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 2 

Abstract 17 

Members of the genus Mycoplasma and related organisms impose a substantial burden of 18 

infectious diseases on humans and animals, but the last comprehensive review of 19 

mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now 20 

begun to support the discovery and detailed molecular biological characterization of a 21 

number of specific mycoplasmal virulence factors. This review covers three categories of 22 

defined mycoplasmal virulence effectors: 1) specific macromolecules including the 23 

superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell-24 

activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) 25 

the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) 26 

several putative mycoplasmal orthologs of virulence effectors documented in other 27 

bacteria.  Understanding such effectors and their mechanisms of action at the molecular 28 

level connects the biology of the bacteria to direct effects on the host and host responses 29 

they elicit, and is expected to translate into new interventions for human and veterinary 30 

mycoplasmosis. 31 
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 3 

Introduction 34 

 Members of the genus Mycoplasma and related wall-less organisms are among the smallest 35 

free-living eubacteria and have genomes thought to encode little more than the minimal 36 

information essential  for independent cellular life (Brown et al., 2010). Despite their 37 

consequent anatomic and metabolic simplicity, mycoplasmas nevertheless impose a 38 

substantial burden of infectious diseases on humans and animals. The respiratory and 39 

urogenital tracts are most commonly affected but conjunctivitis, arthritis, mastitis and 40 

numerous other chronic inflammatory manifestations result from mycoplasmosis. The 41 

intrinsic resistance of mycoplasmas to all cell wall-targeting antibiotics plus sulfonamides, 42 

trimethoprim, rifampicin, and polymixins, as well as their emerging resistance to 43 

macrolides and quinolones (Bébéar and Kempf, 2005), combined with limited success in 44 

developing effective vaccines especially for common conditions such as primary atypical 45 

pneumonia (Waites and Talkington, 2004) highlight the importance of understanding 46 

individual mycoplasmal virulence factors as potential alternative targets of specific 47 

therapeutic interventions (Butt et al., 2012).  48 

 When the last comprehensive review of mycoplasmal pathogenicity was published 49 

20 years ago, although much was known about the biology of the bacteria and host 50 

responses they elicit, the identity of any specific mycoplasmal virulence effectors and their 51 

mechanisms of action at the molecular level remained “largely elusive” (Razin et al., 1998). 52 

Written at the dawn of the microbial genomics era, that review was necessarily limited in 53 

general to non-specific factors affecting colonization, evasion of the host immune system, 54 

and pro-inflammatory outcomes of infection that lead to disease. Since then, the complete 55 

annotated genomes of about 70 species of mycoplasma have been published, and 56 
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sophisticated epigenetic (Lluch-Senar et al., 2013), transcriptomic (Madsen et al., 2008; 57 

Vivancos et al., 2010; Mazin et al., 2014; Siqueira et al., 2014), proteomic (Balasubramanian 58 

et al., 2000; Catrein & Herrmann, 2011; Párraga-Niño et al., 2012; Leal Zimmer et al., 2018; 59 

Paes et al., 2018) and metabolomic analyses (Maier et al., 2013; Vanyushkina et al., 2014; 60 

Lluch-Senar et al., 2015; Ferrarini et al., 2016; Masukagami et al., 2018) are now 61 

accelerating the detailed characterization of pathogenic mycoplasmas. This new dawn of 62 

post-genomic mycoplasmology is an occasion to summarize the current state of knowledge 63 

about exactly how mycoplasmas cause diseases, and what remains to be discovered 64 

through new molecular approaches. 65 

This review focuses on three categories of defined mycoplasmal virulence effectors: 66 

1) specific protein and lipid macromolecules; 2) small molecule effectors; and 3) putative 67 

mycoplasmal orthologs of virulence effectors documented in other bacteria.  Pre-requisites 68 

for virulence of some mycoplasmas that may factor in pathogenicity but fall outside the 69 

scope of this review because they are not yet linked to specific effectors or diseases 70 

include: transmission or colonization factors, or related mechanisms (e.g., adhesins or 71 

biofilms); persistence factors (e.g., CRISPR-Cas systems); in vitro competition for host 72 

cellular nutrients (e.g., arginine acquisition); host defense evasion factors (e.g., capsules, 73 

biofilms, anti-oxidants of host-generated ROS, immunoglobulin-binding proteins, 74 

immunoglobulin-specific proteases, or variable surface antigen systems); host immune 75 

dysregulation by heterogeneous factors that collectively include monocyte, lymphocyte or 76 

TLR agonists/antagonists (e.g., “lipid-associated membrane protein [LAMP] antigen” 77 

fractions); endogenous DNA-modifying enzymes (e.g., methylases, endonucleases or 78 

recombinases); and endogenous metabolic attenuation factors (e.g., iron-sulfur cluster 79 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2018                   doi:10.20944/preprints201809.0533.v1

http://dx.doi.org/10.20944/preprints201809.0533.v1


 5 

biosynthesis proteins or dihydrolipoamide dehydrogenase). Entrypoints to the extensive 80 

primary literature on those aspects of mycoplasma-host interactions have been provided 81 

elsewhere (Brown et al., 2010; May et al., 2014). 82 

 83 

Specific Effector Proteins and Lipids 84 

 85 

The superantigen Mycoplasma arthritidis mitogen (MAM). Findlay et al. (1939) 86 

confirmed a causal relationship  of certain strains of mycoplasma, subsequently named 87 

Mycoplasma arthritidis, with acute or chronic relapsing polyarthritis in rats. The 88 

mitogenicity of live or cell-free extracts of M. arthritidis for cultured rodent lymphocytes 89 

was established (Cole et al., 1975, 1977; Naot et al., 1977), and Cole et al. (1981) found that 90 

the transforming factor was secreted into cell-free M. arthritidis culture supernatant (MAS). 91 

The specific effector identified through fractionation of MAS was a soluble protein that 92 

became known as M. arthritidis mitogen, or MAM (Atkin et al., 1986). The M. arthritidis 93 

gene mam (Marth_orf036; Dybvig et al., 2008) encodes a 238 a.a. basic (pI 10.1) protein 94 

including a 25 a.a. signal peptide that is cleaved from the mature MAM (Cole et al., 1996). 95 

Two functional domains, predicted through competitive lymphocyte proliferation 96 

inhibition assays using a series of overlapping synthetic MAM peptides, were similar to 97 

those of microbial superantigens, and to the “” motif responsible for T cell activation by 98 

lectins such as concanavalin A, respectively. This finding supported the large body of 99 

detailed evidence that MAM is an MHC class II  chain and T cell receptor (TCR) V chain 100 

haplotype-restricted superantigen that interacts directly with murine or human T cells 101 

without any processing by antigen presenting cells (APC). MAM can also induce polyclonal 102 
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plasma cell proliferation and antibody secretion by bridging TH cells to resting B 103 

lymphocytes (Cole and Atkin, 1991; Cole et al., 1993, 1997), and can induce cytokine and 104 

nitric oxide secretion by APC possibly through dimerization of MHC class II molecules by 105 

binding to the  chain of one molecule and to the  or  chain of a second (Bernatchez et al., 106 

