

1 Article

# 2 Hemodialysis impact on motor function beyond 3 aging and diabetes – Objectively assessing gait and 4 balance by wearable technology

5 **He Zhou** <sup>1</sup>, **Fadwa Al-Ali** <sup>2</sup>, **Hadi Rahemi** <sup>1</sup>, **Nishat Kulkarni** <sup>1</sup>, **Abdullah Hamad** <sup>2</sup>, **Rania Ibrahim**  
6 <sup>2</sup>, **Talal Talal** <sup>3</sup> and **Bijan Najafi** <sup>1,\*</sup>

7 <sup>1</sup> Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey  
8 Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; he.zhou2@bcm.edu (H.Z.);  
9 hrahemi@gmail.com (H.R.); nishat.kulkarni@bcm.edu (N.K); bijan.najafi@bcm.edu (B.N.)

10 <sup>2</sup> Department of Nephrology, Hamad General Hospital, Doha, Qatar; falali1@hamad.qa (F.A.);  
11 ahamad9@hamad.qa (A.H.); ribrahim4@hamad.qa (R.I.)

12 <sup>3</sup> Diabetic Foot and Wound Clinic, Hamad Medical Co, Doha, Qatar; ttalal@hamad.qa (T.T.)

13 \* Correspondence: najafi.bijan@gmail.com or bijan.najafi@bcm.edu; Tel.: +1-713-798-7536

14

15 **Abstract:** Motor functions are deteriorated by aging. Some conditions may magnify this  
16 deterioration. To examine whether hemodialysis (HD) process would negatively impact gait and  
17 balance beyond diabetes condition among mid-age adults (48-64 years) and older adults (65+ years).  
18 One hundred and ninety-six subjects (age=66.2±9.1 years, body-mass-index=30.1±6.4 kg/m<sup>2</sup>,  
19 female=56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age  
20 HD+, n=38) and without HD (Mid-age HD-, n=40); older adults with diabetes undergoing HD (Older  
21 HD+, n=36) and without HD (Older HD-, n=37); and non-diabetic older adults (Older DM-, n=45).  
22 Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance  
23 parameters (ankle, hip, and center of mass sways) were quantified using validated wearable  
24 platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic  
25 group ( $p<0.050$ ). Among people with diabetes, the HD+ had significantly worsened gait and balance  
26 when comparing to the HD- (Cohen's effect size  $d=0.63-2.32$ ,  $p<0.050$ ). Between-group difference  
27 was more pronounced among older adults with the largest effect size observed for stride length  
28 ( $d=2.32$ ,  $p<0.001$ ). Results suggested that deterioration in gait speed among the HD+ was correlated  
29 with age ( $r=-0.440$ ,  $p<0.001$ ), while this correlation was diminished among the HD-. Interestingly,  
30 results also suggested that poor gait in the Older HD- related to poor balance, while no correlation  
31 was observed between poor balance and poor gait among the Older HD+. Using objective  
32 assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and  
33 this deterioration can be magnified by HD process. Among non-HD people with diabetes, poor  
34 static balance described poor gait. However, among people with diabetes undergoing HD, age was  
35 a dominate factor describing poor gait irrespective of static balance. Results also suggested  
36 feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic  
37 visits. These objective assessments may assist in identifying early deterioration in motor function,  
38 which in turn may promote timely intervention.

39

40

**Keywords:** hemodialysis; end stage renal disease; diabetes; motor performance; gait; balance;  
wearable; aging; frailty; diabetic peripheral neuropathy

41

42

## 43 1. Introduction

44

45

Motor function, such as gait and balance ability, is the major determinant of an independent and  
productive life [1]. Gait and balance are essential for predicting poor quality of life, morbidity, and

46 mortality [2, 3]. Aging causes deterioration in the sensory systems and changes the pattern of muscle  
47 activity, leading to degradation in gait and balance [4-6]. In addition, chronic disease, such as diabetes  
48 mellitus (DM) and end stage renal disease (ESRD), could accelerate this degradation. For people with  
49 diabetes and ESRD undergoing hemodialysis (HD) process, degradation in gait and balance may be  
50 even worse [7-9]. These patients are often required to visit dialysis clinic 3 time per week and spend  
51 4 hours each time to receive HD process. After HD process, they are often exhausted, limiting their  
52 ability to be physical active. Long immobility may lead to muscle loss, which in turn may deteriorate  
53 motor function. Without timely intervention, motor function deterioration in HD patients may lead  
54 to serious adverse outcomes, including foot ulcer, amputation, early frailty, risk of falling and, loss  
55 of independency, which may further complicate their conditions. Together, with the increasing HD  
56 population [10], it imposes huge burden to the health care system [11].

57 Currently, it is still unclear why people with diabetes and ESRD undergoing HD process have  
58 poor gait and balance. Some researchers believe it is diabetes and diabetic peripheral neuropathy  
59 (DPN) causing the motor function impairment [12-14]. Petrofsky, J., et al. demonstrated that  
60 autonomic neuropathy, which is very common in HD population, can cause gait ability impairment  
61 [15]. Some studies show that through the HD process, certain blood particulates are not able to easily  
62 pass through the filter and can accumulate in the body and form amyloid deposits in the joints,  
63 causing movement disorders [16]. In addition, there are also studies reported immobility and  
64 sedentary behavior caused by post-dialysis fatigue can accelerate motor function degradation [17].

65 A few previous studies compared motor performance of HD patients with healthy controls [7-  
66 9], but these studies suffer from several shortcomings limiting the understanding of negative effect  
67 of HD on motor performance beyond diabetes and aging. Some of the limitations include self-  
68 reported bias, semi-subjective inaccuracies, focusing on only gait or only static balance, as well as  
69 lack of comparison between people with diabetes undergoing HD and without HD. Due to the  
70 prolonged HD process, post-dialysis exhaustion, limitation of transportation to research facilities, as  
71 well as immobility caused by HD, it is often impractical to bring HD patients, in particular older HD  
72 patients, to a dedicated gait laboratory for study [18]. Even a study could be conducted in the gait  
73 laboratory, the results may still be biased since the study sample is limited to non-cohort selected HD  
74 population (those with better condition who can visit a gait laboratory).

