

1 Article

2 The amino-terminal region of hepatitis E virus ORF1 3 containing a methyltransferase (Met) and a papain- 4 like cysteine protease (PCP) domain counteracts type 5 I interferon response.

6 Eugénie Bagdassarian^{1,2,3#}, Virginie Doceul^{1,2,3**}, Marie Pellerin^{1,2,3}, Antonin Demange^{1,2,3§},
7 Léa Meyer^{1,2,3}, Nolwenn Jouvenet⁴, Nicole Pavio^{1,2,3}.

8 ¹ Anses, UMR 1161 Virologie, Laboratoire de santé animale, Maisons-Alfort, France;
9 eugenie.bagdassarian@gmail.com (E.B.); marie.pellerin@anses.fr (M.P.); antonin.demange@ird.fr
10 (A.D.); lea.meyer@vet-alfort.fr (L.M.); nicole.pavio@anses.fr (N.P.)

11 ² INRA, UMR 1161 Virologie, Maisons-Alfort, France

12 ³ École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, Maisons-Alfort, France

13 ⁴ CNRS-UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France;
14 nolwenn.jouvenet@pasteur.fr (N.J.)

15 [§] Current address: UMR CNRS 5290, IRD 224, Université de Montpellier, Montpellier, France.

16 ^{**} Correspondence: virginie.doceul@vet-alfort.fr (V.D.); Tel.: +33-1-439-67372

17 [#] E.B. and V.D. contributed equally to this work

18

19

20 **Abstract:** Hepatitis E virus (HEV) is responsible for large waterborne epidemics of hepatitis in
21 endemic countries and is an emerging zoonotic pathogen worldwide. In endemic regions, HEV-1 or
22 HEV-2 genotypes are frequently associated with fulminant hepatitis in pregnant women, while with
23 zoonotic HEV (HEV-3 and HEV-4), chronic cases of hepatitis and severe neurological disorders are
24 reported. Hence, it is important to characterize the interactions between HEV and its host. Here, we
25 investigated the ability of the non-structural polyprotein encoded by the first open reading frame
26 (ORF1) of HEV to modulate the host early antiviral response and in particular the type I interferon
27 (IFN-I) system. We found that the amino-terminal region of HEV-3 ORF1 (MetPCP), containing a
28 putative methyltransferase (Met) and a papain-like cysteine protease (PCP) functional domain,
29 inhibited IFN-stimulated response element (ISRE) promoter activation and the expression of several
30 IFN-stimulated genes (ISGs) in response to IFN-I. We showed that the MetPCP domain interfered
31 with the Janus kinase (JAK)/signal transducer and activator of transcription protein (STAT)
32 signalling pathway by inhibiting STAT1 nuclear translocation and phosphorylation after IFN-I
33 treatment. By contrast, MetPCP had no effect on STAT2 phosphorylation and a limited impact on
34 the activation of the JAK/STAT pathway after IFN-II stimulation. This inhibitory function seemed
35 to be genotype-dependent as MetPCP from HEV-1 had no significant effect on the JAK/STAT
36 pathway. Overall, this study provides evidence that the predicted MetPCP domain of HEV ORF1
37 antagonises STAT1 activation to modulate the IFN response.

38 **Keywords:** hepatitis E virus; innate immunity; interferon response; JAK/STAT pathway; zoonosis;
39 emerging pathogen.

40

41

42

1. Introduction

43 Hepatitis E virus (HEV) is a single stranded positive RNA virus belonging to the *Orthohepevirus*
44 genus within the *Hepeviridae* family [1]. Its genome is 7.2 kb in length and codes for 3 open reading
45 frames (ORF1 to 3) [2]. ORF1 codes for a non-structural polyprotein composed of several putative
46 functional domains including a methyltransferase (Met), a domain of unknown function (Y), a
47 papain-like cysteine protease (PCP), a macro domain (X), a helicase and a RNA-dependent RNA
48 polymerase (RdRp) [3]. It is still unclear whether ORF1 is expressed as a single polyprotein or cleaved
49 to several functional proteins in the context of infection. Multiple studies have suggested that ORF1
50 is cleaved into several products [4–8] whereas a few others have reported a lack of processing of the
51 viral polyprotein [9–11]. The use of different expression systems may explain these conflicting results.
52 Recently, a paper has suggested that ORF1 is cleaved by thrombin and factor Xa [12]. ORF2 and ORF3
53 code for the capsid protein and a multifunctional phosphoprotein, respectively. Four genotypes infect
54 humans. Genotypes 1 and 2 (HEV-1 and HEV-2) are transmitted via the faecal-oral route, through
55 the consumption of contaminated water or soiled food in endemic regions. In contrast, genotypes 3
56 and 4 (HEV-3 and HEV-4) are detected in humans and other animal species worldwide and are
57 transmitted via direct contacts with infected animals or the consumption of infected meat [13,14]. In
58 most human cases, HEV infection causes an acute hepatitis that is self-limited. However, fulminant
59 hepatic failure can occur in pregnant women in endemic region (HEV-1 or -2), in patients with
60 underlying chronic liver disease or in the elderly (HEV-3 or -4). More recently, chronic cases of
61 hepatitis E have been reported in immunocompromised patients (HEV-3 or HEV-4) and extrahepatic
62 manifestations including renal, pancreatic and neurological disorders have been linked to HEV
63 infection [15]. With the exception of China, no country has yet commercialized an HEV vaccine and
64 no treatment against HEV infection is approved.

65 Interferons (IFNs) are a group of secreted cytokines that play a key role in the host early antiviral
66 response. Type I IFNs (IFN-I), composed mainly of IFN- α and - β , are produced directly in response
67 to viral infection, upon sensing of viral molecular signatures by specialized cellular receptors such as
68 retinoic-acid-inducible gene (RIG)-I-like receptors (RLRs) and Toll-like receptors (TLRs). IFN-I
69 subsequently binds to IFN- α / β receptors (IFNAR) at the cell surface and activates the Janus kinase
70 (JAK)/signal transducer and activator of transcription protein (STAT) signalling pathway in an
71 autocrine and paracrine manner. Binding of IFN-I to its receptor leads to the phosphorylation of
72 tyrosine kinase 2 (TYK2) and JAK1 [16–18] and the subsequent phosphorylation of the cytoplasmic
73 domain of the IFNAR subunits [18–22]. STAT1 and STAT2 are then recruited and phosphorylated by
74 the JAK kinases on tyrosine 701 and tyrosine 690, respectively [18,23]. Phosphorylated STAT1/STAT2
75 heterodimers are released in the cytoplasm where they interact with IFN response factor 9 (IRF9) to
76 form IFN-stimulated gene (ISG) factor 3 (ISGF3). This transcription factor translocates to the nucleus
77 where it binds to specific promoter elements called IFN-stimulated response element (ISRE), leading
78 to the up-regulation of hundreds of IFN-stimulated genes (ISGs) that may display antiviral properties
79 and contribute to the establishment of a rapid and robust antiviral state within the cell [24]. Most cells
80 can produce IFN-I. In contrast, type II IFN (IFN- γ) is secreted mainly by activated T cells and natural
81 killer cells. Binding of the cytokine to a specific IFN- γ receptor (IFNGR) leads to the phosphorylation
82 of JAK1 and JAK2 and the subsequent phosphorylation of STAT1. STAT1 homodimers are then
83 formed and translocate to the nucleus where they bind to specific promoters to activate the
84 transcription of a different subset of ISGs [25].

85 Different reports suggest that an IFN response is triggered by HEV as the expression of IFN-I
86 and multiple ISGs has been detected after infection *in vivo* and *in vitro* [26–31]. However, IFN-I seems
87 to have a moderate and delayed antiviral effect on HEV infection *in vitro* and in patients, in
88 comparison, for instance, to hepatitis C virus (HCV), another hepatotropic RNA virus [32,33].
89 Consistently, recent studies indicate that the host ISG response to IFN-I is inhibited during HEV
90 infection [31–34] but the mechanisms involved in this inhibition remain poorly characterized. As a
91 non-structural polyprotein, HEV ORF1 contains one or several functional domains able to modulate
92 the IFN-I system. The macrodomain, the PCP domain and the Met domain were described as
93 antagonists of the signalling cascade leading to IFN [35,36]. However, nothing is known about the
94 ability of the viral polyprotein to inhibit the response to IFN-I and the JAK/STAT pathway. To address
95 this question, we studied the effect of HEV ORF1 and several of its domains on this signalling

96 pathway. We used a transfected cell model to express full-length or fragments of ORF1 fused to a
97 FLAG tag as it is difficult to detect the polyprotein and its putative cleavage products in the context
98 of infection or replication [10,37]. We were particularly interested in testing PCP and the
99 macrodomain (X) as such functional domains encoded by several RNA-positive viruses have been
100 shown to modulate the host innate immune response [38–43]. The amino-terminal end of ORF1
101 (MetPCP) containing Met, Y and PCP was also included in this study as a putative zinc finger domain
102 is present in Met that might be critical for the enzymatic activity of PCP [44]. We found that the
103 MetPCP domain inhibited ISRE promoter activation and the expression of several ISGs after
104 stimulation with IFN- β . Further investigations revealed that MetPCP interfered with STAT1 nuclear
105 translocation and phosphorylation. Overall, our data provides evidence that the predicted MetPCP
106 domain of HEV ORF1 antagonises STAT1 activation to modulate the IFN response.
107

108 2. Materials and Methods

109 2.1. Cells

110 Human embryonic kidney 293T cells were grown in DMEM supplemented with 10% heat-
111 inactivated fetal calf serum (FCS), 1% pyruvate and 100 IU/ml penicillin and 100 μ g/ml streptomycin
112 (PS). Cells were maintained at 37°C in 95% air/5% CO₂.