1997; Ribeiro-Dias et al., 2003; Shio et al., 2008). Crystallographic analyses of MAM 107 

monomers and dimers, complexed with TCR and MHC class II molecules either unloaded or 108 

loaded with a peptide antigen, showed that MAM adopts a conformation entirely different 109 

than that of the “pyrogenic toxin” superantigens from Staphylococcus and Streptococcus, 110 

and also that in the complex MAM directly interacts with the TCR  chain (Zhao et al., 2004; 111 

Wang et al., 2007; Liu et al., 2010). For example, the crystal structure of MAM in ternary 112 

complex with a murine single-chain T-cell receptor and a human MHCII receptor bound to 113 

a synthetic hemagglutinin peptide was depicted by Wang et al. (2007). In addition, Mu et al. 114 

(2005, 2011) used TLR blocking antibodies and TLR2 or TLR4 deficient mice to show that 115 

MAM interacts directly with certain TLRs, possibly by cross-linking them with MHC class II 116 

molecules. The interaction is potentiated by co-expression of the MHC class II cell-surface 117 

receptor HLA-DR (Shio et al., 2014). The TLR2+/TLR4+ mouse TH cytokine response to 118 

MAM is anti-inflammatory, dominated by IL-4, IL-6 and IL-10, but in TLR4- mice a pro-119 

inflammatory IFN, TNF and IL-12 response dominates. TLR4-blocking antibodies 120 

suppressed IL-17, but TLR2- mice exhibited enhanced production of IL-17 in response to 121 

MAM, showing that interactions between MAM and TLRs can directly modulate TH type 1, 122 

type 2 or IL-17/Th17 responses in disease (Mu et al., 2011, 2014). No ortholog of mam has 123 

been recognized in any other species of bacteria, although a candidate paralog, 124 

Marth_orf729, occurs in M. arthritidis. Neither of these proteins is essential for growth of M. 125 
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arthritidis (Dybvig et al., 2008), and MAM overexpressing or knockout strains grew at the 126 

same rate as wildtype M. arthritidis (Luo et al., 2008). MAM was surprisingly reported also 127 

to exhibit potent DNase activity (Diedershagen et al., 2007), but this could not be confirmed 128 

using MAM overexpressing or knockout strains of M. arthritidis (Luo et al., 2008). 129 

 Due to their capacity to induce profound immune dysregulation, superantigens have 130 

been proposed to play important roles in a number of infectious or autoimmune diseases 131 

including arthritis. Although MHC class II haplotype with respect to sensitivity to MAM 132 

predicts the severity of reactions of rats or mice to experimental inoculation with M. 133 

arthritidis, no specific natural disease or syndrome has been attributable solely to MAM 134 

(Cole, 1988; Cole and Atkin, 1991; Cole et al., 2000). Both virulent and avirulent strains of 135 

M. arthritidis produce MAM. Conversely, MAM knockout strains of M. arthritidis colonized 136 

and persisted in the joints of experimentally infected mice as well as controls did (Luo et 137 

al., 2008). Intra-articular injection of MAM caused rat synovitis that resolved 138 

spontaneously in a few days with no residual deficits, but had no effects on the joints of 139 

mice (Cannon et al., 1988; Sustackova et al., 1995). Systemic administration of MAM did 140 

exacerbate the severity of collagen-induced autoimmune arthritis in mice, and also induced 141 

the onset of arthritis in mice previously exposed to a sub-arthritogenic dose of collagen 142 

(Cole and Griffiths, 1993). Splenic lymphocytes recovered from mice injected with MAM 143 

become anergic in vitro, and such mice were less susceptible to experimental atopic 144 

dermatitis and rejected skin allografts more slowly than controls (Cole and Atkin, 1991; 145 

Cole et al., 1993). MAM is not toxic (Cole, 1988; Cole et al., 2000), but a MAM 146 

overexpressing strain of M. arthritidis was lethal to mice having a defect in the complement 147 

C5 protein (Luo et al., 2008). Antibodies crossreactive with MAM antigen occur in sera of 148 
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healthy humans as well as patients affected by rheumatoid arthritis or systemic lupus 149 

erythematosus (Sawitzke et al., 2000; da Rocha Sobrinho et al., 2011). Despite the lack of 150 

direct evidence for it, the misconception that MAM itself can induce spontaneous chronic 151 

arthritis in rodents has been regrettably perpetuated in some recent papers (Zhao et al., 152 

2004; Liu et al., 2010). 153 

 154 

The community-acquired respiratory distress syndrome (CARDS) toxin.  Exploration 155 

of M. pneumoniae binding to alternative host ligands led to the discovery of a hypothetical 156 

protein (MPN372) that bound human surfactant protein A (Kannan et al., 2005) and 157 

annexin A2 (Somarajan et al., 2014).  Further characterization of this protein indicated that 158 

it belongs to the superfamily of toxins that includes pertussis toxin, diphtheria toxin and 159 

cholera toxin (Becker et al., 2015), and functional analysis indicated that it mediates ADP-160 

ribosylation of at least five host proteins (Kannan et al., 2014).  MPN372 was renamed 161 

community-acquired respiratory distress syndrome (CARDS) toxin, and appears to be 162 

unique to M. pneumoniae among mycoplasmas (Kannan and Baseman, 2006).  Convalescent 163 

sera from M. pneumoniae-infected patients reacted strongly to purified CARDS toxin, 164 

indicating that it is synthesized during infection and contains immunogenic epitopes.  165 

Treatment of mammalian cells and tracheal rings with CARDS toxin resulted in 166 

vacuolization and cell death, and exposure of mice and baboons to purified toxin resulted in 167 

pulmonary lesions reminiscent of M. pneumoniae disease (Hardy et al., 2009; Kannan and 168 

Baseman, 2006).  CARDS toxin was associated with airway hyperresponsiveness 169 

characterized by eosinophil and lymphocyte infiltration in exposed animals, and marked 170 

increases in IL-1α, 1β, 6, 12, 17, TNF-α and IFN-γ (Hardy et al., 2009; Medina et al., 2012).  171 
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Interestingly, detection of CARDS toxin was deemed the most sensitive way to diagnose 172 

persistent M. pneumoniae infection in patients with refractory asthma (Peters et al., 2011).  173 