75 Recent advances in wearable technologies have opened new opportunities to objectively assess  
76 motor performance in place anytime and anywhere [19-24]. Using wearable sensors, no dedicated lab  
77 environment is required. As a result, motor function assessments, such as gait and balance tests, can  
78 be performed in any clinical setting, during patients' routine dialysis visits. In this study, we used  
79 wearable sensors and validated algorithms to objectively assess gait and balance performances of  
80 people with diabetes undergoing HD in the dialysis clinic. This approach may better replicate cohort  
81 HD population, who regularly visit dialysis clinics. We compared their gait and balance  
82 performances with non-HD people with diabetes, as well as with age-matched non-diabetic controls.  
83 The hypotheses of this study are: 1) compared to age-matched non-diabetic controls, people with  
84 diabetes have poorer gait and balance irrespective of HD process, 2) HD magnifies decline in gait and  
85 balance irrespective of aging; 3) HD caused motor function deterioration is more pronounced among  
86 older adults than mid-age adults; and 4) deteriorations of gait and balance in HD patients are  
87 associated with aging.

## 88 2. Methods

### 89 2.1. Study Population

90 One hundred and ninety-six eligible subjects were recruited in this study: 78 mid-age (48-64  
91 years old) adults with diabetes ('Mid-age DM+'), 73 older (65-90 years old) adults with diabetes  
92 ('Older DM+'), and 45 older (65-88 years old) non-diabetic controls ('Older DM-'). Furthermore, based  
93 on ESRD/HD condition, the Mid-age DM+ group was further classified into 'Mid-age HD-' (n=40)  
94 and 'Mid-age HD+' (n=38) groups. Similarly, the Older DM+ groups was further classified into 'Older  
95 HD-' (n=37) and 'Older HD+' (n=36) groups. Subjects were excluded from the study if they were non-

96 ambulatory, had severe gait or balance problem (e.g., unable to walk a distance of 15 meters  
 97 independently with or without assistive device or unable to stand still without moving feet), or were  
 98 unwilling to participate. All subjects signed a consent form for this study. This study was approved  
 99 by the local institutional review boards.

100 *2.2. Demographic and Clinical Information*

101 Subjects' demographics including age, gender, body-mass-index (BMI), and fall history were  
 102 collected. All subjects underwent clinical assessments, including Fall Efficacy Scale - International  
 103 (FES-I) [25], Center for Epidemiologic Studies Depression scale (CES-D) [26], and Physical Frailty  
 104 Phenotype [27]. Subject with diabetes also underwent Vibration Perception Threshold test (VPT) [28],  
 105 Ankle Brachial Index test (ABI) [29], and glycated hemoglobin test (HbA1c) [30]. The FES-I and its  
 106 cutoff score, as suggested by Delbaere, K., et al. [31], were used to identify subjects with high concern  
 107 about falling. The CES-D short-version scale was used to measure self-reported depression  
 108 symptoms. A cutoff of CES-D score of 16 or greater was used to identify subjects with depression  
 109 [32]. The Physical Frailty Phenotype, including unintentional weight loss, weakness (grip strength),  
 110 slow gait speed (15-foot gait test), self-reported exhaustion, and self-reported low physical activity,  
 111 was used to assess frailty [27]. Subjects with 1 or 2 positive criteria were considered pre-frail, and  
 112 those with 3 or more positive criteria were considered frail. Subjects negative for all criteria were  
 113 considered robust [27]. Plantar numbness was evaluated by the VPT measured on six plantar regions  
 114 of interest, including the left and right great toes, 5th metatarsals, and heels. A subject was designated  
 115 with Diabetic Peripheral Neuropathy (DPN) if his/her measured VPT value for any of the six plantar  
 116 regions of interests reached 25 volts or greater [33]. The ABI was calculated as the ratio of the systolic  
 117 blood pressure measured at the ankle to the systolic blood pressure measured in the upper arm. A  
 118 subject was designated with Peripheral Artery Disease (PAD) if his/her ABI value was either greater  
 119 than 1.2 or smaller than 0.8 [34].

120 *2.3. Gait Test*

121 For all subjects, two wearable sensors (LegSys™, BioSensics, MA, USA) were attached to left and  
 122 right lower shins to quantify gait parameters of interest (Figure 1). Subjects were asked to walk with  
 123 their habitual gait speed for 15 meters as suggested in previous studies [35, 36] without any  
 124 distraction. Gait parameters, including stride velocity (unit: m/s), stride length (unit: m), gait cycle  
 125 time (unit: s), and double support (unit: %), were calculated during steady state phase of walking  
 126 using validated algorithms [35, 37]. The initiation of gait steady state was objectively estimated using  
 127 a validated algorithm described elsewhere [38].



129 **Figure 1.** An Illustration of gait test. Two wearable sensors were attached to left and right lower shins.  
 130 The subject was asked to walk with habitual gait speed for 15 meters. Gait parameters, including  
 131 stride velocity (unit: m/s), stride length (unit: m), gait cycle time (unit: s), and double support (unit:  
 132 %), were calculated using validated algorithms.