113 2.2. HEV ORF1 cloning and plasmid constructs

114 The serum of a French patient suffering from severe hepatitis E was provided by the former
115 Reference National Centre for HEV (HIA Val de Grâce, Paris). A strain of HEV-3f was extracted from
116 this sample using QiAmp viral RNA kit (Qiagen). Reverse transcription-PCR (RT-PCR) was
117 performed with a Primescript reverse transcriptase (Takara, Ozyme). A total of seven overlapping
118 fragments were amplified using the hot start high-fidelity Phusion polymerase (Finnzymes, Ozyme)
119 or a 5'RACE and 3' RACE kit (Invitrogen, Life Technologies) and cloned into the plasmid pCR2.1.
120 The 7 overlapping fragments were then digested with restriction enzymes and ligated 2 by 2 with the
121 T4 DNA ligase (Takara, Ozyme) to generate a DNA fragment corresponding to the full-length viral
122 genome downstream of a T7 promoter and a unique SwaI restriction site. This fragment was
123 subsequently cloned into a pUC19 vector to generate pUC19-FR-HuFulHEV3f. The complete
124 nucleotide sequence coding for ORF1 was then determined by sequencing and deposited in the
125 GenBank database under accession number MG197988. The position of the different putative
126 functional domains of ORF1 was identified by comparison with a previous computer-based analysis
127 [3]. DNA sequences coding for full-length ORF1 as well as MetPCP, Y, PCP, X, Met, MetY and YPCP
128 (Figure 1A) were amplified using pUC19-FR-HuFulHEV3f as a template and specific primers (Table
129 1) by standard PCR using the Phusion high-fidelity DNA polymerase (Thermo Scientific). The PCR
130 products were then cloned by *in vitro* recombination into pDONR207 (Gateway system, Invitrogen)
131 as described previously [45]. These coding sequences were subsequently recombined into a
132 translation optimized pCINeo-3×FLAG expression vector [46] using the Gateway cloning procedure
133 (Invitrogen).

134

135

Gene product	Primers
<i>ORF1</i>	F : GGGGACAACTTGTACAAAAAAGTGGCATGGAGGCCACCAGTCATT R : GGGGACAACTTGTACAAGAAAGTGGTACATTCAACCTCTGTATGAT
<i>Met</i>	F : GGGGACAACTTGTACAAAAAAGTGGCATGGAGGCCACCAGTCATT R : GGGGACAACTTGTACAAGAAAGTGGTAGATCCATGCACGAAGTATAG
<i>Y</i>	F : GGGGACAACTTGTACAAAAAAGTGGCCCGCGCGTCGTACTATGAG R : GGGGACAACTTGTACAAGAAAGTGGTAGCAGTGCATAAAACTGTAG
<i>PCP</i>	F : GGGGACAACTTGTACAAAAAAGTGGCCAGTGGCCGTGACTCTCA R : GGGGACAACTTGTACAAGAAAGTGGTACAAACACATACTGTTGGGACCGTTG
<i>MetPCP</i>	F : GGGGACAACTTGTACAAAAAAGTGGCATGGAGGCCACCAGTCATT R : GGGGACAACTTGTACAAGAAAGTGGTACAAACACATACTGTTGGGACCGTTG
<i>X</i>	F : GGGGACAACTTGTACAAAAAAGTGGCGCCGCACTGCCGGCTCCTT R : GGGGACAACTTGTACAAGAAAGTGGTAGCCGGCGCAAGCACGACCCAC
<i>MetY</i>	F : GGGGACAACTTGTACAAAAAAGTGGCATGGAGGCCACCAGTCATT R : GGGGACAACTTGTACAAGAAAGTGGTAGCAGTGCATAAAACTGTAG
<i>YPCP</i>	F : GGGGACAACTTGTACAAAAAAGTGGCCCGCGTCGTACTATGAG R : GGGGACAACTTGTACAAGAAAGTGGTACAAACACATACTGTTGGGACCGTTG
<i>MetPCP (HEV-1)</i>	F : GGGGACAACTTGTACAAAAAAGTGGCATGGAGGCCCATAGTTATCAAG R : GGGGACAACTTGTACAAGAAAGTGGTAAAGATTGGCGCTCCGGGC
<i>PCP (HEV-1)</i>	F : GGGGACAACTTGTACAAAAAAGTGGCCAGTGTAGGCCCTGGCTTCG R : GGGGACAACTTGTACAAGAAAGTGGTAAAGATTGGCGCTCCGGGC
<i>ISG56</i>	F : GGACAGGAAGCTGAAGGAG R : AGTGGGTGTTCTGCAA
<i>MDA5</i>	F : ACACGTTCTTGGGATTCC R : ACCAAATACAGGAGCCATGC
<i>OASI</i>	F : CATCCGCCTAGTCAGCAACTG R : CACCACCCAAGTTCTGTAG
<i>GADPH</i>	F : GGTGGAGGTCAACGGATTG R : ACTCCACGACGTACTCAGCG

136 **Table 1.** Primers used for the amplification of DNA sequences coding for full-length or fragments of HEV-
 137 3 and HEV-1 ORF1 and for the quantification of ISG expression by RT-qPCR. F: forward primer, R: reverse
 138 primer.

139 A similar strategy was used to construct the plasmid coding for 3×FLAG-tagged MetPCP and
 140 PCP from HEV-1. RNA from a HEV-1 strain was extracted from a stool sample of a patient with acute
 141 hepatitis provided by the previous Reference National Centre for HEV (HIA Val de Grâce, Paris)
 142 using a RNeasy kit (Qiagen). Reverse transcription was then performed with the PrimeScript Reverse
 143 Transcriptase (Takara Bio USA, Inc. CA, USA) according to the manufacturer's protocol. Three
 144 overlapping fragments covering the ORF1 region were amplified using Ex Taq polymerase (Takara
 145 Bio Inc. Shiga) and inserted into TOPO pCR2.1 using the TOPO TA cloning kit (Invitrogen Life
 146 technologies). These 3 constructs were sequenced and used as template to amplify sequences coding
 147 for MetPCP and PCP with specific primers (Table 1). Expression vectors coding for FLAG-tagged

148 HEV-1 MetPCP and PCP were then generated using the Gateway cloning procedure (Invitrogen) as
149 described above. The ORF1 nucleotide sequence of the HEV-1 strain has been deposited in the
150 GenBank database under accession number MH976520. The amino acid sequences of the MetPCP
151 and PCP fragments from this HEV-1 strain are 99% identical to the one of the Sar55 HEV-1 strain.

152 The p3Flag-V plasmid coding for the V protein of a Schwarz strain of measles virus (MV) fused
153 to a 3xFLAG tag [45] have been described previously.

154 *2.3. Reagents and antibodies*

155 Recombinant human IFN- β 1a was purchased from PBL Interferon Source and recombinant
156 human IFN- γ from PeproTech. The mouse anti-actin monoclonal antibody (clone AC-40) and the
157 mouse anti-FLAG (clone M2) were from Sigma-Aldrich. Polyclonal antibodies against STAT1 (06-
158 501), phospho-STAT1 (Tyr701) (07-307) and phospho-STAT2 (Tyr 689) (07-224) were from Millipore.
159 The rabbit polyclonal antibody against STAT2 (SC-476) was from Santa-Cruz Biotechnology.

160 *2.4. Transfections*

161 293T cells were transfected with plasmid DNA using JetPRIME (Polyplus transfection, Ozyme)
162 according to the manufacturer's instructions.