CARDS toxin production was found to be significantly variable between strains, and strains 174 

producing the highest levels of toxin were associated with more severe clinical 175 

presentation as measured by colonization, replication, persistence, and lung histopathology 176 

in a murine model (Techasaensiri et al., 2010).  Taken together, these findings present the 177 

possibility that the airway hyperresponsiveness associated with high levels of CARDS toxin 178 

contributes to reactive airway disease, and explains the successful use of this molecule as a 179 

diagnostic antigen in refractory asthma cases.  180 

CARDS toxin is not constitutively expressed in vitro.  Its mRNA is most abundant 181 

during log-phase growth, and infection of mammalian cells leads to enhanced expression 182 

versus broth-grown cultures.  In addition, quantitation of CARDS toxin in the lung tissue of 183 

experimentally infected animals demonstrated further increases in expression, indicating 184 

that CARDS toxin production is carefully regulated by M. pneumoniae (Kannan et al., 2010).  185 

Though purified toxin elicits lung pathology, CARDS toxin produced by M. pneumoniae 186 

during both in vitro and in vivo infection remains exclusively associated with the bacterial 187 

cells, with a small percentage exposed on the surface and the majority remaining 188 

intracellular (Kannan and Baseman, 2006; Kannan et al., 2010).  Despite the lack of 189 

secretion, CARDS toxin is likely internalized by host cells using clathrin-mediated 190 

endocytosis.  Recombinant CARDS toxin is readily internalized via this mechanism, 191 

although cell-associated toxin uptake exploiting the same mechanism has yet to be 192 

described (Krishnan et al., 2013).  Following internalization, vacuole formation associated 193 

with the host endosomal GTPase Rab9 occurs (Johnson et al., 2011), and CARDS toxin 194 
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stimulates the NLRP3 inflammasome complex by catalyzing the ADP-ribosylation of NLRP3 195 

(Bose et al., 2014).  Manipulation of host Rab GTPases including Rab9 has been implicated 196 

in pathogen-mediated uptake and intracellular survival for other bacteria and enveloped 197 

viruses (Smith et al., 2007; Murray et al., 2005).  Given the observation of intracellular M. 198 

pneumoniae during infection and the association of CARDS toxin with increased bacterial 199 

persistence, it is plausible that toxin-mediated endocytosis and vacuolization represents a 200 

strategy unique among mycoplasmas to promote host cell invasion and intracellular 201 

survival. 202 

 203 

Sialidase. Carbohydrate cleavage from complex substrates is associated with virulence in 204 

many pathogens. Formerly thought to be absent or rare among mycoplasmas, sialidase 205 

(neuraminidase) is presently the best-characterized mycoplasmal effector of virulence in 206 

the category of glycosidases. The surface-anchored exo-α-sialidase expressed by the avian 207 

pathogen Mycoplasma synoviae cleaves terminal α-2,6-linked sialic acid from IgG and other 208 

serum glycoproteins, and can remove α-2,3-linked sialic acid from tracheal mucus to 209 

promote colonization and persistence in the avian trachea [Berčič et al., 2011]. Quantitative 210 

measurements of sialidase activity among strains of M. synoviae indicated that the level of 211 

activity varies significantly among strains and correlates significantly with strain virulence 212 

(May et al., 2007).  Activity level is also proportional to the avidity of M. synoviae binding to 213 

sialylated host erythrocyte surface receptors, suggesting a functional balance between the 214 

two activities (May and Brown, 2011). 215 

 Because the proportions of α-2,3- and α-2,6-linked sialo-conjugates expressed at 216 

various anatomical sites differ among hosts, glycosidic linkage specificities may be an 217 
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important determinant of host range and anatomical niche tropisms. For the avian 218 

pathogen M. gallisepticum the preferred receptors are α-2,6-linked sialo-conjugates 219 

[Glasgow and Hill, 1980], and its sialidase, a true homolog of that expressed by M. synoviae 220 

(May and Brown, 2009), degrades α-2,6-linkages more efficiently than α-2,3-linked 221 

substrates (Sethi and Müller, 1972). Disruption of the sialidase gene in M. gallisepticum 222 

resulted in an attenuated phenotype as measured by bacterial recovery rates, tracheal 223 

lesion scores, and tracheal thickness measurements in experimentally infected Leghorn 224 

chickens, although virulence could not be completely restored by genetic complementation 225 

of sialidase activity (May et al., 2012). 226 

 Comparative genome sequencing of the hypervirulent Mycoplasma alligatoris 227 

revealed the presence of two orthologous sialidase genes, one surface-associated and the 228 

other cytosolic, whereas closely-related Mycoplasma crocodyli lacked these genes, a key 229 

difference between these otherwise similar genomes (Brown et al., 2011). This is 230 

meaningful because M. crocodyli tends to cause disease with a classical course for 231 

mycoplasmosis, whereas M. alligatoris has a degree of lethal virulence that is 232 

unprecedented in the genus (Brown et al., 2004, 2011).  Infection of alligator fibroblasts 233 

with M. alligatoris induces apoptosis, and the induction of cell death can be blocked by the 234 

addition of the sialidase competitive inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic 235 

acid (Hunt and Brown, 2005, 2007). The sialidases of M. alligatoris were specific for 236 

terminal α-2,3-linked sialic acids; cleavage of α-2,6-linked residues from galactose was not 237 

observed (Shama SM, Brown DR, unpublished). 238 

 Strains of Mycoplasma canis, Mycoplasma cynos and Mycoplasma molare express an 239 

alternative form of sialidase that is secreted into culture supernatant fluid (May and 240 
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Brown, 2009). The secreted sialidase of M. canis cleaved α-2,3-linked sialic acid rapidly 241 

from fetuin, and α-2,6-linked sialic acid from transferrin at a slower rate (D. L. Michaels et 242 

al., submitted). Sialidase (either the enzymatic activity, putative genes, or both) has also 243 

been reported for strains of Mycoplasma anseris, Mycoplasma cloacale, Mycoplasma 244 

corogypsi, Mycoplasma meleagridis, Mycoplasma neurolyticum and Mycoplasma pullorum, 245 

but contribution of the activity to virulence of those species is unexplored (Berčič et al., 246 

2008, 2011). A retrospective survey indicated that sialidase is not a virulence factor in M. 247 

pneumoniae mycoplasmosis (May and Brown, 2011). 248 

 249 

Cytotoxic nucleases. Cytotoxic nucleases have been described for Mycoplasma 250 

gallisepticum (MGA_0676), Mycoplasma genitalium (MG_186), Mycoplasma penetrans (P40), 251 