133 **2.4. Balance Test**

134 Double-stance quiet standing balance test for 30 seconds under eyes-open condition was performed  
 135 for all subjects. In addition, semi-tandem balance test was also performed for 20 seconds under eyes-  
 136 open condition in the groups with diabetes. The same wearable sensors used in the gait test were  
 137 attached to the lower back and lower dominant shin to measure balance performances by a two-link  
 138 model (Figure 2). In the double-stance test, the subject stood in the upright position, keeping feet  
 139 close together but not touching, with arms folded across the chest. In the semi-tandem test, the subject  
 140 stood with the dominant foot a half-foot behind the other, keeping feet close together but not  
 141 touching, with arms folded across the chest. Balance parameters, including ankle sway (unit: deg<sup>2</sup>),  
 142 hip sway (unit: deg<sup>2</sup>), and center of mass sway (unit: cm<sup>2</sup>) were calculated using validated algorithms  
 143 [39].



144  
 145 **Figure 2.** An Illustration of balance test. Two wearable sensors were attached to lower back and lower  
 146 dominant shin. Double-stance for 30 seconds and semi-tandem for 20 seconds under eyes-open  
 147 condition were performed. Balance parameters, including ankle sway (unit: deg<sup>2</sup>), hip sway (unit:  
 148 deg<sup>2</sup>), and center of mass sway (unit: cm<sup>2</sup>) were calculated using validated algorithms.

149 **2.5. Statistical Analysis**

150 All continuous data were presented as mean±standard deviation. All categorical data were  
 151 expressed as count(percentage). The Shapiro-Wilk test was applied to test normality of data. Analysis  
 152 of covariance (ANOVA) was used to compare between-group gait and balance performances, with  
 153 adjustment for age, gender, and BMI. Fisher's least significant difference-based post-hoc test was  
 154 performed for pairwise comparison to explore significant main effects and interactions. Cohen's d  
 155 effect size was calculated to assess the magnitude of difference between each group. Values ranging  
 156 from 0.20 to 0.49 indicated small, and values between 0.50 and 0.79 indicated medium. Values ranging  
 157 from 0.80 to 1.29 indicated large, and values above 1.30 indicated very large effects. Values less than  
 158 0.20 were considered as having no noticeable effect [40]. The Pearson correlation coefficient was used  
 159 to evaluate the degree of agreement between continuous variable. For all comparisons, significance  
 160 was accepted at  $p<0.050$ . All statistical analyses were performed using IBM SPSS Statistics 24 (IBM,  
 161 IL, USA).

162

163 **3. Results**

164 The analysis of demographic and clinical data were summarized in Table 1. Between the Mid-  
165 age DM+ and Older DM+ groups, no difference was observed for gender, BMI, fall history, plantar  
166 numbness, prevalence of DPN, prevalence of PAD, or HbA1C values. Older people with diabetes  
167 had increased prevalence of high concern about falling and depression, but the difference didn't  
168 reach statistical significance. The only clinical parameter reached statistical significance between the  
169 Mid-age DM+ and Older DM+ was frailty prevalence (22% vs. 40%,  $p=0.005$ ). When comparing  
170 between the Older DM- and Older DM+ groups, several clinical parameters reached statistical  
171 significance, including prevalence of high concern about falling, depression, and frailty. Furthermore,  
172 Table 1 illustrated that the Mid-age HD+ group had higher prevalence of depression and frailty than  
173 the Mid-age HD- group (29% vs. 27% and 24% vs. 20%, respectively). These prevalence were more  
174 prominent when comparing between the Older HD+ and Older HD- (42% vs. 29% for depression and  
175 58% vs. 23% for frailty).

176

**Table 1.** General characteristics of the study groups.

| Variable                                 | Older<br>Adults<br>without<br>Diabetes<br>(DM-) | People with Diabetes<br>(DM+) |          |           |              |          |           | <i>p</i> -value               |                                   |
|------------------------------------------|-------------------------------------------------|-------------------------------|----------|-----------|--------------|----------|-----------|-------------------------------|-----------------------------------|
|                                          |                                                 | Mid-age Adults                |          |           | Older Adults |          |           |                               |                                   |
|                                          |                                                 | Total                         | HD-      | HD+       | Total        | HD-      | HD+       | Older DM-<br>vs.<br>Older DM+ | Mid-age DM+<br>vs.<br>Older DM+ * |
| <b>Subject Number, n</b>                 | 45                                              | 78                            | 40       | 38        | 73           | 37       | 36        | -                             | -                                 |
| <b>Age, years (mean±SD)</b>              | 73.4±6.8                                        | 57.2±4.2                      | 56.5±4.2 | 58.1±4.1  | 71.4±5.4     | 71.3±4.6 | 71.5±6.1  | 0.073                         | <0.001                            |
| <b>Female, %</b>                         | 71%                                             | 51%                           | 55%      | 47%       | 52%          | 49%      | 56%       | <b>0.041</b>                  | 0.924                             |
| <b>BMI, kg/m<sup>2</sup> (mean±SD)</b>   | 27.1±5.0                                        | 31.1±7.1                      | 31.2±6.1 | 31.1±8.2  | 30.8±5.9     | 29.9±5.2 | 31.8±6.5  | <0.001                        | 0.780                             |
| <b>Fall History, %</b>                   | 29%                                             | 36%                           | 51%      | 21%       | 28%          | 36%      | 22%       | 0.951                         | 0.307                             |
| <b>High Concern about Falling, %</b>     | 36%                                             | 65%                           | 80%      | 50%       | 74%          | 78%      | 69%       | <0.001                        | 0.230                             |
| <b>Depression, %</b>                     | 13%                                             | 28%                           | 27%      | 29%       | 36%          | 29%      | 42%       | <b>0.005</b>                  | 0.246                             |
| <b>Frailty, %</b>                        | 5%                                              | 22%                           | 20%      | 24%       | 40%          | 23%      | 58%       | <0.001                        | <b>0.005</b>                      |
| <b>Plantar Numbness, VPT (mean±SD)</b>   | -                                               | 32.0±9.8                      | 34.6±8.9 | 29.4±10.2 | 32.0±10.1    | 35.0±8.5 | 29.1±10.7 | -                             | 0.982                             |
| <b>Diabetic Peripheral Neuropathy, %</b> | -                                               | 76%                           | 85%      | 66%       | 74%          | 88%      | 60%       | -                             | 0.845                             |
| <b>Peripheral Artery Disease, %</b>      | -                                               | 59%                           | 57%      | 61%       | 63%          | 64%      | 63%       | -                             | 0.650                             |
| <b>HbA1c, % (mean±SD)</b>                | -                                               | 7.2±2.2                       | 7.9±2.8  | 6.6±1.5   | 7.0±1.6      | 7.2±2.0  | 6.8±1.2   | -                             | 0.574                             |