163 *2.5. Cell viability test.*

164 293T cells were seeded into a 96-well plate (7.5×10^4 cells/well) and transfected one day later with
165 the different p3xFLAG constructs. Forty h post-transfection, cells were lysed and cell viability was
166 determined using the CellTiter-Glo® luminescent cell viability assay (Promega) according to the
167 manufacturer's recommendations. This assay is based on ATP quantification as indicator of
168 metabolically active cells.

169 *2.6. Immunoblot analysis*

170 293T cells were plated in 6-well plates (2×10^6 cells/well) and transfected with 2 μ g of the different
171 p3xFLAG constructs. Cells were lysed in RIPA buffer (25 mM Tris HCl pH 8.8, 50 mM NaCl, 0.5%
172 Nonidet P-40 and 0.1% sodium dodecyl sulphate supplemented with cocktails of protease and
173 phosphatase inhibitors) as previously described [47]. Insoluble material was centrifuged at 16,000 g
174 for 20 min at 4°C and discarded. Total protein concentration of the soluble fraction was determined
175 by Micro BCATM Protein assay (Thermo Scientific, Pierce). Equal amount of protein extract was
176 reduced by heating in the presence of β -mercaptoethanol and resolved by 12% sodium dodecyl
177 sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by transfer to nitrocellulose
178 membrane (Hybond-ECL, Amersham). Membranes were blocked with phosphate-buffered saline
179 (PBS) containing 5% dry milk and 0.05% Tween-20. The membrane was then incubated with the
180 required dilution of specific antibodies. Bound primary antibodies were detected using horseradish
181 peroxidase-conjugated anti-rabbit or anti-mouse secondary antibodies (Pierce) and an enhanced
182 luminol-based chemiluminescent detection system. Band intensity was measured on scanned
183 immunoblot images using the ImageJ software.

184 2.7. *Reporter gene assay*

185 293T cells (4×10^5 cells/well) were seeded in 24-well plates. 24 h later, cells were transfected with
186 100 ng of firefly luciferase ISRE reporter plasmid containing the ISRE enhancer element upstream of
187 the firefly luciferase gene (pISRE-Luc, Clontech), 10 ng of the Renilla luciferase cytomegalovirus
188 (CMV) reporter plasmid (pCMV-Luc) for normalization of the data and 250 ng of a plasmid coding
189 for ORF1 or its domains of interest fused to a 3xFLAG tag at their amino-terminal end or 250 ng of a
190 pCINeo-3xFLAG empty vector as negative control or 250 ng of a plasmid coding for MV-V fused to
191 a 3xFLAG tag as positive control. Forty h later, the supernatant was removed and replaced with fresh
192 complete medium containing 1,000 IU/ml of IFN- β . Seven h later, cells were lysed in passive lysis
193 buffer (Promega). Firefly and renilla luciferase activity was determined using the Bright-GloTM
194 luciferase assay system (Promega) and the Renilla-GloTM luciferase assay system (Promega),
195 respectively. The normalized luciferase activity was calculated for each sample by dividing the firefly
196 luciferase activity by the renilla luciferase activity.

197 2.8. *RNA extraction, reverse transcription (RT) and real-time quantitative PCR (RT-qPCR)*

198 293T cells (2×10^6 cells/well) were transfected with 2 μ g of a pCINeo-3xFLAG empty vector or a
199 plasmid coding for MetPCP, PCP or MV-V fused to a 3xFLAG tag. Forty h post-transfection, cells
200 were stimulated for 6 h with 500 UI/ml of IFN- β . Total RNA was extracted using the RNeasy minikit
201 (Qiagen) including a digestion step on column with DNase I (Qiagen). A second digestion step was
202 performed using a TURBO DNase (Ambion) and the RNA cleaned up on a column using the RNeasy
203 minikit (Qiagen). RT was done using 500 ng of RNA with PrimeScript Reverse Transcriptase (Takara
204 Bio Inc.) according to the manufacturer's instruction. RT-qPCR was performed on 2 μ l of cDNA using
205 the SYBR Green Master Mix kit (Roche) and specific primers (Table 1). A LightCycler 96 apparatus
206 (Roche) was used for sample analysis. Samples were denatured for 15 min at 95°C, then DNA was
207 amplified with 40 cycles at 95°C for 30 s, 60°C for 30 s and 72°C for 30 s. The final extension was
208 followed by cooling at 40°C for 30 s. Relative quantification was realized using the 2- $\Delta\Delta$ CT method
209 [48]. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as endogenous control for
210 normalization. The mean Δ CT obtained in non-stimulated cells transfected with the empty vector
211 was used as the calibrator.

212 2.9. *Immunostaining and fluorescent microscopy*

213 293T cells (3.5×10^5 cells/well) were seeded onto 12-mm-diameter coverslips previously coated
214 with poly-D-lysine (Sigma-Aldrich) in 24-well plates and transfected with 250 ng of a pCINeo-
215 3xFLAG empty vector (EV) or a plasmid coding for ORF1, MetPCP, PCP, X, Y or MV-V fused to a
216 3xFLAG tag. 24 h later, cells were treated or not with IFN- β or $-\gamma$ for 30 min, washed with PBS and
217 fixed with 4% paraformaldehyde in PBS. Cells were permeabilised with 0.2% Triton X-100 in PBS and
218 incubated in blocking buffer (0.5% BSA in PBS). The appropriate dilution of primary antibodies was
219 then added for 1 h at room temperature. Cells were then washed several times in PBS and DyLightTM
220 488 anti-mouse and DyLightTM 550 anti-rabbit secondary antibodies (Thermo Scientific) were used
221 to detect bound primary antibodies. Samples were mounted in Mowiol containing 4,6-diamidino-2-
222 phenylindole dihydrochloride (DAPI) (Sigma-Aldrich). Microscopy was carried out with an Axio
223 observer Z1 fluorescent microscope (Zeiss) and images were acquired using the Zen 2012 software.

224 2.10. *Statistical analyses*

225 Unpaired t test or an unequal variances t test were used to analyse the data. Differences were
226 considered to be significant if the P value was < 0.05.

227

228 **3. Results**

229 *3.1. Expression of full-length and individual domains of HEV ORF1.*

230 Sequences coding for full-length ORF1 and the MetPCP, Y, PCP and X domains of a HEV-3f
231 strain were identified according to a previous computer-based analysis [3], amplified and inserted in
232 an expression vector downstream and in frame of a sequence coding for a 3xFLAG tag (Figure 1a).
233 Expression of the different constructs was confirmed in 293T cells by immunoblotting (Figure 1b).
234 These human embryonic kidney cells were used as they give high transfection efficiency that cannot
235 be reached in hepatic cell lines. Bands corresponding to the expected molecular weight of FLAG-
236 ORF1 (192 kDa), FLAG-Y (31 kDa), FLAG-X (26 kDa) and FLAG-MetPCP (72 kDa) were detected.
237 Bands of lower molecular weight were also observed for FLAG-ORF1 and FLAG-MetPCP, suggesting
238 cleavage or degradation of these proteins. In contrast, bands corresponding to higher molecular
239 weights than the one expected (23 kDa) were detected for FLAG-PCP, suggesting post-translational
240 modification and/or dimerization of the viral protein (Figure 1b).

241

242

243

244
245
246
247

Figure 1. Effect of the expression of full-length HEV ORF1 and several of its domains on ISRE promoter activation. (a) Schematic representation of the different domains of HEV ORF1. Met, methyltransferase domain; Y, Y domain; PCP, papain-like cysteine protease; HVR, hypervariable region; X, macro domain; Hel, helicase domain; RdRp, RNA-dependent RNA polymerase. The position of the different putative

248 functional domains present in the ORF1 amino acid sequence of the HEV-3 strain used in this study is
249 indicated. The different fragments of ORF1 that were cloned and expressed in 293T cells are represented
250 by arrows. (b) Expression of FLAG-tagged full-length and domains of ORF1 in 293T cells detected by
251 immunoblotting using an anti-FLAG antibody. Bands corresponding to PCP (arrow) and PCP products of
252 higher molecular weight (asterisks) are indicated. Actin served as loading control. Cells were lysed 18 h
253 post-transfection. (c) Effect of full-length ORF1, MetPCP, Y, PCP, macro domain (X), Met, MetY and YPCP
254 on ISRE promoter activation. 293T cells were transfected with pISRE-Luc, pCMV-Luc and a pCINeo-
255 3×FLAG empty vector (EV) or a plasmid coding for MV-V, ORF1, MetPCP, Y, PCP or X. Forty h later, cells
256 were treated or not (NT) with IFN- β for 7 h and lysed to determine firefly and renilla luciferase activities.
257 Mean ratios between firefly and renilla luciferase activities were calculated and are presented as
258 percentages of the treated EV control (\pm standard deviations). Results shown represent the mean of 4
259 independent experiments performed in triplicate. *, P < 0.05; ***, P < 0.0005 compared to EV control for
260 treated samples (unequal variances t tests). (d) Cell viability assays at 40 h post-transfection. 293T cells
261 were transfected or not (NT) with a pCINeo-3×FLAG empty vector (EV) or a plasmid coding for MetPCP,
262 PCP or MV-V fused to a 3xFLAG tag. Forty h after transfection, cells were lysed and cell viability
263 determined using a luminescent-based assay. Luciferase activities (\pm standard deviations) are expressed as
264 percentage relative to non-transfected cells. No significant difference was found between the cells
265 transfected with the pCINeo-3×FLAG empty vector and the one transfected with the plasmid coding for
266 MetPCP, PCP or MV-V. Results are representative of one experiment and were reproduced in 3
267 independent experiments performed in triplicate.