Mycoplasma hyorhinis and Mycoplasma hyopneumoniae (Mhp379).  Though not encoded by 252 

homologous genes, in each case nuclease activity was membrane-associated, relied on 253 

divalent cations (Ca2+, Mg2+, or both), and contributed to classical apoptotic cell death in 254 

vitro (Paddenberg et al., 1998; Bendjennat et al., 1999; Schmidt et al., 2007; Xu et al., 255 

2014).  In contrast, the cytotoxic nuclease Mpn133 of M. pneumoniae was found to bind 256 

directly human lung cells and mediate apoptosis through a caspase-independent 257 

mechanism.  Host cell attachment and Mpn133 internalization is distinct from nuclease 258 

activity, and is attributed to a glutamic acid-, lysine- and serine-rich (EKS) region.  Mpn133 259 

is distinct not only from the cytotoxic nucleases of M. gallisepticum, M. penetrans, M. 260 

hyorhinis, and M. hyopneumoniae, but also from its homologue MG_186 of M. genitalium by 261 

possessing the EKS region.  The ability to translocate only the nuclease protein rather than 262 
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the entire bacterial cell is a unique feature associated with this motif (Somarajan et al., 263 

2010).  264 

The genetic disruption by random mutagenesis of multiple M. gallisepticum genes 265 

identified the uncharacterized lipoprotein MslA as a factor important in virulence, though 266 

the mechanism for attenuation of knockout mutants in the Leghorn chicken model was not 267 

immediately obvious (Szczepanek et al., 2010).  The mslA gene is part of an operon 268 

encoding a predicted nuclease, leading Masukagami et al. (2013) to hypothesize that the 269 

genetic locus was important for interactions with nucleic acids.  Recombinant MslA was 270 

found to bind random oligonucleotides composed of either single-stranded RNA, single-271 

stranded DNA, or double-stranded DNA, presumably for nuclease degradation and 272 

subsequent transport across the M. gallisepticum membrane.  Thus, MslA appears to 273 

contribute to virulence by conferring an advantage to M. gallisepticum rather than inflicting 274 

damage on the host cells (Masukagami et al. 2013). 275 

 276 

Cell-activating lipopeptides. The chance observation that live or heat-killed Mycoplasma 277 

orale could activate cytolytic activity of cultured murine macrophages (Loewenstein et al., 278 

1983) led to a number of studies showing that lipoprotein fractions from several other 279 

species of mycoplasma have similar capabilities. This has been studied most extensively in 280 

Mycoplasma fermentans, motivated in part by the early observation that an extract of M. 281 

fermentans induced IL-6 production by murine macrophages and human monocytes 282 

(Quentmeier et al., 1990), because M. fermentans was long suspected to be an agent of 283 

rheumatoid arthritis (Jonsson, 1961;  Mårdh et al., 1973) and high concentrations of IL-6 284 

are present in the synovial fluid of many affected individuals. Also, M. fermentans was later 285 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2018                   doi:10.20944/preprints201809.0533.v1

http://dx.doi.org/10.20944/preprints201809.0533.v1


 14 

suspected to be a significant co-factor in the progression of AIDS (Montagnier and 286 

Blanchard, 1993; Blanchard and Montagnier, 1994). The specific effector identified through 287 

fractionation of M. fermentans lipophilic proteins was a diacylated 2-kD macrophage 288 

activating lipopeptide named MALP-2 (Mühlradt et al., 1997). Individual clones of M. 289 

fermentans differed by as much as 50 fold in the amount of specific activating activity they 290 

produced. The single M. fermentans gene malp in fact encodes an amphiphilic, N-terminal 291 

membrane-anchored 428 a.a. precursor lipoprotein called P48 (Kostyal et al., 1994; Hall et 292 

al., 1996), M161Ag (Matsumoto et al., 1998) or MALP-404 (Calcutt et al., 1999). MALP-404 293 

is post-translationally cleaved to generate the residual diacylated 14 a.a. MALP-2 294 

lipopeptide S-[2,3-bisacyl(C16:0/C18:0+C18:1)oxypropyl]cysteinyl-GNNDESNISFKEK (Figure 295 

1; Mühlradt et al., 1997). The soluble C-terminal fragment is thus permanently released 296 

from the mycoplasmal cell surface  (Calcutt et al., 1999; Davis and Wise, 2002). Candidate 297 

orthologs of malp are present in Mycoplasma agalactiae, Mycoplasma bovis and Mycoplasma 298 

gallisepticum (Rosati et al., 1999; Markham et al., 2003; Lysnyansky et al., 2008), and 299 

suspected to occur in certain other mycoplasmas (Hall et al., 1999).  Similar diacylated 300 

lipopeptides S-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTDNNSSQSQQPGSGTTNT and 301 

S-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTN,  derived from alleles of the variable 302 

lipoprotein vlp genes of Mycoplasma hyorhinis (Citti et al., 2000), were comparable to 303 

MALP-2 in their potent capacity to stimulate macrophages (Mühlradt et al., 1998). This was 304 

significant because M. hyorhinis is a proven agent of arthritis in swine, and it was suggested 305 

that such lipopeptides may be the cause of mixed inflammatory reactions to many species 306 

of mycoplasma. A fibroblast-activating example called LP44, having the N-terminal 307 

structure S-[2,3-bisacyloxypropyl]-cysteinyl-GDPKHPKSFTEWV-, occurs in Mycoplasma 308 
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salivarium (Shibata et al., 2000). These lipopeptides are all distinctive in their lack of a third 309 

N-terminal fatty acid, which was shown to account for their exceptional potency, versus 310 

other bacterial lipopeptides, to stimulate macrophages and several other cell types 311 

(Mühlradt et al., 1997, 1998; Weigt et al., 2003; Link et al., 2004; Borsutzky et al., 2005; 312 

Wilde et al., 2007). The lipid moieties are the effective agonists, which specifically engage 313 

co-expressed TLR2/TLR6 or orthologs with MyD88-dependent NFB and MAP protein 314 

kinase activation as pro-inflammatory consequences (Garcia et al., 1998; Calcutt et al., 315 

1999; Takeuchi et al., 2000, 2001; Nishiguchi et al., 2001; Seya and Matsumoto, 2002; 316 

Okusawa et al., 2004; Nakao et al., 2005; Into et al., 2007; Mitsunari et al., 2006; Shimizu et 317 

al., 2008; Oven et al., 2013). The “Multiple-Banded Antigen” (MBA) of Ureaplasma spp.  is 318 

possibly another example occurring in the family Mycoplasmataceae. Treatments with a 319 

synthetic diacylated N-terminal fragment of MBA, dipalmitoyl-S-glyceryl-cysteinyl-320 

SNSTVKSKLSNQFAKSTDGK, induced the same TLR-dependent pro-inflammatory effects 321 

resulting in adverse outcomes of pregnancy in C3H/HeN mice (Uchida et al., 2013). 322 