BMI: Body-mass-index. VPT: Vibration Perception Threshold. \*: *p*-value calculated for Total Older DM+ and Total Mid-age DM+. Significant difference between groups were indicated in bold

181 Gait and balance performances for the Older DM-, Mid-age DM+, and Older DM+ groups were  
182 summarized in Table 2. For comparison between older groups with and without diabetes, results  
183 were adjusted by age, gender, and BMI. All gait parameters reached statistical significance. In  
184 particular, the Older DM+ group had significant lower stride velocity and shorter stride length, as  
185 well as significantly longer gait cycle time and higher double support, when compared with the Older  
186 DM- group ( $d=1.06-1.61$ ,  $p<0.001$ ). For balance performances, the Older DM+ group had significant  
187 larger ankle sway, hip sway, and center of mass sway than the Older DM- group in double-stance  
188 test ( $d=0.56-0.79$ ,  $p<0.010$ ). When examining the aging impact on gait and balance among people with  
189 diabetes, results were adjusted by BMI. Compared to the Mid-age DM+ group, deteriorations were  
190 observed for all gait and balance parameters in the Older DM+ group. Statistical significances were  
191 observed for the between-group difference of gait cycle time ( $d=0.34$ ,  $p=0.036$ ) and double support  
192 ( $d=0.46$ ,  $p=0.005$ ), but not for stride velocity or stride length. In addition, aging induced deteriorations  
193 were more pronounced in challenging balance test (semi-tandem test,  $d=0.38-0.45$ ,  $p<0.050$ ) than  
194 simple balance test (double-stance test,  $d=0.27-0.30$ ,  $p>0.050$ ).

195

**Table 2.** Between-group comparison for gait and balance performance in Older DM-, Mid-age DM+, and Older DM+ groups.

|                   | Older<br>DM-<br>n = 45                 | Mid-age<br>DM+<br>n = 78 | Older<br>DM+<br>n = 73 | Mid-age DM+<br>vs.<br>Older DM- |           |                  | Older DM+<br>vs.<br>Older DM- |           |                  | Older DM+<br>vs.<br>Mid-age DM+ |           |              |      |
|-------------------|----------------------------------------|--------------------------|------------------------|---------------------------------|-----------|------------------|-------------------------------|-----------|------------------|---------------------------------|-----------|--------------|------|
|                   |                                        |                          |                        | Diff (%)                        | p-value * | d *              | Diff (%)                      | p-value † | d †              | Diff (%)                        | p-value ‡ | d ‡          |      |
|                   |                                        |                          |                        |                                 |           |                  |                               |           |                  |                                 |           |              |      |
| Gait              | Stride Velocity, m/s (mean±SD)         | 1.14±0.17                | 0.75±0.29              | 0.68±0.36                       | -34%      | <b>&lt;0.001</b> | 1.55                          | -40%      | <b>&lt;0.001</b> | 1.61                            | -10%      | 0.171        | 0.22 |
|                   | Stride Length, m (mean±SD)             | 1.23±0.14                | 0.98±0.31              | 0.89±0.34                       | -20%      | <b>&lt;0.001</b> | 1.02                          | -28%      | <b>&lt;0.001</b> | 1.36                            | -10%      | 0.071        | 0.29 |
|                   | Gait Cycle Time, s (mean±SD)           | 1.10±0.11                | 1.39±0.24              | 1.53±0.52                       | 26%       | <b>&lt;0.001</b> | 1.34                          | 38%       | <b>&lt;0.001</b> | 1.06                            | 10%       | <b>0.036</b> | 0.34 |
|                   | Double Support, % (mean±SD)            | 22.66±4.76               | 29.85±8.94             | 34.92±13.6                      | 32%       | <b>&lt;0.001</b> | 0.93                          | 54%       | <b>&lt;0.001</b> | 1.09                            | 17%       | <b>0.005</b> | 0.46 |
| Balance           | Ankle Sway, deg <sup>2</sup> (mean±SD) | 0.81±0.75                | 2.24±2.12              | 2.95±3.09                       | 177%      | <b>&lt;0.001</b> | 0.86                          | 264%      | <b>&lt;0.001</b> | 0.79                            | 32%       | 0.105        | 0.27 |
| Double-<br>Stance | Hip Sway, deg <sup>2</sup> (mean±SD)   | 0.94±0.80                | 2.15±2.43              | 3.15±4.54                       | 129%      | <b>0.005</b>     | 0.57                          | 235%      | <b>0.008</b>     | 0.56                            | 46%       | 0.098        | 0.27 |
| Balance           | CoM Sway, cm <sup>2</sup> (mean±SD)    | 0.16±0.11                | 0.27±0.24              | 0.36±0.36                       | 69%       | <b>0.023</b>     | 0.47                          | 125%      | <b>0.002</b>     | 0.68                            | 33%       | 0.076        | 0.30 |
| Semi-             | Ankle Sway, deg <sup>2</sup> (mean±SD) | -                        | 2.44±2.34              | 3.67±4.14                       | -         | -                | -                             | -         | -                | -                               | 51%       | <b>0.044</b> | 0.38 |
| Tandem            | Hip Sway, deg <sup>2</sup> (mean±SD)   | -                        | 2.32±2.40              | 3.50±3.73                       | -         | -                | -                             | -         | -                | -                               | 51%       | <b>0.034</b> | 0.40 |
|                   | CoM Sway, cm <sup>2</sup> (mean±SD)    | -                        | 0.29±0.29              | 0.74±1.48                       | -         | -                | -                             | -         | -                | -                               | 150%      | <b>0.017</b> | 0.45 |

