 2001; Nishiguchi et al., 2001; Seya and Matsumoto, 2002;

317  Okusawa et al.,, 2004; Nakao et al., 2005; Into et al., 2007; Mitsunari et al., 2006; Shimizu et
318 al, 2008; Oven et al., 2013). The “Multiple-Banded Antigen” (MBA) of Ureaplasma spp. is
319  possibly another example occurring in the family Mycoplasmataceae. Treatments with a
320  synthetic diacylated N-terminal fragment of MBA, dipalmitoyl-S-glyceryl-cysteinyl-

321  SNSTVKSKLSNQFAKSTDGK, induced the same TLR-dependent pro-inflammatory effects
322  resulting in adverse outcomes of pregnancy in C3H/HeN mice (Uchida et al., 2013).

323 Ruiter and Wentholt (1952) first isolated M. fermentans from human patients with
324  ulcerative lesions of the penis. The strains produced abscesses when inoculated into the
325 footpads of mice. Although the organism’s pathogenic potential has been investigated

326  extensively since then (Lo et al., 1993; Stadtldander et al., 1993; Montagnier and Blanchard,
327  1993; Blanchard and Montagnier, 1994; Hayes et al., 1996; Gilroy et al., 2001; Yanez et al.,
328  2013), no natural disease or persistent immunopathology has been attributed exclusively
329 to any specific activating diacylated or triacylated lipopeptide from either M. fermentans or
330 any other species of mycoplasma. Instead, the principal pathogenic effect of exposure to the

331 individual mycoplasmal lipoproteins characterized to date is a transient inflammation
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332  (Lihrmann et al.,, 2002), marked by local infiltration of granulocytes, macrophages and
333  lymphocytes, production of pro-inflammatory cytokines, and complement activation

334  (Deiters and Miihlradt, 1999; Matsumoto and Seva, 1999; Shimizu et al., 2008a). Induced
335  apoptosis of the activated cells can be an outcome of NFkB and MAP protein kinase

336  activation (Hall et al., 2000; Into et al., 2004). Pathogenesis is thought to result not from
337 any single lipopeptide, but instead collectively from the multiple effectors likely present in
338 thelipid-associated membrane fraction of the mycoplasmas (Lithrmann et al., 2002;

339  Shimizu et al., 2007, 2008b). Exposure to MALP-2 alone did stimulate the bone-resorbing
340  activity of osteoclasts in bone, or isolated from bone and cultured on dentine slices, effects
341  thought to mimic the bone-destructive processes in arthritis (Piec et al., 1999). Because of
342  its amphiphilic nature, MALP-2 remains in vivo at the site where it is either generated or
343  injected. It has thus principally a depot effect, while more soluble mycoplasmal

344 lipopeptides can be expected to circulate and so be more likely to have systemic effects
345  (P.F. Miihlradt, pers. comm.). This property has lead to translational demonstrations of its
346  potential therapeutic utility, such as a mucosal adjuvant or to accelerate skin wound

347  healing (Rharbaoui et al., 2002, 2004; Deiters et al., 2004). However, when fed a high-fat
348  diet, mice lacking the LDL receptor developed intense atherosclerotic lesions in the aorta
349  following intraperitoneal injection with MALP-2 (Curtiss et al., 2012).

350

351 Phosphocholine-containing glycoglycerolipids. Reminiscent of the chance discovery of
352  activating lipopeptides in M. orale-contaminated macrophage cultures, novel glycolipids
353  were detected in what turned out to be M. fermentans-contaminated HTLV-1-infected Ty

354  cell cultures (Matsuda et al., 1993, 1995). Fractionation of conditioned culture medium
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355 identified two alkaline-labile glycophospholipids called GGPL-I and GGPL-III that were

356 distinctive by their phosphocholine content. Once again motivated by the suspected

357  associations between M. fermentans and rheumatoid arthritis or AIDS, their structures

358 were determined to be 6'-0O-phosphocholine-a-glucopyranosyl-(1'-3)-1,2-diacyl-sn-

359  glycerol and 1"-phosphocholine,2"-amino dihydroxypropane-3"-phospho-6'-a-

360 glucopyranosyl-(1'-3)-1,2-diacyl-glycerol, respectively. The structures of GGPL-I and GGPL-
361 Il were depicted by Matsuda et al. (1994, 1997). The structure of a third example from M.
362  fermentans called MfGL-II was shown to be 6'-0-(3"-phosphocholine-2"-amino-1"-