268 3.2. MetPCP of HEV ORF1 inhibits the IFN-I response

269 To assess the ability of the different HEV ORF1 products to interfere with the IFN-I response,
270 we first examined their effect on ISRE promoter activation using a luciferase reporter assay. 293T cells
271 were transfected with an ISRE-reporter plasmid (pISRE-Luc), a control vector (pCMV-Luc) to
272 normalize for transfection and a pCI-Neo empty vector (EV) or plasmids coding for ORF1, MetPCP,
273 Y, PCP or X. Cells were treated 40 h later with IFN- β for 7 h. As a positive control, cells were
274 transfected with a plasmid coding for the V protein of the Schwarz strain of measles virus (MV-V)
275 fused to a FLAG tag at its amino-terminal. This viral protein inhibits the IFN-I response by interacting
276 with STAT1 and JAK1 and interfering with STAT1 and TYK2 phosphorylation [45]. As shown in
277 Figure 1c, the expression of MetPCP was able to inhibit significantly ISRE promoter activation after
278 stimulation with IFN- β . This inhibition was not due to a cytotoxic effect of the viral protein as
279 transfection of the construct coding for MetPCP for 40 h did not affect cell viability (Figure 1d). In
280 contrast, no significant inhibition was detected when PCP alone was expressed. It is interesting to
281 note that both MetPCP and PCP were able to inhibit significantly IFN- β promoter activity after
282 stimulation of the RLR pathway in a luciferase reporter assay (data not shown). This result is in
283 agreement with previous findings showing that PCP from HEV-1 ORF1 is an inhibitor of the RLR
284 pathway [35] and suggests that the PCP domain expressed in our study is functional. ORF1 had no
285 impact on ISRE promoter activation in our assay but the relatively low expression of full-length ORF1
286 and/or a lack of processing of the polyprotein in 293T cells (Figure 1b) might have masked a putative
287 inhibitory effect. To determine whether the entire MetPCP product is necessary to inhibit ISRE
288 promoter activation, we also tested the effect of Met, MetY and YPCP of HEV ORF1 on ISRE promoter
289 activity using the same luciferase reporter assay (Figure 1a-c). As shown in Figure 1C, expression of

290 Met alone or MetY or YPCP had no effect on ISRE promoter activation, suggesting that expression of
 291 the amino-terminal region of ORF1 containing the Met, Y and PCP domains is necessary to inhibit
 292 the signalling pathway triggered by IFN-I.

293 To further confirm the effect of MetPCP as an antagonist of the IFN-I response, we examined the
 294 effect of the viral protein on the level of expression of 3 ISG mRNAs after IFN- β treatment by RT-
 295 qPCR (Figure 2a-c). 293T cells were transfected with an empty vector or a plasmid coding for MV-V,
 296 PCP or MetPCP for 40 h before stimulation with IFN- β for 6 h. We found that, following IFN- β
 297 treatment, expression of MetPCP and, as expected [45], MV-V were able to significantly down-
 298 regulate the mRNA levels of ISG56 (Figure 2a), melanoma differentiation-associated protein 5
 299 (MDA5) (Figure 2b) and 2', 5'-oligoadenylate synthetase 1 (OAS1) (Figure 2c). These results confirm
 300 our previous observation (Figure 1c) that MetPCP, but not PCP alone, is able to counteract the IFN-I
 301 response.

302

303 **Figure 2.** Expression of MetPCP of HEV ORF1 downregulates mRNA levels of several ISGs following IFN-
 304 β treatment. (a-c) 293T cells were transfected with a pCINeo-3×FLAG empty vector (EV) or a plasmid

305 coding for MetPCP, PCP or MV-V fused to a 3xFLAG tag. Forty h post-transfection, cells were stimulated
306 or not (NT) with 500 UI/ml of IFN- β for 6 h. Total RNA was extracted and expression of the mRNA coding
307 for ISG56 (a), MDA5 (b) and OAS1 (c) were measured by RT-qPCR. GAPDH was used as reference gene.
308 Data are presented as fold induction (\pm standard deviations) relative to the non-stimulated EV control.
309 Results are representative of one experiment and were reproduced in 2 independent experiments
310 performed in triplicate. *, P < 0.05; **, P < 0.005 compared to EV control for treated samples (unpaired t
311 tests).

312

313 3.3 *MetPCP of HEV ORF1 interferes with the JAK/STAT pathway after IFN- β treatment*

314 To better understand the mechanisms involved in the inhibition of the IFN-I response by
315 MetPCP, we examined whether the viral protein is able to interfere with the JAK/STAT pathway.
316 First, we assessed the ability of MetPCP to modulate STAT1 nuclear translocation after IFN- β
317 stimulation by immunofluorescence. In the absence of IFN treatment, STAT1 was localized mainly in
318 the cytoplasm of 293T cells transfected with an empty vector or plasmids coding for FLAG-tagged
319 MetPCP, PCP or MV-V (Figure 3a). IFN- β treatment led to the nuclear translocation of STAT1 in
320 around 85% of cells transfected with an empty vector or a plasmid coding for PCP (Figure 3a and 3B).
321 In contrast, STAT1 translocated into the nucleus of around 65% of cells expressing MetPCP (Figure
322 3b). In the remaining cells, STAT1 distribution remained diffuse in the cytoplasm (Figure 3a),
323 suggesting that MetPCP interferes with STAT1 nuclear translocation. As expected, expression of MV-
324 V inhibited STAT1 translocation into the nucleus upon IFN- β treatment (Figure 3a and 3b).

325

326 **Figure 3.** Expression of MetPCP of HEV ORF1 decreases STAT1 nuclear translocation upon IFN- β
 327 treatment. **(a)** 293T cells were transfected with a pCINEo-3xFLAG empty vector (EV) or a plasmid coding
 328 for MetPCP, PCP or MV-V fused to a 3xFLAG tag. Twenty four h post-transfection, cells were stimulated
 329 or not for 30 min with 1000 UI/ml of IFN- β . Cells were then washed, fixed and stained with primary
 330 antibodies raised against STAT1 and FLAG, followed by fluorescent dye-conjugated secondary antibodies.
 331 Intracellular localization of DAPI-stained nuclei (blue), FLAG (green) and STAT1 (red) was visualized by
 332 microscopy (magnification, x630). Scale bars, 10 μ m. **(b)** STAT1 localization was visualized after
 333 immunostaining as described in (a) in 293T cells transfected with a pCINEo-3xFLAG empty vector (EV) or
 334 a plasmid coding for ORF1, MetPCP, PCP, X, Y or MV-V fused to a FLAG tag. For each condition, STAT1
 335 localization was determined in 58 to 181 cells expressing the corresponding FLAG-tagged protein (except
 336 for the EV control for which 356 to 384 cells were randomly assessed). The mean percentage (\pm standard
 337 deviation) of cells showing a predominant nuclear localization of STAT1 from 3 independent experiments
 338 is shown. **p<0.005 ; ***p<0.0005 compared to EV control for treated samples (unpaired t tests).

339 **3.4. MetPCP of HEV ORF1 inhibits STAT1 but not STAT2 phosphorylation after IFN- β treatment**

340 To investigate which step of the JAK/STAT pathway is targeted by MetPCP, we then assessed
 341 the phosphorylation status of STAT1 and STAT2 after IFN- β treatment by immunoblot analysis in
 342 293T cells expressing MetPCP or PCP. Cells expressing MV-V were used as a positive controls. As

343 shown in Figure 4a and 4b, the level of phosphorylated STAT1 detected after IFN- β treatment was
 344 reduced significantly in 293T cells expressing MetPCP in comparison to cells transfected with an
 345 empty vector or expressing PCP. No change in the total level of STAT1 was observed in cells
 346 expressing MetPCP, indicating that the viral protein did not interfere with the expression or stability
 347 of STAT1. Moreover, no significant difference was observed in the level of total and phosphorylated
 348 STAT2 (Figure 4a and 4c), suggesting that MetPCP interferes with the activation of STAT1 but not
 349 STAT2 following IFN-I treatment.