Ruiter and Wentholt (1952) first isolated M. fermentans from human patients with 323 

ulcerative lesions of the penis. The strains produced abscesses when inoculated into the 324 

footpads of mice. Although the organism’s pathogenic potential has been investigated 325 

extensively since then (Lo et al., 1993; Stadtländer et al., 1993; Montagnier and Blanchard, 326 

1993; Blanchard and Montagnier, 1994; Hayes et al., 1996; Gilroy et al., 2001; Yanez et al., 327 

2013), no natural disease or persistent immunopathology has been attributed exclusively 328 

to any specific activating diacylated or triacylated lipopeptide from either M. fermentans or 329 

any other species of mycoplasma. Instead, the principal pathogenic effect of exposure to the 330 

individual mycoplasmal lipoproteins characterized to date is a transient inflammation 331 
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(Lührmann et al., 2002), marked by local infiltration of  granulocytes, macrophages and 332 

lymphocytes, production of pro-inflammatory cytokines, and complement activation 333 

(Deiters and Mühlradt, 1999; Matsumoto and Seva, 1999; Shimizu et al., 2008a). Induced 334 

apoptosis of the activated cells can be an outcome of NFB and MAP protein kinase 335 

activation (Hall et al., 2000; Into et al., 2004). Pathogenesis is thought to result not from 336 

any single lipopeptide, but instead collectively from the multiple effectors likely present in 337 

the lipid-associated membrane fraction of the mycoplasmas (Lührmann et al., 2002; 338 

Shimizu et al., 2007, 2008b).  Exposure to MALP-2 alone did stimulate the bone-resorbing 339 

activity of osteoclasts in bone, or isolated from bone and cultured on dentine slices, effects 340 

thought to mimic the bone-destructive processes in arthritis (Piec et al., 1999). Because of 341 

its amphiphilic nature, MALP-2 remains in vivo at the site where it is either generated or 342 

injected. It has thus principally a depot effect, while more soluble mycoplasmal 343 

lipopeptides can be expected to circulate and so be more likely to have systemic effects 344 

(P.F. Mühlradt, pers. comm.). This property has lead to translational demonstrations of its 345 

potential therapeutic utility, such as a mucosal adjuvant or to accelerate skin wound 346 

healing (Rharbaoui et al., 2002, 2004; Deiters et al., 2004). However, when fed a high-fat 347 

diet, mice lacking the LDL receptor developed intense atherosclerotic lesions in the aorta 348 

following intraperitoneal injection with MALP-2 (Curtiss et al., 2012). 349 

 350 

Phosphocholine-containing glycoglycerolipids. Reminiscent of the chance discovery of 351 

activating lipopeptides in M. orale-contaminated macrophage cultures, novel glycolipids 352 

were detected in what turned out to be M. fermentans-contaminated HTLV-1-infected TH 353 

cell cultures (Matsuda et al., 1993, 1995). Fractionation of conditioned culture medium 354 
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identified two alkaline-labile glycophospholipids called GGPL-I and GGPL-III that were 355 

distinctive by their phosphocholine content. Once again motivated by the suspected 356 

associations between M. fermentans and rheumatoid arthritis or AIDS, their structures 357 

were determined to be 6'-O-phosphocholine--glucopyranosyl-(1'-3)-1,2-diacyl-sn-358 

glycerol and 1"-phosphocholine,2"-amino dihydroxypropane-3"-phospho-6'--359 

glucopyranosyl-(1'-3)-1,2-diacyl-glycerol, respectively. The structures of GGPL-I and GGPL-360 

III were depicted by Matsuda et al. (1994, 1997). The structure of a third example from M. 361 

fermentans called MfGL-II was shown to be 6'-O-(3"-phosphocholine-2"-amino-1"-362 

phospho-1", 3"-propanediol)--D-glucopyranosyl-(1'->3)-1,2-diacyl-glycerol  (Zähringer et 363 

al., 1997). Its structure was depicted by Kornspan and Rottem (2012). Although there are 364 

strain differences, these individually constitute between 20% and 35% of the total and thus 365 

collectively the vast majority of phospholipids of M. fermentans. MfGL-II was shown to 366 

effect TNF release by human monocytes, and to induce protein kinase C activation, nitric 367 

oxide production, and prostaglandin E2 secretion by rat astrocytes or mixed glial cell 368 

cultures via pro-inflammatory TLR2- and TLR4-independent mechanisms (Ben-Menachem 369 

et al., 1998; Brandenburg et al., 2003; Sato et al., 2010). The terminal phosphocholine 370 

moiety is the likely effective agonist (Ben-Menachem et al., 1998; Rottem, 2002; Kornspan 371 

and Rottem, 2012). 372 

 The phosphocholine-containing glycoglycerolipids are antigenic. Rabbit polyclonal 373 

anti-M. fermentans antiserum stained GGPL-I and GGPL-III (Matsuda et al., 1997), and anti-374 

GGPL-III specific antibodies were detected in sera of 29 of 65 HIV-1 infected individuals 375 

versus only 2 of 117 healthy controls, as well as 32 of 84 synovial tissue specimens from 376 

rheumatoid arthritis patients versus 0 of 30 osteoarthritis or normal controls (Li et al., 377 
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1997; Kawahito et al., 2008).  Although intradermal or intraperitoneal administration of 378 

GGPL-III alone did not cause arthritis or allergic inflammation in mice, it did exacerbate 379 

both collagen-induced arthritis and nickel allergy, diseases related to autoantigens or 380 

autoantibodies (Sato et al., 2010). 381 

 382 

Small molecule effectors: hydrogen peroxide. Tang et al. (1935, 1936) were among the 383 

first to report that certain mycoplasmas produce discoloration of blood pigments when 384 

grown in the presence of blood, a quantitative effect associated with erythrocyte hemolysis 385 

that could be used to discriminate among strains (Warren, 1942). Somerson et al. 386 

(1965a,b) and Thomas and Bitensky (1966) showed that a hemolysin produced by M. 387 

pneumoniae, Acholeplasma laidlawii, M. neurolyticum and M. gallisepticum was dialysable, 388 

non-proteinaceous and highy labile. Because catalase and horseradish peroxidase 389 

prevented the hemolysis, and a specific catalase inhibitor promoted hemolysis, they 390 

tentatively identified this effector as either H2O2 or a very low molecular weight organic 391 

peroxide. Thus it was speculated that mycoplasmal adhesion to host cells in vivo could 392 

expose the host to mycoplasmal peroxide and its reactive free radical decomposition 393 

products in toxic amounts sufficient to alter local structural integrity, cellular biochemistry 394 

and antigenicity (Somerson et al., 1965b; Cohen and Somerson, 1967; Lipman and Clyde, 395 