363 phospho-1", 3"-propanediol)-a-D-glucopyranosyl-(1'->3)-1,2-diacyl-glycerol (Zahringer et
364  al.,, 1997). Its structure was depicted by Kornspan and Rottem (2012). Although there are
365  strain differences, these individually constitute between 20% and 35% of the total and thus
366  collectively the vast majority of phospholipids of M. fermentans. MfGL-II was shown to

367 effect TNFa release by human monocytes, and to induce protein kinase C activation, nitric
368 oxide production, and prostaglandin E secretion by rat astrocytes or mixed glial cell

369 cultures via pro-inflammatory TLR2- and TLR4-independent mechanisms (Ben-Menachem
370 etal, 1998; Brandenburg et al., 2003; Sato et al., 2010). The terminal phosphocholine

371 moiety is the likely effective agonist (Ben-Menachem et al., 1998; Rottem, 2002; Kornspan
372  and Rottem, 2012).

373 The phosphocholine-containing glycoglycerolipids are antigenic. Rabbit polyclonal
374  anti-M. fermentans antiserum stained GGPL-I and GGPL-III (Matsuda et al., 1997), and anti-
375  GGPL-III specific antibodies were detected in sera of 29 of 65 HIV-1 infected individuals
376  versus only 2 of 117 healthy controls, as well as 32 of 84 synovial tissue specimens from

377  rheumatoid arthritis patients versus 0 of 30 osteoarthritis or normal controls (Li et al.,
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378  1997; Kawahito et al., 2008). Although intradermal or intraperitoneal administration of
379  GGPL-III alone did not cause arthritis or allergic inflammation in mice, it did exacerbate
380  both collagen-induced arthritis and nickel allergy, diseases related to autoantigens or

381 autoantibodies (Sato et al.,, 2010).

382

383  Small molecule effectors: hydrogen peroxide. Tang et al. (1935, 1936) were among the
384 first to report that certain mycoplasmas produce discoloration of blood pigments when
385 grown in the presence of blood, a quantitative effect associated with erythrocyte hemolysis
386  that could be used to discriminate among strains (Warren, 1942). Somerson et al.

387 (1965a,b) and Thomas and Bitensky (1966) showed that a hemolysin produced by M.

388  pneumoniae, Acholeplasma laidlawii, M. neurolyticum and M. gallisepticum was dialysable,
389 non-proteinaceous and highy labile. Because catalase and horseradish peroxidase

390 prevented the hemolysis, and a specific catalase inhibitor promoted hemolysis, they

391 tentatively identified this effector as either H202 or a very low molecular weight organic
392  peroxide. Thus it was speculated that mycoplasmal adhesion to host cells in vivo could

393  expose the host to mycoplasmal peroxide and its reactive free radical decomposition

394  products in toxic amounts sufficient to alter local structural integrity, cellular biochemistry
395  and antigenicity (Somerson et al., 1965b; Cohen and Somerson, 1967; Lipman and Clyde,
396 1969).

397 A peroxide hemolysin is produced by many mycoplasmas, including non-pathogens,
398 in amounts that are species and strain-variable (Cole et al., 1968; Sobeslavsky and Chanock,
399  1968; Brennan and Feinstein, 1969; Johnson and Muscoplat, 1972; Pijoan, 1974; Miles et

400 al, 1991; Megid et al,, 2001; Khan et al., 2005; Szczepanek et al., 2014). Hydrogen peroxide
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401  synthesis by mycoplasmas is linked to glycerol oxidation (Somerson et al., 1965a; Low et
402  al.,, 1968; Low, 1971; Miles et al., 1991; Vilei and Frey, 2001). The key step is conversion of
403  phosphorylated glycerol to dihydroxyacetone phosphate, a substrate for glycolysis, by the
404  FAD-dependent mycoplasmal enzyme L-a-glycerol-3-phosphate oxidase in a reaction

405  having H202 as a by-product (Wadher et al., 1990; Westberg et al., 2004; Bischof et al.,
406  2009; Hames et al., 2009). This pathway is also present in the mosquito-associated

407  pathogens Spiroplasma culicicola and Spiroplasma taiwanense, but absent from avirulent
408  Spiroplasma diminutum and Spiroplasma sabaudiense (Chang et al., 2014). Since

409 mycoplasmas lack catalase (except M. iowae; Pritchard et al., 2014) this might seem