350

351

352 **Figure 4.** Expression of MetPCP of HEV ORF1 inhibits STAT1 but not STAT2 phosphorylation upon IFN-
 353 β treatment. (a) 293T cells were transfected with a pCINeo-3×FLAG empty vector (EV) or a plasmid coding

354 for MetPCP, PCP or MV-V fused to a 3xFLAG tag. Twenty four h post-transfection, cells were stimulated
355 for 30 min with 500 UI/ml of IFN- β . Cell lysates were extracted and used for the detection of FLAG-tagged
356 proteins, total STAT1, phosphorylated STAT1 (p-STAT1), total STAT2 and phosphorylated STAT2 (p-
357 STAT2) by immunoblotting. Actin served as internal control. (b) Band intensities were quantified using
358 ImageJ software and relative levels of STAT1, p-STAT1 and actin were determined for each treated sample.
359 Ratio between p-STAT1 and actin, STAT1 and actin, and p-STAT1 and STAT1 were calculated and
360 expressed as relative percentage in comparison to the EV control. (c) Band intensities were quantified using
361 ImageJ software and relative levels of STAT2, p-STAT2, p-STAT1 and actin were determined for each
362 treated sample. Ratio between p-STAT2 and actin, STAT2 and actin and p-STAT1 and actin were calculated
363 and expressed as relative percentage in comparison to the EV control. (b-c) The mean percentage (\pm
364 standard deviation) of 4 independent experiments is presented. *, P<0.05; **, P<0.005; ***, p<0.0005 compared
365 to EV control for IFN-treated samples (unequal variances t tests).

366 3.5. *MetPCP of HEV ORF1 inhibits more efficiently the JAK/STAT pathway after IFN-I than IFN-II*
367 *treatment*

368 We then wanted to determine whether MetPCP has the ability to inhibit the JAK/STAT pathway
369 in response to IFN-II. As IFN-I and -II activation trigger different components of the JAK/STAT
370 pathway, these experiments could help pinpoint at which level of the pathway MetPCP is acting.
371 First, we assessed the effect of MetPCP expression on STAT1 nuclear translocation after IFN- γ
372 stimulation by immunofluorescence. IFN- γ treatment led to the nuclear translocation of STAT1 in
373 around 94% of cells transfected with an empty vector and around 78% of cells expressing MetPCP
374 (Figure 5a), thus suggesting that MetPCP is able to inhibit STAT1 translocation in response to IFN- γ .
375 However, this antagonist effect was less pronounced than the one observed after IFN- β treatment for
376 which 64% of cells expressing MetPCP displayed a predominant localization of STAT1 in the nucleus
377 (Figure 5a). We also assessed the ability of MetPCP to inhibit STAT1 phosphorylation after IFN-II
378 treatment. Cells expressing MetPCP were treated with IFN- γ for 30 minutes and the level of
379 phosphorylated STAT1 was quantified by immunoblotting. As shown in Figure 5b and 5c, no
380 significant inhibition of STAT1 phosphorylation was detected in cells expressing MetPCP following
381 IFN- γ treatment. These results suggest that MetPCP has a limited impact on the JAK/STAT pathway
382 after IFN-II treatment. Similarly to MetPCP, MV-V caused a slight decrease of STAT1 translocation
383 (Figure 5a) and did not inhibit STAT1 phosphorylation (Figure 5b and 5c) after IFN- γ treatment.
384 These results are in agreement with several studies showing that MV-V is more efficient at
385 antagonizing the response to IFN-I in comparison to IFN-II [49–51].

386

387

388
389
390
391
392
393
394

Figure 5. Expression of MetPCP of HEV ORF1 inhibits weakly STAT1 translocation but not STAT1 phosphorylation in response to IFN-II. (a) 293T cells were transfected with a pCINeo-3xFLAG empty vector (EV) or a plasmid coding for MetPCP or MV-V fused to a 3xFLAG tag. Twenty four h post-transfection, cells were stimulated for 30 min with 1000 UI/ml of IFN- β or 250 ng/ml of IFN- γ . Cells were then washed, fixed and stained with primary antibodies raised against STAT1 and FLAG, followed by fluorescent dye-conjugated secondary antibodies. STAT1 localization was determined in 64 to 219 cells expressing the corresponding FLAG-tagged protein (except for the EV control for which 305 to 346 cells were randomly

395 assessed). The mean percentage (\pm standard deviation) of cells showing a predominant nuclear localization
396 of STAT1 from 4 independent experiments is shown. * $p<0.05$; ** $p<0.005$ compared to EV control for treated
397 samples (unpaired t tests). (b) 293T cells were transfected with a pCINeo-3xFLAG empty vector (EV) or a
398 plasmid coding for MetPCP, PCP or MV-V fused to a 3xFLAG tag. Twenty four h post-transfection, cells
399 were stimulated for 30 mins with 500 UI/ml of IFN- β or 250 ng/ml of IFN- γ . Cell lysates were extracted and
400 used for the detection of FLAG-tagged proteins, total STAT1, phosphorylated STAT1 (p-STAT1) and actin
401 as internal control by immunoblotting. (c) Band intensities were quantified using ImageJ software and
402 relative level of STAT1, p-STAT1 and actin were determined for each sample treated with 125 or 250 ng/ml
403 of IFN- γ or 500 UI/ml of IFN- β . Ratio between p-STAT1 and actin and STAT1 and actin were then
404 calculated and expressed as relative percentage in comparison to the EV control. The mean percentage (\pm
405 standard deviation) of 3 independent experiments is presented. . * $p<0.05$ compared to EV control (unequal
406 variances t tests).

407

408

409 3.6. The ability of MetPCP of HEV ORF1 to inhibit the JAK/STAT pathway after IFN-I differs between
410 genotypes

411 We then wondered whether the ability of MetPCP to inhibit the JAK/STAT pathway is genotype-
412 specific and differs between "human only" (HEV-1) and zoonotic (HEV-3) genotypes. To achieve this,
413 the sequences coding for the MetPCP and PCP domains of a HEV-1 strain were cloned and inserted
414 into a 3xFLAG expression vector. We found an amino acid sequence identity of 85% between the
415 MetPCP domains from the HEV-1 and HEV-3 strains cloned in this study and of 69% between the
416 PCP domains. Expression of the ORF1 fragments was then confirmed in 293T cells by
417 immunoblotting (Figure 6a). The effect of the HEV-1 MetPCP and PCP domains on ISRE promoter
418 activation was then assessed using the luciferase reporter assay described above. As shown in Figure
419 6b, MetPCP from HEV-3 but not HEV-1 was able to inhibit ISRE promoter activation after IFN- β
420 treatment. This difference was not due to a problem of expression of HEV-1 MetPCP as this domain
421 is more efficiently expressed in 293T cells than HEV-3 MetPCP (Figure 6a). In agreement with this
422 result, we also found that the expression of MetPCP from HEV-3 but not HEV-1 inhibited
423 significantly STAT1 nuclear translocation after IFN- β stimulation (Figure 6c). Altogether, these
424 results suggest that the MetPCP domain from HEV-1 is not able to inhibit the JAK/STAT pathway as
425 efficiently as the one from HEV-3 and that differences in the ability of MetPCP to interfere with the
426 JAK/STAT pathway exist between HEV genotypes.