196

CoM: Center of Mass. \*: Results were adjusted by gender and BMI. †: Results were adjusted by age, gender, and BMI. ‡: Results were adjusted by BMI. Significant difference

197

between groups were indicated in bold. Effect sizes were calculated as Cohen's *d*

198

199

200 Gait and balance performances for the Mid-age HD-, Mid-age HD+, Older HD-, and Older HD+  
201 groups with adjustment by age, BMI, and maximum VPT value were summarized in Table 3. Among  
202 the mid-age adults with diabetes, subjects undergoing HD had significantly deteriorated gait and  
203 balance performances than non-HD subjects ( $d=0.63-1.68$ ,  $p<0.050$ ). HD induced motor function  
204 deteriorations were more pronounced among older adults with diabetes, with larger effect size for  
205 each gait and balance parameter ( $d=0.78-2.32$ ,  $p<0.050$ ).

206

**Table 3.** Between-group comparison for gait and balance performance in Mid-age HD-, Mid-age HD+, Older HD-, and Older HD+ groups.

|         | Mid-age DM+                                  |               |             |           |                  | Older DM+     |               |             |           |                  |      |
|---------|----------------------------------------------|---------------|-------------|-----------|------------------|---------------|---------------|-------------|-----------|------------------|------|
|         | HD-<br>n = 40                                | HD+<br>n = 38 | Diff<br>(%) | p-value * | d *              | HD-<br>n = 37 | HD+<br>n = 36 | Diff<br>(%) | p-value * | d *              |      |
| Gait    | <b>Stride Velocity, m/s (mean±SD)</b>        | 0.93±0.22     | 0.55±0.22   | -41%      | <b>&lt;0.001</b> | 1.68          | 0.96±0.27     | 0.40±0.20   | -58%      | <b>&lt;0.001</b> | 2.31 |
|         | <b>Stride Length, m (mean±SD)</b>            | 1.18±0.20     | 0.78±0.26   | -33%      | <b>&lt;0.001</b> | 1.67          | 1.15±0.22     | 0.62±0.23   | -46%      | <b>&lt;0.001</b> | 2.32 |
|         | <b>Gait Cycle Time, s (mean±SD)</b>          | 1.29±0.20     | 1.49±0.24   | 15%       | <b>0.001</b>     | 0.83          | 1.26±0.24     | 1.80±0.60   | 43%       | <b>&lt;0.001</b> | 1.15 |
|         | <b>Double Support, % (mean±SD)</b>           | 26.30±6.37    | 33.75±9.67  | 28%       | <b>&lt;0.001</b> | 0.87          | 26.34±5.50    | 43.74±14.22 | 66%       | <b>&lt;0.001</b> | 1.42 |
| Balance | <b>Ankle Sway, deg<sup>2</sup> (mean±SD)</b> | 1.48±0.90     | 3.03±2.68   | 105%      | <b>0.002</b>     | 0.76          | 1.54±1.04     | 4.40±3.82   | 187%      | <b>&lt;0.001</b> | 1.19 |
| Double  | <b>Hip Sway, deg<sup>2</sup> (mean±SD)</b>   | 1.29±1.02     | 3.03±3.09   | 134%      | <b>0.003</b>     | 0.72          | 1.55±1.35     | 4.91±5.97   | 217%      | <b>0.001</b>     | 0.90 |
| Stance  | <b>CoM Sway, cm<sup>2</sup> (mean±SD)</b>    | 0.27±0.21     | 0.28±0.28   | 5%        | 0.743            | 0.08          | 0.35±0.26     | 0.37±0.44   | 6%        | 0.248            | 0.30 |
| Balance | <b>Ankle Sway, deg<sup>2</sup> (mean±SD)</b> | 1.66±1.13     | 2.99±2.78   | 80%       | <b>0.025</b>     | 0.63          | 1.73±1.78     | 4.85±4.79   | 180%      | <b>0.016</b>     | 0.78 |
| Semi-   | <b>Hip Sway, deg<sup>2</sup> (mean±SD)</b>   | 1.21±0.71     | 3.10±2.81   | 157%      | <b>0.014</b>     | 0.70          | 1.65±1.63     | 4.63±4.27   | 181%      | <b>0.002</b>     | 1.01 |
| Tandem  | <b>CoM Sway, cm<sup>2</sup> (mean±SD)</b>    | 0.31±0.19     | 0.29±0.35   | -6%       | 0.709            | 0.11          | 0.37±0.33     | 0.37±0.37   | 0         | 0.483            | 0.23 |

207

CoM: Center of Mass. \*: Results were adjusted by age, BMI, maximum VPT. Significant difference between groups were indicated in bold. Effect sizes were calculated as Cohen's *d*

208       Figure 3 illustrated the correlation between age and gait performances for people with diabetes  
 209       with and without HD. In Figure 3A, a significant correlation could be observed between age and  
 210       stride velocity for subjects undergoing HD ( $r=-0.440, p<0.001$ ). But the correlation in non-HD subject  
 211       was weak ( $r=-0.007, p=0.953$ ). Similarly, in Figure 3B, a significant correlation could be observed  
 212       between age and double support for subjects undergoing HD ( $r=0.456, p<0.001$ ). But the correlation  
 213       in non-HD subjects was weak ( $r=0.012, p=0.917$ ).