1969). 396 

 A peroxide hemolysin is produced by many mycoplasmas, including non-pathogens, 397 

in amounts that are species and strain-variable (Cole et al., 1968; Sobeslavsky and Chanock, 398 

1968; Brennan and Feinstein, 1969; Johnson and Muscoplat, 1972; Pijoan, 1974; Miles et 399 

al., 1991; Megid et al., 2001; Khan et al., 2005; Szczepanek et al., 2014). Hydrogen peroxide 400 
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synthesis by mycoplasmas is linked to glycerol oxidation (Somerson et al., 1965a; Low et 401 

al., 1968; Low, 1971; Miles et al., 1991; Vilei and Frey, 2001). The key step is conversion of 402 

phosphorylated glycerol to dihydroxyacetone phosphate, a substrate for glycolysis, by the 403 

FAD-dependent mycoplasmal enzyme L--glycerol-3-phosphate oxidase in a reaction 404 

having H2O2 as a by-product (Wadher et al., 1990; Westberg et al., 2004; Bischof et al., 405 

2009; Hames et al., 2009). This pathway is also present in the mosquito-associated 406 

pathogens Spiroplasma culicicola and Spiroplasma taiwanense, but absent from avirulent 407 

Spiroplasma diminutum and Spiroplasma sabaudiense (Chang et al., 2014).  Since 408 

mycoplasmas lack catalase (except M. iowae; Pritchard et al., 2014) this might seem 409 

potentially suicidal (Brennan and Feinstein, 1969; Lynch and Cole, 1980), but self-injury 410 

from cytoplasmic peroxide formation may be limited by a relatively inefficient substrate 411 

uptake system that is restricted to passive diffusion mediated by the glycerol facilitator 412 

protein GlpF and its accessory proteins (Hames et al., 2009; Somarajan et al., 2010; 413 

Großhennig et al., 2013). Glycerophosphocholine, potentially available for example from 414 

mammalian host lung cells, is an alternative source of phosphoglycerol for some 415 

mycoplasmas and spiroplasmas following uptake via the permease GlpU and its accessory 416 

proteins (Schmidl et al., 2011; Großhennig et al., 2013; Chang et al., 2014). 417 

For many years the only direct evidence of peroxide as an effector of mycoplasmal 418 

virulence was a report that mice depleted of both blood and tissue catalase activity 419 

developed M. pulmonis-induced pneumonia with faster onset and greater severity than 420 

mice lacking only tissue catalase or normal controls (Brennan and Feinstein, 1969). 421 

Indirect evidence included the positive correlation between the rate of glycerol oxidation 422 

and strain-dependent virulence of M. mycoides subsp. mycoides SC in cattle (Houshaymi et 423 
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al., 1997). This was later attributed specifically to a more efficient glycerol uptake system 424 

encoded by the gtsABC operon that is present in highly virulent strains but absent from less 425 

virulent strains of certain species affiliated with the M. mycoides phylogenetic cluster (Vilei 426 

and Frey, 2001; Djordjevic et al., 2003). This glycerol ABC transporter enables significantly 427 

faster production and higher endpoint accumulation of H2O2 in mycoplasma culture 428 

medium containing a concentration of glycerol equal to that in animal serum. M. mycoides 429 

subsp. mycoides SC need not detoxify this excess peroxide to limit cytoplasmic self-injury 430 

because its phosphoglycerol oxidase GlpO is anchored in the mycoplasmal membrane, with 431 

surface-exposed epitopes (Pilo et al., 2005), so the peroxide it forms is presumably 432 

excreted instantly. Studies of primary bovine nasal epithelial cells inoculated in vitro with 433 

virulent M. mycoides subsp. mycoides SC indicated that through this excretion mechanism 434 

adherent mycoplasmas can expose the host to mycoplasmal peroxide in amounts at least 435 

30 fold greater than that accumulated in culture medium. The model for triggering host cell 436 

inflammation by this mechanism that integrates an active glycerol transport and 437 

phosphorylation system, glycerol facilitator factor, and glycerol kinase was depicted by Pilo 438 

et al. (2005). Cytotoxity was directly attributable to GlpO-dependent oxidative damage to 439 

host cells (Pilo et al., 2005, 2007) and the severity of damage correlated positively with the 440 

variable rate of cytoadherence among strains (Bischof et al., 2008). 441 

Even species like M. gallisepticum and M. pneumoniae that have predominantly 442 

cytoplasmic glycerol oxidation can liberate peroxide in amounts toxic to cultured 443 

fibroblasts or HeLa cells, as demonstrated through in vitro infections comparing virulent 444 

wildtype to attenuated isogenic knockout mutants of glycerol kinase GlpK, GlpO, 445 

phosphoglycerol dehydrogenase GlpD, glycerophosphodiesterase GlpQ, or the GlpF 446 
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accessory proteins Mpn133 and Mpn284 (Hames et al., 2009; Schmidl et al., 2011; 447 

Großhennig et al., 2013; Szczepanek et al., 2014).  A schematic illustration of glycerol 448 

metabolism linked to H2O2 excretion by M. pneumoniae was depicted by Großhennig et al. 449 

(2013). Genetic complementation restored wildtype cytotoxicity to an attenuated GlpU 450 

permease knockout mutant of M. pneumoniae (Großhennig et al., 2013). However, GlpO and 451 

GlpK knockout mutants that were not cytotoxic to co-cultured fibroblasts in vitro still 452 

caused tracheal lesions in chickens (Szczepanek et al., 2014). Mycoplasma iowae encodes an 453 

active catalase KatE that, when expressed in M. gallisepticum, reduced the amount of H2O2  454 

accumulated in conditioned broth and also lethality in a Caenorhabditis elegans toxicity 455 

assay (Pritchard et al., 2014). Candidate alternatives to catalase or superoxide dismutase as 456 

means of protection from self-peroxidation by such species have been proposed (Chen et 457 

al., 2000; Jenkins et al., 2008; Machado et al., 2009; Saikolappan et al., 2009). 458 

 459 

Small molecule effectors: hydrogen sulfide. Contrary to assumptions based on the 460 

effects of catalase and catalase inhibitors on erythrocyte hemolysis by M. pneumoniae 461 

described above, Großhennig et al. (2016) found unexpectedly that a GlpO knockout 462 

mutant of M. pneumoniae, unable to produce H2O2, could still lyse erythrocytes in a blood 463 

agar overlay via -hemolysis. When incubated with the GlpO knockout in liquid suspension, 464 

the erythrocytes remained intact but underwent the distinctive discoloration from red to 465 

brown of -hemolysis. From those findings the investigators concluded that H2O2 plays 466 

only a minor if any role in hemolysis by M. pneumoniae. Further, the discoloration of 467 

hemoglobin was specifically attributable to cysteine-dependent formation of hydrogen 468 

sulfide ions by the mutant. The candidate M. pneumoniae cysteine desulfhydrase / 469 
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desulfurase HapE was subsequently identified and characterized, and incubation with 470 

purified HapE was sufficient to lyse erythrocytes (Großhennig et al., 2016).  Homologs of 471 