410 potentially suicidal (Brennan and Feinstein, 1969; Lynch and Cole, 1980), but self-injury
411  from cytoplasmic peroxide formation may be limited by a relatively inefficient substrate
412  uptake system that is restricted to passive diffusion mediated by the glycerol facilitator
413  protein GIpF and its accessory proteins (Hames et al., 2009; Somarajan et al., 2010;

414  Grofshennig et al., 2013). Glycerophosphocholine, potentially available for example from
415 mammalian host lung cells, is an alternative source of phosphoglycerol for some

416  mycoplasmas and spiroplasmas following uptake via the permease GlpU and its accessory
417  proteins (Schmidl et al., 2011; Grof3hennig et al., 2013; Chang et al., 2014).

418 For many years the only direct evidence of peroxide as an effector of mycoplasmal
419  virulence was a report that mice depleted of both blood and tissue catalase activity

420  developed M. pulmonis-induced pneumonia with faster onset and greater severity than
421  mice lacking only tissue catalase or normal controls (Brennan and Feinstein, 1969).

422  Indirect evidence included the positive correlation between the rate of glycerol oxidation

423  and strain-dependent virulence of M. mycoides subsp. mycoides SC in cattle (Houshaymi et
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424  al, 1997). This was later attributed specifically to a more efficient glycerol uptake system
425  encoded by the gtsABC operon that is present in highly virulent strains but absent from less
426  virulent strains of certain species affiliated with the M. mycoides phylogenetic cluster (Vilei
427  and Frey, 2001; Djordjevic et al., 2003). This glycerol ABC transporter enables significantly
428  faster production and higher endpoint accumulation of H202 in mycoplasma culture

429 medium containing a concentration of glycerol equal to that in animal serum. M. mycoides
430  subsp. mycoides SC need not detoxify this excess peroxide to limit cytoplasmic self-injury
431  because its phosphoglycerol oxidase GlpO is anchored in the mycoplasmal membrane, with
432  surface-exposed epitopes (Pilo et al., 2005), so the peroxide it forms is presumably

433  excreted instantly. Studies of primary bovine nasal epithelial cells inoculated in vitro with
434  virulent M. mycoides subsp. mycoides SC indicated that through this excretion mechanism
435  adherent mycoplasmas can expose the host to mycoplasmal peroxide in amounts at least
436 30 fold greater than that accumulated in culture medium. The model for triggering host cell
437  inflammation by this mechanism that integrates an active glycerol transport and

438  phosphorylation system, glycerol facilitator factor, and glycerol kinase was depicted by Pilo
439  etal. (2005). Cytotoxity was directly attributable to GlpO-dependent oxidative damage to
440  hostcells (Pilo et al., 2005, 2007) and the severity of damage correlated positively with the
441  variable rate of cytoadherence among strains (Bischof et al., 2008).

442 Even species like M. gallisepticum and M. pneumoniae that have predominantly

443  cytoplasmic glycerol oxidation can liberate peroxide in amounts toxic to cultured

444  fibroblasts or HeLa cells, as demonstrated through in vitro infections comparing virulent
445  wildtype to attenuated isogenic knockout mutants of glycerol kinase GlpK, GlpO,

446  phosphoglycerol dehydrogenase GlpD, glycerophosphodiesterase GlpQ, or the GlpF
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447  accessory proteins Mpn133 and Mpn284 (Hames et al., 2009; Schmidl et al., 2011;

448  Grofdhennig et al., 2013; Szczepanek et al., 2014). A schematic illustration of glycerol

449  metabolism linked to H20; excretion by M. pneumoniae was depicted by Grof3hennig et al.
450  (2013). Genetic complementation restored wildtype cytotoxicity to an attenuated GlpU

451  permease knockout mutant of M. pneumoniae (Grofshennig et al., 2013). However, GlpO and
452  GlpK knockout mutants that were not cytotoxic to co-cultured fibroblasts in vitro still

453  caused tracheal lesions in chickens (Szczepanek et al., 2014). Mycoplasma iowae encodes an
454  active catalase KatE that, when expressed in M. gallisepticum, reduced the amount of H20>
455  accumulated in conditioned broth and also lethality in a Caenorhabditis elegans toxicity
456  assay (Pritchard et al., 2014). Candidate alternatives to catalase or superoxide dismutase as
457  means of protection from self-peroxidation by such species have been proposed (Chen et
458  al., 2000; Jenkins et al., 2008; Machado et al., 2009; Saikolappan et al., 2009).