214

215       Figure 3. Correlation between age and A) stride velocity and B) double support for people with  
 216       diabetes with and without HD.

217       In Figure 4A, a significant correlation was observed between double-stance ankle sway and  
 218       stride velocity in non-HD older adults ( $r=-0.473, p=0.003$ ). However, the correlation in older adults  
 219       undergoing HD was weak ( $r=-0.092, p=0.604$ ). Figure 4B also showed a significant correlation between  
 220       double-stance ankle sway and gait cycle time in non-HD older adults ( $r=0.539, p=0.001$ ). However,  
 221       the correlation in older adults undergoing HD was weak ( $r=0.148, p=0.404$ ).



222

223       Figure 4. Correlation between double-stance ankle sway and A) stride velocity and B) gait cycle time  
 224       for older adults with diabetes with and without HD.

225       4. Discussion

226 To our knowledge, this is the first study that objectively examined and quantified deteriorations  
227 in gait and balance among people with diabetes undergoing HD process, and compared with non-  
228 HD people with diabetes as well as non-diabetic individuals. We were able to confirm our hypothesis  
229 that due to the impact of HD, this population have significantly worsened gait and balance  
230 irrespective of age. In addition, motor function deterioration induced by HD is more pronounced in  
231 older adults than mid-age adults. A few previous studies have reported deteriorated gait and balance  
232 function of HD population when comparing with healthy controls [7-9], which is consistent with  
233 findings in this current study. However, none of previous studies compared HD population with  
234 cohorts with well-established model in motor function impairment, such as people with diabetes, as  
235 this current study did.

236 While gait and balance could be objectively quantify in a gait laboratory, such assessments are  
237 not practical for HD population. Many HD patients have limited mobility, suffer from post-dialysis  
238 fatigue, and thus can rarely visit a gait lab for the purpose of motor function assessment. Thus, most  
239 of previous researches about motor function in HD population was limited to semi-subjective  
240 inaccuracies (stopwatch-timed gait speed measurement) and unsafety (force platform balance  
241 measurement) [7-9]. To overcome these limitations, we used wearable sensors, which enabled us to  
242 quantify gait and balance in regular dialysis clinic prior the HD process. The whole process of sensor  
243 attachment and administration of gait and balance was less than 10 minutes, making such  
244 measurements more practical and acceptable for this vulnerable population.

245 Our results suggested significant correlations between age and gait performances in people with  
246 diabetes undergoing HD, while correlations in non-HD people with diabetes were weak. This  
247 demonstrated hemodialysis could magnify gait impairment caused by aging beyond diabetes. In  
248 addition, while hemodialysis could cause further deteriorations in gait and balance performances,  
249 our results also suggested that these deteriorations among older adults were more pronounced than  
250 mid-age adults. This was a novel discovery, demonstrating older patients are a higher vulnerable  
251 population of motor function impairment caused by hemodialysis process.

252 Another interesting finding in this current study was that significant correlations were observed  
253 between balance and gait in non-HD older adults, while the correlations were weak in older  
254 individuals undergoing HD. Lattanzio, F., et al have shown that balance impairment was  
255 significantly associated with decline of kidney function, but gait impairment was not [41]. We  
256 speculate that ESRD and HD may cause different scales of impacts on gait and balance functions,  
257 leading to imbalanced gait and balance performances. However this hypothesis needs to be validated  
258 in subsequent study.

259 In our study, we observed that Older HD+ group had a prevalence of frailty 53% higher than the  
260 Older DM- group and 34% higher than the Older HD- group. This demonstrated that ESRD and HD  
261 can magnify the likelihood of frailty, which can then lead to progression of adverse health outcomes,  
262 such as further motor function deterioration.

### 263 *Limitations*

264 A major limitation of this study is that the HD- groups were recruited from an outpatient  
265 podiatry clinic, and thus the majority had foot problems including DPN. The prevalence of DPN was  
266 higher in the HD- groups than the HD+ groups (87% in HD- vs. 64% in HD+). Therefore the HD-  
267 groups may not represent general DM+ population. In addition, it is well established the DPN  
268 negatively affects gait and balance [42]. We believe, however, that this imbalance in DPN prevalence  
269 did not affect the conclusion of the study, since the HD+ groups still had more deterioration than the  
270 HD- groups irrespective of age. In addition, with adjusting by VPT value (indicator of DPN severity),  
271 the between-group differences were still significant.

272 Our results also showed that the HD- groups had higher prevalence of fall history and concern  
273 about falling, when compared to the HD+ groups. This could be because of the high prevalence of  
274 DPN in the HD- groups. Studies have shown that DPN has a high contribution to falls and fear of  
275 falling [43, 44]. Another potential reason was that due to post-dialysis fatigue, subjects in the HD+

276 groups were highly sedentary. Low level of daily physical activity in individuals undergoing  
277 hemodialysis [45] may lead to low prevalence of fall history and concern about falling.

278 Finally, we noticed that the HD+ groups had significantly lower Hb1AC level than the HD-  
279 groups. In our previous study, we demonstrated that higher Hb1AC level is correlated with poorer  
280 balance [37]. Thus, we anticipate that lower HbA1C observed in the HD+ groups will not affect the  
281 significance of between-group difference observed in this study. On the other hand, it is debated  
282 whether HbA1C is a reliable metric to determine glucose level among HD patients [46]. In other  
283 words, Hb1Ac level is calculated by measuring hemoglobin to which glucose is bound in red blood  
284 cells (RBCs). While the longer an individual's RBCs are in circulation the greater chance they will be  
285 glycosylated. The average lifespan of RBCs is about 120 days in healthy individuals [47]. However,  
286 the RBCs lifespan in patients with ESRD can reduce by 30% to 70% [48]. Therefore, the Hb1Ac level  
287 could be systematically lower in patients with ESRD. In addition, study has shown that sevelamer  
288 carbonate, which is often used in individuals undergoing hemodialysis to control their phosphorus  
289 levels [49], can significantly reduce HbA1c level [50]. Because of these limitations of Hb1A1C  
290 measurement among HD patients, we didn't adjust the results by Hb1A1C level.