427

428

429

430

431

432

433

Figure 6. Comparison of the effect of MetPCP from HEV-1 and HEV-3 on the JAK/STAT pathway. (a) Expression of FLAG-tagged MetPCP and PCP from a strain of HEV-1 (MetPCP-G1 and PCP-G1) and HEV-3 (MetPCP-G3 and PCP-G3) in 293T cells detected by immunoblotting using an anti-FLAG antibody. Actin served as loading control. Cells were lysed 24 h post-transfection. (b) Effect of MetPCP and PCP from HEV-1 and HEV-3 on ISRE promoter activation. 293T cells were transfected with pISRE-Luc, pCMV-Luc and a pCI-Neo empty vector (EV) or a plasmid coding for MV-V, MetPCP-G1, MetPCP-G3, PCP-G1 and PCP-G3. Forty h later, cells were treated or not (-) with IFN- β for 7 h and lysed to determine firefly and renilla luciferase activities. Mean ratios between firefly and renilla luciferase activities were calculated and are presented as percentages of the treated EV control (\pm standard deviations). Results shown represent the

434

435

436

437

438

439

440

441

442 mean of 5 independent experiments performed in triplicate. *, P < 0.05; ***, P < 0.0005 compared to EV
443 control for treated samples (unequal variances t tests). (c) 293T cells were transfected with a pCINeo-
444 3xFLAG empty vector (EV) or a plasmid coding for MetPCP-G3, MetPCP-G1 or MV-V fused to a 3xFLAG
445 tag. Twenty four h post-transfection, cells were stimulated for 30 min with 1000 UI/ml of IFN- β . Cells were
446 then washed, fixed and stained with primary antibodies raised against STAT1 and FLAG, followed by
447 fluorescent dye-conjugated secondary antibodies. STAT1 localization was determined in 70 to 117 cells
448 expressing the corresponding FLAG-tagged protein (except for the EV control for which 311 to 328 cells
449 were randomly assessed). The mean percentage (\pm standard deviation) of cells showing a predominant
450 nuclear localization of STAT1 from 3 independent experiments is shown. *p<0.05; ***p<0.0005 compared to
451 EV control for treated samples (unpaired t tests).

452

453 4. Discussion

454 Most viruses encode multifunctional viral proteins that counteract the host antiviral response at
455 several steps of the IFN system [52]. Recent studies have reported that the PCP domain, the
456 macrodomain and the Met domain of HEV ORF1 are antagonists of IFN induction [35,36]. The
457 macrodomain was shown to interfere with IRF-3 phosphorylation whereas PCP is able to
458 deubiquitinate components of the RLR pathway such as RIG-I and TANK binding kinase 1 (TBK-1)
459 in 293T cells [35]. Here, we showed that the amino-terminal region of HEV ORF1 is able to inhibit the
460 IFN-I response by targeting the JAK/STAT pathway. Thus, domains of the non-structural polyprotein
461 ORF1 counteract the host IFN system, at the level of IFN induction [35,36] and IFN signalling (our
462 study).

463 We found that a protein encompassing the predicted Met, Y and PCP domains of HEV ORF1
464 inhibits ISRE promoter activation and the expression of several ISGs in response to IFN- β . Further
465 investigations revealed that MetPCP interferes with IFN- β -induced STAT1 nuclear translocation and
466 phosphorylation, thus indicating that MetPCP targets the JAK/STAT pathway. Moreover, MetPCP
467 seemed to act specifically on STAT1 activation as STAT2 phosphorylation was not affected by the
468 expression of this ORF1 product. STAT1 is a key component of the JAK/STAT pathway that is
469 targeted by a large number of viral proteins and multiple mechanisms of inhibition have been
470 described [52,53]. Some viral proteins interact directly with STAT1 to block its phosphorylation while
471 others act as phosphatase to dephosphorylate STAT1 or sequester STAT1 in the cytoplasm or induce
472 its degradation [52,53]. Here, we found that MetPCP did not affect total level of STAT1 suggesting
473 that MetPCP is not able to degrade the cellular protein or affect its expression. However, we found
474 that MetPCP was able to inhibit STAT1 phosphorylation more efficiently in response to IFN- β than
475 to IFN- γ , thus suggesting that MetPCP interferes more specifically with one or several components
476 or regulators of the JAK/STAT pathway triggered by IFN-I. Activation of the JAK/STAT pathway by
477 type II IFN involves a specific receptor (IFN γ R) and the phosphorylation of JAK1, JAK2 and STAT1
478 but not TYK2 and STAT2 that are activated by IFN-I only. One can then hypothesize that MetPCP
479 interferes with the recruitment of STAT1 to the IFNAR subunits or with the phosphorylation of
480 STAT1 by TYK2. MetPCP could also interfere with cellular proteins involved in the regulation of IFN-
481 I-driven STAT1 phosphorylation. In addition, it is possible that MetPCP targets several steps of the
482 JAK/STAT pathway and that one target (upstream STAT1 phosphorylation) is specific to the IFN-I
483 response while another (upstream STAT1 translocation) is common to both IFN-I and -II response.

484 This would explain why we found that MetPCP inhibited significantly the translocation of STAT1
485 but not its phosphorylation after IFN-II treatment.

486 We also found that only the ORF1 product containing the predicted functional Met, Y and PCP
487 domains was able to inhibit ISRE promoter activation and not Met, Y or PCP alone or the combination
488 of Met and Y or Y and PCP. A previous study has reported that a putative zinc-finger domain is
489 present in Met (between amino acid 73 and 94) that might be critical for the enzymatic activity of PCP
490 [44]. Many viral cysteine proteases require a zinc-binding finger motif to be catalytically active and/or
491 to function as antagonist of the IFN response. For example, the zinc-finger domain of Nsp1- α of
492 porcine reproductive and respiratory syndrome virus (PRRSV) is critical for the viral protein to
493 inhibit IFN- β synthesis [54]. One can envisage that the enzymatic activity of HEV PCP is dependent
494 on a zinc-finger domain present in Met and is important for the inhibitory action of MetPCP. This
495 would then explain why MetPCP is able to inhibit the JAK/STAT pathway but not, or less efficiently,
496 PCP alone. In future work, it would be interesting to assess the inhibitory effect of MetPCP mutants
497 with a disrupted zinc-binding finger motif to check this hypothesis.

498 Our results show that the ability of MetPCP to inhibit the JAK/STAT pathway differs according
499 to the HEV genotype involved. This result needs to be further investigated as this difference could
500 explain, at least partially, why distinct pathogenesis and species tropisms are observed between
501 "human only" (HEV-1) and zoonotic (HEV-3) genotypes. Interestingly, a recent paper has suggested
502 that a factor Xa cleavage site is present at amino acid 560 within the PCP domain of HEV-1 strains
503 but is not present in HEV-3 strains [12]. Such differences in the processing of ORF1 between
504 genotypes could affect its function as IFN-I antagonist and need to be better characterised.
505

506 4. Conclusion

507

508 Until recently, very few studies were undertaken to understand how HEV interacts with the
509 immune system of its host. Data from this study expand our knowledge on the mechanisms evolved
510 by HEV to counteract the IFN response and provide additional evidence that ORF1 plays multiple
511 roles in this evasion strategy. A better understanding of the signalling pathways targeted by HEV
512 proteins to modulate the host antiviral response will help to identify new therapeutic targets and
513 improve the prevention and control of HEV infection. This is critical as no anti-HEV drug has been
514 approved yet and will be particularly relevant for the treatment of chronic cases of hepatitis E in
515 immunosuppressed patients.

516

517 **Author Contributions:** Conceptualization, E.B., V.D. and N.P.; methodology, E.B., V.D., M.P., A.D. and L.M.;
518 formal analysis, E.B., M.P. and V.D.; writing—original draft preparation, V.D.; writing—review and editing,
519 E.B., V.D., M.P., A.D., L.M., N.J. and N.P.; supervision, V.D., N.P. and N.J.; project administration, V.D. and N.P.;
520 funding acquisition, V.D., N.P. and N.J.

521 **Funding:** This research was funded by the European Union Seventh Framework Programme PREDEMICS
522 (grant number 278433) and by the Agence Nationale de la Recherche (grant number ANR-16-CE35-0002-01). EB
523 PhD studentship was supported by the DIM Malinf from the Conseil Régional d'Ile-de-France (Grant
524 DIM140079).

525 **Acknowledgments:** We thank Jérôme Bouquet, Pierre-Olivier Vidalain, Damien Vitour, Grégory Caignard, Yves
526 Jacob and Frédéric Tangy for providing reagents and for useful discussions.

527 **Conflicts of Interest:** The authors declare no conflict of interest.