459

460 Small molecule effectors: hydrogen sulfide. Contrary to assumptions based on the

461  effects of catalase and catalase inhibitors on erythrocyte hemolysis by M. pneumoniae

462  described above, Grofdhennig et al. (2016) found unexpectedly that a GlpO knockout

463  mutant of M. pneumoniae, unable to produce H20>, could still lyse erythrocytes in a blood
464  agar overlay via B-hemolysis. When incubated with the GlpO knockout in liquid suspension,
465 the erythrocytes remained intact but underwent the distinctive discoloration from red to
466  brown of a-hemolysis. From those findings the investigators concluded that H202 plays
467  only a minor if any role in hemolysis by M. pneumoniae. Further, the discoloration of

468 hemoglobin was specifically attributable to cysteine-dependent formation of hydrogen

469  sulfide ions by the mutant. The candidate M. pneumoniae cysteine desulfhydrase /
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470  desulfurase HapE was subsequently identified and characterized, and incubation with

471  purified HapE was sufficient to lyse erythrocytes (Grofshennig et al., 2016). Homologs of
472  HapE occur widely throughout the genera Mycoplasma, Ureaplasma, and Spiroplasma, and
473  their contribution to virulence of other species remains to be investigated.

474

475  Small molecule effectors: ammonia. Ammonia is a by-product of ATP synthesis via

476  arginine hydrolysis by some species of both pathogenic and non-pathogenic mycoplasmas
477  (Schimke and Barile, 1963; Barile et al., 1966; Sugimura et al,, 1993). The highly labile

478 ammonia generated by arginine deiminase and carbamyl phosphokinase in this pathway is
479  potentially toxic through direct chemical reactivity plus the increase in pH that ammonium
480 ions cause in the presence of water. The most direct evidence of mycoplasmal ammonia
481  toxicity is a report that the inflammatory response to cutaneous inoculation of rabbits with
482  viable M. salivarium suspended in arginine medium was greater than to M. salivarium in
483  arginine-free medium or killed M. salivarium (Matsuura et al., 1990). In exceptional

484  circumstances, lethal hyperammonaemia has been attributed to M. hominis infection in
485  humans (Watson et al.,, 1985; Wylam et al., 2013). Members of the genus Ureaplasma

486  depend principally on urea hydrolysis to synthesize ATP (Romano et al., 1986; Thirkell et
487  al, 1989; Smith et al., 1993). Indirect evidence that the ammonia produced by urease is
488  toxic includes a report that inoculation with ureaplasmas caused ciliostasis and cytotoxicity
489  within 24 hr in a bovine oviduct explant model, effects that could be simulated by addition
490 of urea and jack bean urease to the culture medium of uninoculated controls (Stalheim et
491  al., 1976; Stalheim and Gallagher, 1977). The most direct evidence of ureaplasmal ammonia

492  toxicity is that intraperitoneal injection of the bacterial urease inhibitor flurofamide
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protected mice against intravenous challenge with lethal doses of either intact U.
urealyticum or the cytoplasmic fraction of sonicated ureaplasmas, whereas unprotected
control mice died within 5 min after challenge (Ligon and Kenny, 1991). Lethal
hyperammonaemia syndrome has also been attributed to U. urealyticum infection in
humans (Bharat et al., 2015). Both mycoplasmas and ureaplasmas may limit self-injury
from cytoplasmic ammonia by eliminating some of it via citrulline biosynthesis (Schimke
and Barile, 1963; Smith et al., 1992). A second potentially pathogenic outcome of ammonia
release by ureaplasmas is the formation of struvite (NH4sMgPO4) and precipitation of
insoluble struvite crystals at high pH in the urinary tract (Grenabo et al., 1988). This has
been attributed specifically to ammonia production because it too is preventable by
flurofamide and other bacterial urease inhibitors (Takebe et al., 1984; Texier-Maugein et

al., 1987; Nagata et al., 1995).

Candidate Effectors

Glycosidases. The occurrence of host-derived polysaccharide, glycoprotein or glycolipid
degrading enzymes among the mollicutes is intriguing because they are documented
virulence effectors in other bacteria, but specific evidence of this has been explored only to
a limited extent for mycoplasmas. Activities that have been detected by functional assay or
predicted by genome annotation in at least one species of Mycoplasma and are associated
with virulence in other pathogens include sialidase (11 species), 3-galactosidase (two

species), N-acetyl-B-hexosaminidase (five species), a-mannosidase (three species),
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515 hyaluronidase (four species), a-amylase (15 species), and -glucosidase (11 species).