## 291 5. Conclusions

292 In conclusion, while diabetes deteriorates gait and balance, HD magnifies the deterioration  
293 beyond diabetes condition irrespective of age. In addition, progression in age significantly affects the  
294 magnitude of gait and balance deterioration in HD patients, when compared with non-HD  
295 individuals. Results revealed that poor static balance is correlated with poor gait in the Older HD-  
296 group. However, interestingly, no correlation was observed between poor balance and poor gait  
297 among the HD+ group and the deterioration of gait is highly depends on age. This study  
298 demonstrated the feasibility of using wearable sensors to quantify gait and balance as a part routine  
299 patient visit for HD population. Such assessment may assist early detection of motor function decline  
300 and thus promote early intervention.

301

302 **Acknowledgments:** This study was supported by a grant from the Qatar National Research Foundation (NPRP  
303 7-1595-3-405). The content is solely the responsibility of the authors and does not necessarily represent the official  
304 views of sponsors. We thank Mincy Mathew, Priya Helena Peterson, Ana Enriquez, and Mona Amirmazaheri  
305 for assisting with data collection.

306 **Author Contributions:** H.Z. wrote the manuscript and contributed in data analysis. H.R. and N.K. contributed  
307 in drafting the manuscript. A.H., R.I., and T.T. contributed in data collection. F.A. and B.N. contributed in study  
308 design and supervising the study. All authors contributed in interpretation of results and critical revision of the  
309 study.

310 **Conflicts of Interest:** None.

311

## 312 References

1. Obembe, A.O., M.O. Olaogun, and R. Adedoyin, Gait and balance performance of stroke survivors in South-Western Nigeria-A cross-sectional study. *The Pan African medical journal*, 2014. **17**(Suppl 1).
2. Ellis, T., et al., Which measures of physical function and motor impairment best predict quality of life in Parkinson's disease? *Parkinsonism & related disorders*, 2011. **17**(9): p. 693-697.
3. Steffen, T.M., T.A. Hacker, and L. Mollinger, Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. *Physical therapy*, 2002. **82**(2): p. 128-137.
4. Benjuya, N., I. Melzer, and J. Kaplanski, Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 2004. **59**(2): p. M166-M171.
5. Wolfson, L.I., et al., Gait and balance in the elderly: two functional capacities that link sensory and motor ability to falls. *Clinics in geriatric medicine*, 1985. **1**(3): p. 649-659.

325 6. Laughton, C.A., et al., Aging, muscle activity, and balance control: physiologic changes associated with  
326 balance impairment. *Gait & posture*, 2003. **18**(2): p. 101-108.

327 7. Johansen, K.L., et al., Determinants of physical performance in ambulatory patients on hemodialysis.  
328 *Kidney international*, 2001. **60**(4): p. 1586-1591.

329 8. Erken, E., et al., The effect of hemodialysis on balance measurements and risk of fall. *International urology*  
330 and *nephrology*, 2016. **48**(10): p. 1705-1711.

331 9. Shin, S., et al., Postural control in hemodialysis patients. *Gait & posture*, 2014. **39**(2): p. 723-727.

332 10. Foundation, N.K. DIABETES AND CHRONIC KIDNEY DISEASE. 2016 January [cited 2018 June 15th];  
333 Available from: <https://www.kidney.org/news/newsroom/factsheets/Diabetes-And-CKD>.

334 11. Eknoyan, G., et al., The burden of kidney disease: improving global outcomes. *Kidney international*, 2004.  
335 **66**(4): p. 1310-1314.

336 12. Pop-Busui, R., et al., The management of diabetic neuropathy in CKD. *American Journal of Kidney*  
337 *Diseases*, 2010. **55**(2): p. 365-385.

338 13. Timar, B., et al., The impact of diabetic neuropathy on balance and on the risk of falls in patients with type  
339 2 diabetes mellitus: a cross-sectional study. *PLoS One*, 2016. **11**(4): p. e0154654.

340 14. Arnold, R., et al., Neurological complications in chronic kidney disease. *JRSM cardiovascular disease*, 2016.  
341 **5**: p. 2048004016677687.

342 15. Petrofsky, J., et al., Autonomic, endothelial function and the analysis of gait in patients with type 1 and  
343 type 2 diabetes. *Acta diabetologica*, 2005. **42**(1): p. 7-15.

344 16. Floege, J. and G. Ehlerding, Beta-2-microglobulin-associated amyloidosis. *Nephron*, 1996. **72**(1): p. 9-26.

345 17. Jhamb, M., et al., Fatigue in patients receiving maintenance dialysis: a review of definitions, measures, and  
346 contributing factors. *American Journal of Kidney Diseases*, 2008. **52**(2): p. 353-365.

347 18. Lockhart, T.E., et al. Portable, non-invasive fall risk assessment in end stage renal disease patients on  
348 hemodialysis. in *Wireless Health* 2010. 2010. ACM.

349 19. Soangra, R., et al., Effects of hemodialysis therapy on sit-to-walk characteristics in end stage renal disease  
350 patients. *Annals of biomedical engineering*, 2013. **41**(4): p. 795-805.

351 20. Zhou, H., et al., Instrumented trail-making task to differentiate persons with no cognitive impairment,  
352 amnestic mild cognitive impairment, and Alzheimer disease: a proof of concept study. *Gerontology*, 2017.  
353 **63**(2): p. 189-200.

354 21. Zhou, H., et al., Motor planning error: toward measuring cognitive frailty in older adults using wearables.  
355 *Sensors*, 2018. **18**(3): p. 926.