HapE occur widely throughout the genera Mycoplasma, Ureaplasma, and Spiroplasma, and 472 

their contribution to virulence of other species remains to be investigated. 473 

 474 

Small molecule effectors: ammonia. Ammonia is a by-product of ATP synthesis via 475 

arginine hydrolysis by some species of both pathogenic and non-pathogenic mycoplasmas 476 

(Schimke and Barile, 1963; Barile et al., 1966; Sugimura et al., 1993). The highly labile 477 

ammonia generated by arginine deiminase and carbamyl phosphokinase in this pathway is 478 

potentially toxic through direct chemical reactivity plus the increase in pH that ammonium 479 

ions cause in the presence of water.  The most direct evidence of mycoplasmal ammonia 480 

toxicity is a report that the inflammatory response to cutaneous inoculation of rabbits with 481 

viable M. salivarium suspended in arginine medium was greater than to M. salivarium in 482 

arginine-free medium or killed M. salivarium (Matsuura et al., 1990). In exceptional 483 

circumstances, lethal hyperammonaemia has been attributed to M. hominis infection in 484 

humans (Watson et al., 1985; Wylam et al., 2013). Members of the genus Ureaplasma 485 

depend principally on urea hydrolysis to synthesize ATP (Romano et al., 1986; Thirkell et 486 

al., 1989; Smith et al., 1993). Indirect evidence that the ammonia produced by urease is 487 

toxic includes a report that inoculation with ureaplasmas caused ciliostasis and cytotoxicity 488 

within 24 hr in a bovine oviduct explant model, effects that could be simulated by addition 489 

of urea and jack bean urease to the culture medium of uninoculated controls (Stalheim et 490 

al., 1976; Stalheim and Gallagher, 1977). The most direct evidence of ureaplasmal ammonia 491 

toxicity is that intraperitoneal injection of the bacterial urease inhibitor flurofamide 492 
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protected mice against intravenous challenge with lethal doses of either intact U. 493 

urealyticum or the cytoplasmic fraction of sonicated ureaplasmas, whereas unprotected 494 

control mice died within 5 min after challenge (Ligon and Kenny, 1991). Lethal 495 

hyperammonaemia syndrome has also been attributed to U. urealyticum infection in 496 

humans (Bharat et al., 2015).  Both mycoplasmas and ureaplasmas may limit self-injury 497 

from cytoplasmic ammonia by eliminating some of it via citrulline biosynthesis (Schimke 498 

and Barile, 1963; Smith et al., 1992). A second potentially pathogenic outcome of ammonia 499 

release by ureaplasmas is the formation of struvite (NH4MgPO4) and precipitation of 500 

insoluble struvite crystals at high pH in the urinary tract (Grenabo et al., 1988). This has 501 

been attributed specifically to ammonia production because it too is preventable by 502 

flurofamide and other bacterial urease inhibitors (Takebe et al., 1984; Texier-Maugein et 503 

al., 1987; Nagata et al., 1995). 504 

 505 

Candidate Effectors 506 

 507 

Glycosidases. The occurrence of host-derived polysaccharide, glycoprotein or glycolipid 508 

degrading enzymes among the mollicutes is intriguing because they are documented 509 

virulence effectors in other bacteria, but specific evidence of this has been explored only to 510 

a limited extent for mycoplasmas. Activities that have been detected by functional assay or 511 

predicted by genome annotation in at least one species of Mycoplasma and are associated 512 

with virulence in other pathogens include sialidase (11 species), β-galactosidase (two 513 

species), N-acetyl-β-hexosaminidase (five species), α-mannosidase (three species), 514 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2018                   doi:10.20944/preprints201809.0533.v1

http://dx.doi.org/10.20944/preprints201809.0533.v1


 24 

hyaluronidase (four species), α-amylase (15 species), and β-glucosidase (11 species).  515 

Multiple alleles of each enzyme have been reported among species. 516 

 Deglycosylation of host glycoconjugates can be accomplished through either 517 

individual or cooperative effects of exoglycosidases, and can lead to highly invasive disease 518 

or result in exposure or formation of new host antigens and autoimmune complications of 519 

infection (Biberfeld, 1979; Matsushita and Okabe, 2001; King et al., 2006). For example, 520 

deglycosylation of host biantennary glycoconjugates by the sequential actions of the 521 

streptococcal exoglycosidases sialidase (NanA), β-galactosidase (BgaA), N-522 

acetylglucosaminidase (StrH) and mannosidase was depicted by King et al. (2006). β-523 

galactosidase has been shown to play a role in bacterial adherence  and serial 524 

deglycosylation of the host extracellular matrix (King et al., 2006; Limoli et al., 2011). N-525 

acetyl-β-hexosaminidase has the potential to alter attachment and dispersion in biofilms 526 

produced by several Gram-positive and Gram-negative species (Manuel et al., 2007).  The 527 

relevance of α-mannosidase to bacterial virulence is unclear; however, genes encoding this 528 

enzyme are almost exclusively found in pathogenic bacteria rather than commensals (Suits 529 

et al., 2010). Bacterial hyaluronidases have been implicated in direct tissue damage and 530 

sterile inflammation (Horton et al., 1998, 1999; Knudson et al., 2000; Starr and Engleberg, 531 

2006; Termeer et al., 2002). α-glucan degradation by α-amylase is implicated in increased 532 

invasiveness, loss of extracellular matrix integrity, and prolonged survivability by 533 

increasing nutritional fitness (van Bueren et al., 2007; Shelburne et al., 2009; Abbott et al., 534 

2010). Some Spiroplasma spp. possess chitinases that have the potential to injure their 535 

arthropod hosts as a consequence of nutrient scavenging from the chitin exoskeleton or 536 
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similar glycoprotein substrates (Gooday, 1999; Alexeev et al., 2011; Frederiksen et al., 537 

2013). 538 

 At least 11 species of mollicutes feature β-glucosidase (enzymatic activity, putative 539 

genes, or both), but its potential role in virulence has been explored only for M. mycoides 540 

subsp. mycoides. Strains of M. mycoides subsp. mycoides displaying different degrees of 541 

pathogenicity have corresponding sequence diversity in the β-glucosidase gene bgl.  An 542 