516  Multiple alleles of each enzyme have been reported among species.

517 Deglycosylation of host glycoconjugates can be accomplished through either

518 individual or cooperative effects of exoglycosidases, and can lead to highly invasive disease
519  orresultin exposure or formation of new host antigens and autoimmune complications of
520 infection (Biberfeld, 1979; Matsushita and Okabe, 2001; King et al., 2006). For example,
521 deglycosylation of host biantennary glycoconjugates by the sequential actions of the

522  streptococcal exoglycosidases sialidase (NanA), $-galactosidase (BgaA), N-

523  acetylglucosaminidase (StrH) and mannosidase was depicted by King et al. (2006). 3-

524  galactosidase has been shown to play a role in bacterial adherence and serial

525  deglycosylation of the host extracellular matrix (King et al., 2006; Limoli et al., 2011). N-
526  acetyl-B-hexosaminidase has the potential to alter attachment and dispersion in biofilms
527  produced by several Gram-positive and Gram-negative species (Manuel et al., 2007). The
528 relevance of a-mannosidase to bacterial virulence is unclear; however, genes encoding this
529  enzyme are almost exclusively found in pathogenic bacteria rather than commensals (Suits
530 etal, 2010). Bacterial hyaluronidases have been implicated in direct tissue damage and
531  sterile inflammation (Horton et al.,, 1998, 1999; Knudson et al., 2000; Starr and Engleberg,
532 2006; Termeer et al., 2002). a-glucan degradation by a-amylase is implicated in increased
533 invasiveness, loss of extracellular matrix integrity, and prolonged survivability by

534  increasing nutritional fitness (van Bueren et al., 2007; Shelburne et al., 2009; Abbott et al.,
535  2010). Some Spiroplasma spp. possess chitinases that have the potential to injure their

536 arthropod hosts as a consequence of nutrient scavenging from the chitin exoskeleton or
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537  similar glycoprotein substrates (Gooday, 1999; Alexeev et al., 2011; Frederiksen et al.,

538 2013).

539 At least 11 species of mollicutes feature (-glucosidase (enzymatic activity, putative
540 genes, or both), but its potential role in virulence has been explored only for M. mycoides
541  subsp. mycoides. Strains of M. mycoides subsp. mycoides displaying different degrees of

542  pathogenicity have corresponding sequence diversity in the $-glucosidase gene bgl. An
543  Ala204Val substitution is characteristic of attenuated strains, suggesting that -glucosidase
544  featuring Val204 could contribute to the disease process. Co-incubation of embryonic

545  bovine lung cells with virulent strains of M. mycoides subsp. mycoides featuring Val204

546  resulted in rapid cell death in the presence of exogenous disaccharides, whereas co-

547  incubation of host cells with attenuated strains of M. mycoides subsp. mycoides possessing
548  Ala204 and the same sugars, or with Val204 strains in the absence of exogenous sugars, did
549 not. However, strains featuring the Val204 allele had lower -glucosidase activity,

550 suggesting that additional virulence factors may be under catabolite repression. Strains
551  with the Val204 allele were also found to have higher rates of survivability and persistence,
552 which may contribute to the disease process by prolonging bacteremia (Vilei et al., 2004;
553  Vilei and Frey, 2007). Further characterization of their glycosidases is thus an area with
554 translational potential for novel strategies to treat or prevent mycoplasmosis.

555

556 CAMP factor. Erythrocytes and other cells that have substantial amounts of sphingomyelin
557  in their plasma membranes become sensitized, through exposure to sphingomyelinase, to
558  cooperative lysis by effector molecules collectively referred to as Christie Atkins Munch-

559  Petersen (CAMP) factors (Christie et al., 1944; Sterzik and Fehrenbach, 1985). Examples of
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560 CAMP factors include the excreted streptococcal proteins Cfa and Cfb and their orthologs in
561 other Gram-positive bacteria (Podbielski et al., 1994; Gase et al., 1999; Sérensen et al.,

562  2010), the cholesterol oxidase of Rhodococcus equi (Fernanandez-Garayzabal et al., 1996),
563 and certain pore-forming RTX toxins of Gram-negative bacteria (Frey et al., 1994; Jansen et
564  al.,, 1995). The CAMP factors can effect or exacerbate cytolysis in the presence of either

565  host- or polymicrobial community-derived sphingomyelinase (Nakatsuji et al., 2010; Lo et
566 al., 2011). A CAMP factor(s) was present in strains of M. fermentans, M. hominis, M.