528

529 **References**

- 530 1. Smith, D. B.; Simmonds, P.; International Committee on Taxonomy of Viruses
531 Hepeviridae Study Group; Jameel, S.; Emerson, S. U.; Harrison, T. J.; Meng, X.-J.;
532 Okamoto, H.; Van der Poel, W. H. M.; Purdy, M. A. Consensus proposals for
533 classification of the family Hepeviridae. *J. Gen. Virol.* **2014**, *95*, 2223–2232,
534 doi:10.1099/vir.0.068429-0.
- 535 2. Ahmad, I.; Holla, R. P.; Jameel, S. Molecular virology of hepatitis E virus. *Virus Res.*
536 **2011**, *161*, 47–58, doi:10.1016/j.virusres.2011.02.011.
- 537 3. Koonin, E. V.; Gorbatenko, A. E.; Purdy, M. A.; Rozanov, M. N.; Reyes, G. R.; Bradley,
538 D. W. Computer-assisted assignment of functional domains in the nonstructural
539 polyprotein of hepatitis E virus: delineation of an additional group of positive-strand
540 RNA plant and animal viruses. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 8259–8263.
- 541 4. Magden, J.; Takeda, N.; Li, T.; Auvinen, P.; Ahola, T.; Miyamura, T.; Merits, A.;
542 Kääriäinen, L. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. *J.*
543 *Virol.* **2001**, *75*, 6249–6255, doi:10.1128/JVI.75.14.6249-6255.2001.
- 544 5. Sehgal, D.; Thomas, S.; Chakraborty, M.; Jameel, S. Expression and processing of the
545 Hepatitis E virus ORF1 nonstructural polyprotein. *Virol. J.* **2006**, *3*, 38,
546 doi:10.1186/1743-422X-3-38.
- 547 6. Paliwal, D.; Panda, S. K.; Kapur, N.; Varma, S. P. K.; Durgapal, H. Hepatitis E virus
548 (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural
549 (pORF1) and capsid (pORF2) protein. *J. Gen. Virol.* **2014**, *95*, 1689–1700,
550 doi:10.1099/vir.0.066142-0.
- 551 7. Parvez, M. K. Molecular characterization of hepatitis E virus ORF1 gene supports a
552 papain-like cysteine protease (PCP)-domain activity. *Virus Res.* **2013**, *178*, 553–556,
553 doi:10.1016/j.virusres.2013.07.020.
- 554 8. Ropp, S. L.; Tam, A. W.; Beames, B.; Purdy, M.; Frey, T. K. Expression of the hepatitis
555 E virus ORF1. *Arch. Virol.* **2000**, *145*, 1321–1337.
- 556 9. Suppiah, S.; Zhou, Y.; Frey, T. K. Lack of processing of the expressed ORF1 gene
557 product of hepatitis E virus. *Virol. J.* **2011**, *8*, 245, doi:10.1186/1743-422X-8-245.
- 558 10. Perttilä, J.; Spuul, P.; Ahola, T. Early secretory pathway localization and lack of
559 processing for hepatitis E virus replication protein pORF1. *J. Gen. Virol.* **2013**, *94*, 807–
560 816, doi:10.1099/vir.0.049577-0.
- 561 11. Ansari, I. H.; Nanda, S. K.; Durgapal, H.; Agrawal, S.; Mohanty, S. K.; Gupta, D.;
562 Jameel, S.; Panda, S. K. Cloning, sequencing, and expression of the hepatitis E virus
563 (HEV) nonstructural open reading frame 1 (ORF1). *J. Med. Virol.* **2000**, *60*, 275–283.
- 564 12. Kanade, G. D.; Pingale, K. D.; Karpe, Y. A. Activities of Thrombin and Factor Xa are
565 essential for replication of Hepatitis E virus and are possibly implicated in the ORF1
566 polyprotein processing. *J. Virol.* **2018**, doi:10.1128/JVI.01853-17.
- 567 13. Doceul, V.; Bagdassarian, E.; Demange, A.; Pavio, N. Zoonotic Hepatitis E Virus:
568 Classification, Animal Reservoirs and Transmission Routes. *Viruses* **2016**, *8*,
569 doi:10.3390/v8100270.
- 570 14. Pavio, N.; Meng, X.-J.; Doceul, V. Zoonotic origin of hepatitis E. *Curr Opin Virol* **2015**,
571 *10*, 34–41, doi:10.1016/j.coviro.2014.12.006.

572 15. Kamar, N.; Abravanel, F.; Lhomme, S.; Rostaing, L.; Izopet, J. Hepatitis E virus:
573 Chronic infection, extra-hepatic manifestations, and treatment. *Clin Res Hepatol*
574 *Gastroenterol* **2014**, doi:10.1016/j.clinre.2014.07.005.

575 16. Silvennoinen, O.; Ihle, J. N.; Schlessinger, J.; Levy, D. E. Interferon-induced nuclear
576 signalling by Jak protein tyrosine kinases. *Nature* **1993**, *366*, 583–585,
577 doi:10.1038/366583a0.

578 17. Gauzzi, M. C.; Velazquez, L.; McKendry, R.; Mogensen, K. E.; Fellous, M.; Pellegrini,
579 S. Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive
580 regulatory tyrosines by another kinase. *J. Biol. Chem.* **1996**, *271*, 20494–20500.

581 18. Krishnan, K.; Yan, H.; Lim, J. T.; Krolewski, J. J. Dimerization of a chimeric CD4-
582 interferon-alpha receptor reconstitutes the signaling events preceding STAT
583 phosphorylation. *Oncogene* **1996**, *13*, 125–133.

584 19. Platanias, L. C.; Uddin, S.; Colamonici, O. R. Tyrosine phosphorylation of the alpha
585 and beta subunits of the type I interferon receptor. Interferon-beta selectively induces
586 tyrosine phosphorylation of an alpha subunit-associated protein. *J. Biol. Chem.* **1994**,
587 *269*, 17761–17764.

588 20. Zhao, W.; Lee, C.; Piganis, R.; Plumlee, C.; de Weerd, N.; Hertzog, P. J.; Schindler, C.
589 A conserved IFN-alpha receptor tyrosine motif directs the biological response to type I
590 IFNs. *J. Immunol.* **2008**, *180*, 5483–5489.

591 21. Abramovich, C.; Shulman, L. M.; Ratovitski, E.; Harroch, S.; Tovey, M.; Eid, P.; Revel,
592 M. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon
593 receptor and of an associated surface protein in response to IFN-alpha and IFN-beta.
594 *EMBO J.* **1994**, *13*, 5871–5877.

595 22. Platanias, L. C.; Colamonici, O. R. Interferon alpha induces rapid tyrosine
596 phosphorylation of the alpha subunit of its receptor. *J. Biol. Chem.* **1992**, *267*, 24053–
597 24057.

598 23. Yan, H.; Krishnan, K.; Greenlund, A. C.; Gupta, S.; Lim, J. T.; Schreiber, R. D.;
599 Schindler, C. W.; Krolewski, J. J. Phosphorylated interferon-alpha receptor 1 subunit
600 (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein.
601 *EMBO J.* **1996**, *15*, 1064–1074.

602 24. Schoggins, J. W.; Rice, C. M. Interferon-stimulated genes and their antiviral effector
603 functions. *Current Opinion in Virology* **2011**, *1*, 519–525,
604 doi:10.1016/j.coviro.2011.10.008.

605 25. Najjar, I.; Fagard, R. STAT1 and pathogens, not a friendly relationship. *Biochimie* **2010**,
606 *92*, 425–444, doi:10.1016/j.biochi.2010.02.009.

607 26. Devhare, P. B.; Chatterjee, S. N.; Arankalle, V. A.; Lole, K. S. Analysis of antiviral
608 response in human epithelial cells infected with hepatitis E virus. *PLoS ONE* **2013**, *8*,
609 e63793, doi:10.1371/journal.pone.0063793.

610 27. Lee, Y. H.; Ha, Y.; Chae, C. Expression of interferon-alpha and Mx protein in the livers
611 of pigs experimentally infected with swine hepatitis E virus. *J. Comp. Pathol.* **2010**,
612 *142*, 187–192, doi:10.1016/j.jcpa.2009.10.025.

613 28. Moal, V.; Textoris, J.; Ben Amara, A.; Mehraj, V.; Berland, Y.; Colson, P.; Mege, J.-L.
614 Chronic hepatitis E virus infection is specifically associated with an interferon-related
615 transcriptional program. *J. Infect. Dis.* **2013**, *207*, 125–132, doi:10.1093/infdis/jis632.

616 29. Yu, C.; Boon, D.; McDonald, S. L.; Myers, T. G.; Tomioka, K.; Nguyen, H.; Engle, R.
617 E.; Govindarajan, S.; Emerson, S. U.; Purcell, R. H. Pathogenesis of hepatitis E virus
618 and hepatitis C virus in chimpanzees: similarities and differences. *J. Virol.* **2010**, *84*,
619 11264–11278, doi:10.1128/JVI.01205-10.

620 30. Zhang, F.; Qi, Y.; Harrison, T. J.; Luo, B.; Zhou, Y.; Li, X.; Song, A.; Huang, W.;
621 Wang, Y. Hepatitis E genotype 4 virus from feces of monkeys infected experimentally
622 can be cultured in PLC/PRF/5 cells and upregulate host interferon-inducible genes. *J.*
623 *Med. Virol.* **2014**, *86*, 1736–1744, doi:10.1002/jmv.24014.