356 22. Lebel, K., et al., Capturing the Cranio-Caudal Signature of a Turn with Inertial Measurement Systems:  
357 Methods, Parameters Robustness and Reliability. *Frontiers in Bioengineering and Biotechnology*, 2017.  
358 **5**(51).

359 23. Nguyen, H., et al., Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living  
360 in People With Parkinson's Disease. *IEEE Transactions on Neural Systems and Rehabilitation*  
361 *Engineering*, 2018. **26**(1): p. 197-204.

362 24. Razjouyan, J., et al., Wearable Sensors and the Assessment of Frailty among Vulnerable Older Adults: An  
363 Observational Cohort Study. *Sensors (Basel, Switzerland)*, 2018. **18**(5).

364 25. Yardley, L., et al., Development and initial validation of the Falls Efficacy Scale-International (FES-I). *Age*  
365 and *ageing*, 2005. **34**(6): p. 614-619.

366 26. Orme, J.G., J. Reis, and E.J. Herz, Factorial and discriminant validity of the Center for Epidemiological  
367 Studies Depression (CES-D) scale. *Journal of clinical psychology*, 1986. **42**(1): p. 28-33.

368 27. Fried, L.P., et al., Frailty in older adults: evidence for a phenotype. *The Journals of Gerontology Series A:*  
369 *Biological Sciences and Medical Sciences*, 2001. **56**(3): p. M146-M157.

370 28. Young, M.J., et al., The prediction of diabetic neuropathic foot ulceration using vibration perception  
371 thresholds: a prospective study. *Diabetes care*, 1994. **17**(6): p. 557-560.

372 29. Xu, D., et al., Sensitivity and specificity of the ankle-brachial index to diagnose peripheral artery disease:  
373 a structured review. *Vascular Medicine*, 2010. **15**(5): p. 361-369.

374 30. Organization, W.H., Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. 2011.  
375 Geneva (Switzerland): The Organization Google Scholar, 2011.

376 31. Delbaere, K., et al., The falls efficacy scale international (FES-I). A comprehensive longitudinal validation  
377 study. *Age and ageing*, 2010. **39**(2): p. 210-216.

378 32. Weissman, M.M., et al., Assessing depressive symptoms in five psychiatric populations: a validation study.  
379 *American journal of epidemiology*, 1977. **106**(3): p. 203-214.

380 33. Bracewell, N., et al., Clinical evaluation of a new device in the assessment of peripheral sensory neuropathy  
381 in diabetes. *Diabetic Medicine*, 2012. **29**(12): p. 1553-1555.

382 34. Wyatt, M.F., et al., Ankle-brachial index performance among internal medicine residents. *Vascular*  
383 *Medicine*, 2010. **15**(2): p. 99-105.

384 35. Najafi, B., et al., Does walking strategy in older people change as a function of walking distance? *Gait &*  
385 *posture*, 2009. **29**(2): p. 261-266.

386 36. Lindemann, U., et al., Distance to achieve steady state walking speed in frail elderly persons. *Gait &*  
387 *posture*, 2008. **27**(1): p. 91-96.

388 37. Grewal, G., et al., Virtualizing the assessment: a novel pragmatic paradigm to evaluate lower extremity  
389 joint perception in diabetes. *Gerontology*, 2012. **58**(5): p. 463-471.

390 38. Najafi, B., et al., Does footwear type impact the number of steps required to reach gait steady state?: an  
391 innovative look at the impact of foot orthoses on gait initiation. *Gait & posture*, 2010. **32**(1): p. 29-33.

392 39. Najafi, B., et al., Advances in balance assessment and balance training for diabetes. *Diabetes Management*,  
393 2012. **2**(4): p. 293.

394 40. Cohen, J., *Statistical power analysis for the behavioral sciences*. 2nd. 1988, Hillsdale, NJ: erlbaum.

395 41. Lattanzio, F., et al., Relationship between renal function and physical performance in elderly hospitalized  
396 patients. *Rejuvenation research*, 2012. **15**(6): p. 545-552.

397 42. Menz, H.B., et al., Walking stability and sensorimotor function in older people with diabetic peripheral  
398 neuropathy1. *Archives of physical medicine and rehabilitation*, 2004. **85**(2): p. 245-252.

399 43. Richardson, J.K., Factors associated with falls in older patients with diffuse polyneuropathy. *Journal of the*  
400 *American Geriatrics Society*, 2002. **50**(11): p. 1767-1773.

401 44. Conner-Kerr, T. and M.S. Templeton, Chronic fall risk among aged individuals with type 2 diabetes.  
402 *Ostomy/wound management*, 2002. **48**(3): p. 28-34, 35.

403 45. Johansen, K.L., et al., Physical activity levels in patients on hemodialysis and healthy sedentary controls.  
404 *Kidney international*, 2000. **57**(6): p. 2564-2570.

405 46. Rhee, C.M., et al. Updates on the management of diabetes in dialysis patients. in *Seminars in dialysis*. 2014.  
406 Wiley Online Library.

407 47. Connor, J., C.C. Pak, and A.J. Schroit, Exposure of phosphatidylserine in the outer leaflet of human red  
408 blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. *Journal of Biological*  
409 *Chemistry*, 1994. **269**(4): p. 2399-2404.

410 48. Ly, J., R. Marticorena, and S. Donnelly, Red blood cell survival in chronic renal failure. *American Journal*  
411 *of Kidney Diseases*, 2004. **44**(4): p. 715-719.

412 49. Suki, W.N., et al., Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis  
413 patients. *Kidney international*, 2007. **72**(9): p. 1130-1137.

414 50. Vlassara, H., et al., Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in  
415 diabetic kidney disease. *Clinical Journal of the American Society of Nephrology*, 2012: p. CJN. 12891211.

416