567  gallisepticum and M. penetrans, and absent from a strain of M. pneumoniae examined

568 (Kornspan et al., 2014). In contrast, M. capricolum, M. hyorhinis and M. mycoides subsp.

569  mycoides displayed an unusual reverse CAMP phenomenon, which manifested as

570  protection of erythrocytes against lysis in vitro by Staphylococcus aureus 3-hemolysin, and
571  was dependent on mycoplasmal cardiolipin synthetase activity. A strain of M. penetrans
572  had both positive and reverse CAMP phenotypes, showing that the mechanisms can be

573 independent. No ortholog of any classical CAMP factor is evident in the mollicute genomes
574  annotated to date. The evidence from M. pneumoniae indicates that the CAMP factor of

575 mycoplasmas is not simply hydrogen peroxide, therefore the molecular basis of the

576  cooperative cytolysis observed in vitro and its role in effecting mycoplasmal virulence

577  remain to be established.

578

579  AMPylators. AMPylation is a form of protein modification achieved by covalent addition of
580 adenosine monophosphate (AMP) to hydroxyl side chains. Bacterial AMPylating enzymes
581 may act as virulence effectors when they are translocated from extracellular bacteria via

582  secretion systems (Roy and Mukherjee, 2009; Woolery et al., 2010) or from intracellular
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583  bacteria directly into the host cell cytoplasm (Shin and Roy, 2008). For example, the

584  AMPylators VopS, IbpA, and DrrA that are secreted into eukaryotic cells by Vibrio

585  parahaemolyticus, Histophilus somni and Legionella pneumophila, respectively, injure host
586  cells by AMPylating the Rho, Rab, or Arf GTPases that control signaling pathways and other
587 essential host cellular processes. Putative orthologs of FIC-family AMPylators occur in M.
588 alkalescens and M. canis (Brown et al., 2012; Manso-Silvan et al., 2013). Although a role in
589 effecting mycoplasmal virulence remains to be established, their absence from a broader
590 spectrum of mycoplasma species argues against a general function in endogenous

591 metabolic regulation by mycoplasmal AMPylators.

592

593  Glycophorin A proteinase. Colonization with hemotropic mycoplasmas (hemoplasmas)
594  results in injury to host erythrocytes and endothelial cells through virulence mechanisms
595  whose effectors are not yet known (Felder et al., 2011; do Nascimento et al., 2012; Sokoli et
596 al., 2013). One outcome is excessive eryptosis, the induced death of erythrocytes

597  characterized by cell shrinkage and membrane blebbing that contributes to anemia (Lang
598 etal,2012). Such mechanical properties of the erythrocyte membranes are influenced by
599  integral proteins called glycophorins. Glycophorin A, a heavily sialylated glycoprotein that
600 serves as a receptor for attachment by many species of bacteria, is a substrate for the

601  bacterial enzyme O-sialoglycoprotein endopeptidase. Host cell injury via glycophorin A
602  degradation is a putative virulence mechanism of bacteria like Mannheimia haemolytica
603  (Abdullah et al., 1992), thus this enzyme may also be considered one candidate virulence
604 effector of hemoplasmas. Homologs of glycophorin A protease are annotated also in the

605 genomes of many other species of mollicutes.
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Conclusion

Despite their relative genetic and phenotypic simplicity, mycoplasmas express diverse
types of virulence effectors. Examples with profound effects on virulence like the
superantigen MAM, the CARDS toxin, and the gtsABC operon involved in hydrogen peroxide
secretion occur only infrequently. Effectors like sialidase and cytotoxic nucleases are more
widely distributed, while diacylated lipopeptides and small-molecule effectors are much
more commonly expressed. The challenges remaining as the post-genomic era matures are
to elucidate in greater detail those mechanisms of pathogenicity not yet linked to specific
virulence effectors, to establish the significance of mycoplasmal orthologs of effectors
documented in other bacteria, and to translate this knowledge into intervention strategies

effective in reducing the collective burden of human and veterinary mycoplasmosis.
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