624 31. Yin, X.; Li, X.; Ambardekar, C.; Hu, Z.; Lhomme, S.; Feng, Z. Hepatitis E virus persists
625 in the presence of a type III interferon response. *PLoS Pathog.* **2017**, *13*, e1006417,
626 doi:10.1371/journal.ppat.1006417.

627 32. Zhou, X.; Xu, L.; Wang, W.; Watashi, K.; Wang, Y.; Sprengers, D.; de Ruiter, P. E.;
628 van der Laan, L. J. W.; Metselaar, H. J.; Kamar, N.; Peppelenbosch, M. P.; Pan, Q.
629 Disparity of basal and therapeutically activated interferon signalling in constraining
630 hepatitis E virus infection. *J. Viral Hepat.* **2016**, *23*, 294–304, doi:10.1111/jvh.12491.

631 33. Todt, D.; François, C.; Anggakusuma, null; Behrendt, P.; Engelmann, M.;
632 Knegendorf, L.; Vieyres, G.; Wedemeyer, H.; Hartmann, R.; Pietschmann, T.; Duverlie,
633 G.; Steinmann, E. Antiviral Activities of Different Interferon Types and Subtypes
634 against Hepatitis E Virus Replication. *Antimicrob. Agents Chemother.* **2016**, *60*, 2132–
635 2139, doi:10.1128/AAC.02427-15.

636 34. Dong, C.; Zafrullah, M.; Mixson-Hayden, T.; Dai, X.; Liang, J.; Meng, J.; Kamili, S.
637 Suppression of interferon- α signaling by hepatitis E virus. *Hepatology* **2012**, *55*, 1324–
638 1332, doi:10.1002/hep.25530.

639 35. Nan, Y.; Yu, Y.; Ma, Z.; Khattar, S. K.; Fredericksen, B.; Zhang, Y.-J. Hepatitis E virus
640 inhibits type I interferon induction by ORF1 products. *J. Virol.* **2014**, *88*, 11924–11932,
641 doi:10.1128/JVI.01935-14.

642 36. Kang, S.; Choi, C.; Choi, I.; Han, K.-N.; Roh, S. W.; Choi, J.; Kwon, J.; Park, M.-K.;
643 Kim, S.-J.; Myoung, J. Hepatitis E Virus Methyltransferase Inhibits Type I Interferon
644 Induction by Targeting RIG-I. *J. Microbiol. Biotechnol.* **2018**,
645 doi:10.4014/jmb.1808.08058.

646 37. Lenggenhager, D.; Gouttenoire, J.; Malehmir, M.; Bawohl, M.; Honcharova-Biletska,
647 H.; Kreutzer, S.; Semela, D.; Neuweiler, J.; Hürlimann, S.; Aepli, P.; Fraga, M.; Sahli,
648 R.; Terracciano, L.; Rubbia-Brandt, L.; Müllhaupt, B.; Sempoux, C.; Moradpour, D.;
649 Weber, A. Visualization of hepatitis E virus RNA and proteins in the human liver. *J.*
650 *Hepatol.* **2017**, *67*, 471–479, doi:10.1016/j.jhep.2017.04.002.

651 38. Clementz, M. A.; Chen, Z.; Banach, B. S.; Wang, Y.; Sun, L.; Ratia, K.; Baez-Santos,
652 Y. M.; Wang, J.; Takayama, J.; Ghosh, A. K.; Li, K.; Mesecar, A. D.; Baker, S. C.
653 Deubiquitinating and interferon antagonism activities of coronavirus papain-like
654 proteases. *J. Virol.* **2010**, *84*, 4619–4629, doi:10.1128/JVI.02406-09.

655 39. Fehr, A. R.; Channappanavar, R.; Jankevicius, G.; Fett, C.; Zhao, J.; Athmer, J.;
656 Meyerholz, D. K.; Ahel, I.; Perlman, S. The Conserved Coronavirus Macrodomain
657 Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute
658 Respiratory Syndrome Coronavirus Infection. *MBio* **2016**, *7*, doi:10.1128/mBio.01721-
659 16.

660 40. Kuri, T.; Eriksson, K. K.; Putics, A.; Züst, R.; Snijder, E. J.; Davidson, A. D.; Siddell,
661 S. G.; Thiel, V.; Ziebuhr, J.; Weber, F. The ADP-ribose-1''-monophosphatase domains
662 of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate
663 resistance to antiviral interferon responses. *J. Gen. Virol.* **2011**, *92*, 1899–1905,
664 doi:10.1099/vir.0.031856-0.

665 41. Park, E.; Griffin, D. E. The nsP3 macro domain is important for Sindbis virus replication
666 in neurons and neurovirulence in mice. *Virology* **2009**, *388*, 305–314,
667 doi:10.1016/j.virol.2009.03.031.

668 42. Sun, Z.; Li, Y.; Ransburgh, R.; Snijder, E. J.; Fang, Y. Nonstructural protein 2 of porcine
669 reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-
670 stimulated gene 15. *J. Virol.* **2012**, *86*, 3839–3850, doi:10.1128/JVI.06466-11.

671 43. Wang, G.; Chen, G.; Zheng, D.; Cheng, G.; Tang, H. PLP2 of mouse hepatitis virus
672 A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon
673 signaling pathway. *PLoS ONE* **2011**, *6*, e17192, doi:10.1371/journal.pone.0017192.

674 44. Karpe, Y. A.; Lole, K. S. Deubiquitination activity associated with hepatitis E virus
675 putative papain-like cysteine protease. *J. Gen. Virol.* **2011**, *92*, 2088–2092,
676 doi:10.1099/vir.0.033738-0.

677 45. Caignard, G.; Guerbois, M.; Labernardié, J.-L.; Jacob, Y.; Jones, L. M.; Infectious
678 Mapping Project I-MAP; Wild, F.; Tangy, F.; Vidalain, P.-O. Measles virus V protein
679 blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling.
680 *Virology* **2007**, *368*, 351–362, doi:10.1016/j.virol.2007.06.037.

681 46. Mendoza, J.-A.; Jacob, Y.; Cassonnet, P.; Favre, M. Human papillomavirus type 5 E6
682 oncoprotein represses the transforming growth factor beta signaling pathway by binding
683 to SMAD3. *J. Virol.* **2006**, *80*, 12420–12424, doi:10.1128/JVI.02576-05.

684 47. Doceul, V.; Chauveau, E.; Lara, E.; Breard, E.; Sailleau, C.; Zientara, S.; Vitour, D.
685 Dual modulation of type I interferon response by Bluetongue virus. *J. Virol.* **2014**,
686 doi:10.1128/JVI.01235-14.

687 48. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time
688 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **2001**, *25*, 402–408,
689 doi:10.1006/meth.2001.1262.

690 49. Takeuchi, K.; Kadota, S.; Takeda, M.; Miyajima, N.; Nagata, K. Measles virus V
691 protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting
692 STAT1 and STAT2 phosphorylation. *FEBS Lett.* **2003**, *545*, 177–182.

693 50. Chinnakannan, S. K.; Nanda, S. K.; Baron, M. D. Morbillivirus v proteins exhibit
694 multiple mechanisms to block type 1 and type 2 interferon signalling pathways. *PLoS
695 ONE* **2013**, *8*, e57063, doi:10.1371/journal.pone.0057063.

696 51. Ramachandran, A.; Parisien, J.-P.; Horvath, C. M. STAT2 is a primary target for
697 measles virus V protein-mediated alpha/beta interferon signaling inhibition. *J. Virol.*
698 **2008**, *82*, 8330–8338, doi:10.1128/JVI.00831-08.

699 52. Hoffmann, H.-H.; Schneider, W. M.; Rice, C. M. Interferons and viruses: an
700 evolutionary arms race of molecular interactions. *Trends Immunol.* **2015**, *36*, 124–138,
701 doi:10.1016/j.it.2015.01.004.

702 53. Versteeg, G. A.; García-Sastre, A. Viral tricks to grid-lock the type I interferon system.
703 *Curr. Opin. Microbiol.* **2010**, *13*, 508–516, doi:10.1016/j.mib.2010.05.009.

704 54. Shi, X.; Zhang, X.; Wang, F.; Wang, L.; Qiao, S.; Guo, J.; Luo, C.; Wan, B.; Deng, R.;
705 Zhang, G. The zinc-finger domain was essential for porcine reproductive and
706 respiratory syndrome virus nonstructural protein-1 α to inhibit the production of
707 interferon- β . *J. Interferon Cytokine Res.* **2013**, *33*, 328–334, doi:10.1089/jir.2012.0100.

708