Ala204Val substitution is characteristic of attenuated strains, suggesting that β-glucosidase 543 

featuring Val204 could contribute to the disease process.  Co-incubation of embryonic 544 

bovine lung cells with virulent strains of M. mycoides subsp. mycoides featuring Val204 545 

resulted in rapid cell death in the presence of exogenous disaccharides, whereas co-546 

incubation of host cells with attenuated strains of M. mycoides subsp. mycoides possessing 547 

Ala204 and the same sugars, or with Val204 strains in the absence of exogenous sugars, did 548 

not.  However, strains featuring the Val204 allele had lower β-glucosidase activity, 549 

suggesting that additional virulence factors may be under catabolite repression.  Strains 550 

with the Val204 allele were also found to have higher rates of survivability and persistence, 551 

which may contribute to the disease process by prolonging bacteremia (Vilei et al., 2004; 552 

Vilei and Frey, 2007). Further characterization of their glycosidases is thus an area with 553 

translational potential for novel strategies to treat or prevent mycoplasmosis. 554 

 555 

CAMP factor. Erythrocytes and other cells that have substantial amounts of sphingomyelin 556 

in their plasma membranes become sensitized, through exposure to sphingomyelinase, to 557 

cooperative lysis by effector molecules collectively referred to as Christie Atkins Munch-558 

Petersen (CAMP) factors (Christie et al., 1944; Sterzik and Fehrenbach, 1985). Examples of 559 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2018                   doi:10.20944/preprints201809.0533.v1

http://dx.doi.org/10.20944/preprints201809.0533.v1


 26 

CAMP factors include the excreted streptococcal proteins Cfa and Cfb and their orthologs in 560 

other Gram-positive bacteria (Podbielski et al., 1994; Gase et al., 1999; Sörensen et al., 561 

2010), the cholesterol oxidase of Rhodococcus equi (Fernánández-Garayzábal et al., 1996), 562 

and certain pore-forming RTX toxins of Gram-negative bacteria (Frey et al., 1994; Jansen et 563 

al., 1995). The CAMP factors can effect or exacerbate cytolysis in the presence of either 564 

host- or polymicrobial community-derived sphingomyelinase (Nakatsuji et al., 2010; Lo et 565 

al., 2011). A CAMP factor(s) was present in strains of M. fermentans, M. hominis, M. 566 

gallisepticum and M. penetrans, and absent from a strain of M. pneumoniae examined 567 

(Kornspan et al., 2014). In contrast, M. capricolum, M. hyorhinis and M. mycoides subsp. 568 

mycoides displayed an unusual reverse CAMP phenomenon, which manifested as 569 

protection of erythrocytes against lysis in vitro by Staphylococcus aureus β-hemolysin, and 570 

was dependent on mycoplasmal cardiolipin synthetase activity. A strain of M. penetrans 571 

had both positive and reverse CAMP phenotypes, showing that the mechanisms can be 572 

independent. No ortholog of any classical CAMP factor is evident in the mollicute genomes 573 

annotated to date. The evidence from M. pneumoniae indicates that the CAMP factor of 574 

mycoplasmas is not simply hydrogen peroxide, therefore the molecular basis of the 575 

cooperative cytolysis observed in vitro and its role in effecting mycoplasmal virulence 576 

remain to be established. 577 

 578 

AMPylators.  AMPylation is a form of protein modification achieved by covalent addition of 579 

adenosine monophosphate (AMP) to hydroxyl side chains. Bacterial AMPylating enzymes 580 

may act as virulence effectors when they are translocated from extracellular bacteria via 581 

secretion systems (Roy and Mukherjee, 2009; Woolery et al., 2010) or from intracellular 582 
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bacteria directly into the host cell cytoplasm (Shin and Roy, 2008). For example, the 583 

AMPylators VopS, IbpA, and DrrA that are secreted into eukaryotic cells by Vibrio 584 

parahaemolyticus, Histophilus somni and Legionella pneumophila, respectively, injure host 585 

cells by AMPylating the Rho, Rab, or Arf GTPases that control signaling pathways and other 586 

essential host cellular processes. Putative orthologs of FIC-family AMPylators occur in M. 587 

alkalescens and M. canis (Brown et al., 2012; Manso-Silván et al., 2013). Although a role in 588 

effecting mycoplasmal virulence remains to be established, their absence from a broader 589 

spectrum of mycoplasma species argues against a general function in endogenous 590 

metabolic regulation by mycoplasmal AMPylators. 591 

 592 

Glycophorin A proteinase.  Colonization with hemotropic mycoplasmas (hemoplasmas) 593 

results in injury to host erythrocytes and endothelial cells through virulence mechanisms 594 

whose effectors are not yet known (Felder et al., 2011; do Nascimento et al., 2012; Sokoli et 595 

al., 2013). One outcome is excessive eryptosis, the induced death of erythrocytes 596 

characterized by cell shrinkage and membrane blebbing that contributes to anemia (Lang 597 

et al., 2012). Such mechanical properties of the erythrocyte membranes are influenced by 598 

integral proteins called glycophorins. Glycophorin A, a heavily sialylated glycoprotein that 599 

serves as a receptor for attachment by many species of bacteria, is a substrate for the 600 

bacterial enzyme O-sialoglycoprotein endopeptidase. Host cell injury via glycophorin A 601 

degradation is a putative virulence mechanism of bacteria like Mannheimia haemolytica 602 

(Abdullah et al., 1992), thus this enzyme may also be considered one candidate virulence 603 

effector of hemoplasmas. Homologs of glycophorin A protease are annotated also in the 604 

genomes of many other species of mollicutes. 605 
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 606 

Conclusion 607 

Despite their relative genetic and phenotypic simplicity, mycoplasmas express diverse 608 

types of virulence effectors. Examples with profound effects on virulence like the 609 

superantigen MAM, the CARDS toxin, and the gtsABC operon involved in hydrogen peroxide 610 

secretion occur only infrequently. Effectors like sialidase and cytotoxic nucleases are more 611 

widely distributed, while diacylated lipopeptides and small-molecule effectors are much 612 

more commonly expressed. The challenges remaining as the post-genomic era matures are 613 

to elucidate in greater detail those mechanisms of pathogenicity not yet linked to specific 614 

virulence effectors, to establish the significance of mycoplasmal orthologs of effectors 615 

documented in other bacteria, and to translate this knowledge into intervention strategies 616 

effective in reducing the collective burden of human and veterinary mycoplasmosis.  617 
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FIGURE 1624 

 1625 

Figure 1. 1626 

 1627 

Structure of the active stereoisomer of MALP-2, S-[2,3-bispalmitoyloxy-(2R)-propyl]-1628 

cysteinyl-GNNDESNISFKEK. Used with permission of Peter Mühlradt. 1629 
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