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Abstract: Various sudden shifts in financial market conditions over the past decades have1

demonstrated the significant impact of market structural breaks on firms’ credit behavior. To2

characterize such effect quantitatively, we develop a continuous-time modulated Markov model for3

firms’ credit rating transitions with the possibility of market structural breaks. The model takes a4

semi-parametric multiplicative regression form, in which the effects of firms’ observable covariates5

and macroeconomic variables are represented parametrically and nonparametrically, respectively,6

and the frailty effects of unobserved firm-specific and market-wide variables are incorporated via7

the integration form of the model assumption. We further develop a mixtured-estimating-equation8

approach to make inference on the effect of market variations, baseline intensities of all firms’ credit9

rating transitions, and rating transition intensities for each individual firm. We then use the developed10

model and inference procedure to analyze the monthly credit rating of U.S. firms from January 198611

to December 2012, and study the effect of market structural breaks on firms’ credit rating transitions.12

Keywords: Credit rating transitions; Mixtured estimating equations; Multiplicative intensity model;13

Structural break14

1. Introduction15

Various sudden shifts in financial market conditions have been witnessed during the last several16

decades so that structural breaks seem to be common instead of exceptional in financial market. The17

most prominent examples of structural breaks in financial market includes the stock market crash of18

1987, the credit market turmoil of 1998 contributed by Russia’s default, Brazil’s currency crisis and the19

severe disruption of the Long-Term Capital Management’s crisis to U.S. commercial paper markets,20

the dot-com bubble burst and corporate scandals of 2001-02, and the global financial crisis of 2007-0821

sparked by the U.S. subprime mortgage crisis. As suggested by these examples, structural breaks in22

financial market affect a firm’s capital structure and her credit risk, so it is important to investigate23

quantitatively the impact of financial market structural breaks on a firm’s credit risk.24

This article develops an econometric model that embeds the impact of financial market structural25

breaks into firms’ credit risk and provides a statistical assessment of U.S. firms’ credit risk in the26

presence of unknown market structural breaks. In particular, we characterize the impact of market27

structural breaks on firms’ credit risk as changes of mechanisms, through which a firm’s covariates28

affect her credit rating transitions, and then develop a multiplicative intensity model to extract and29

aggregate the information of market structural breaks from firms’ credit rating and accounting records.30

We conduct an empirical analysis based on the credit rating and accounting records of U.S. firms31

during 1986 and 2012, and show the following results. As a source of credit risk that is different32

from commonly-used risk factors in corporates’ credit models, market structural breaks can not be33

econometrically represented as a macroeconomic covariate in firms’ credit analysis. However, since34

market structural breaks affect a firm’s capital structure and then her credit behavior, the information35
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of market structural breaks is hidden in firms’ rating and accounting records. Such information can be36

extracted and aggregated from all firms in credit market, although it is very weak and hidden in each37

individual firm’s rating and accounting records.38

Conventionally, credit risk models for corporates assume that a corporate’s conditional rating39

transition (or default) probabilities (or intensities) depend on certain risk factors that can explain the40

movement and co-movement of credit risk of the obligors (or more generally, the borrowers). As41

missing or misspecifying an important risk factor to which the obligors are exposed will result in42

biased estimates of credit risk, the literature has been very careful to identify and measure those risk43

factors. Depending on whether the risk factors are observable or not, they can be included in credit44

risk models as explicit covariates or frailty variables. Structural breaks or sudden shifts of financial45

markets change the environment, within which corporates need to fulfill their financial obligation46

in the future, and hence influence corporates’ credit risk. However, we notice that it is difficult to47

characterize the instability of financial markets econometrically. One reason is that, although some48

economic theory has been proposed to discuss financial market instability [1,2], no structural approach49

has been proposed to characterize or measure such instability. Another reason is that, although various50

macroeconomic variables or market indices are proposed to characterize the movement of some market51

fundamentals, none of them is concerned with the effect of market structural changes on firms’ credit52

risk. From this perspective, although instability in financial market is a source of the movement or53

co-movement of firms’ credit risk, it can not be represented as observed or unobserved risk factors, as54

in commonly-used credit risk models.55

This motivates us to consider a model that incorporates market structural breaks for corporates’56

credit risk analysis. Since channels through which market structural breaks affect firms’ credit behavior57

are too complex, we only consider in this article a statistical approach to model the effect of market58

structural breaks on firms’ credit risk. The basic idea of our approach is to use a functional form of59

credit rating transition models to represent the market environment so that the time-variation of the60

functional form depicts the market instability. Specifically, we assume that the intensities of firms’ credit61

rating transitions follow a semi-parametric multiplicative regression with time-varying coefficients,62

in which the frailty effects are integrated out by the expectation assumption, the nonparametric (or63

the baseline intensity) and parametric parts represent the effect of macroeconomic variables and64

observed firm-specific covariates, respectively, and the time-varying parameters represents the market65

instability. We then develop a mixtured-estimating-equations approach to make inference on the effect66

of market structural changes on firms’ credit behavior (i.e., time-varying coefficients) and the baseline67

macroeconomic effect for firms’ credit rating transitions.68

We use the proposed model and developed inference procedure to study the monthly credit69

ratings of U.S. corporates from January 1985 to December 2012. We show that the market environment,70

characterized via model parameters, is indeed instable over time, and the estimated market structural71

breaks are not only statistically significant but economically meaningful as well. The estimated time72

of structural breaks match the times of several structural changes in the U.S. credit market. We73

also compute firms’ rating transition intensities and probability matrices in the presence of market74

structural breaks and compare our result with the one without structural breaks assumption. Our75

comparison indicates that some rating transition types are more sensitive to market structural breaks76

than others.77

The remainder of the article is organized as follows. Section 2 gives an overview of our modeling78

approach, and places our work in the context of the related literature and clarifies our contribution.79

Section 3 specifies the statistical model for the intensities of obligors’ rating transitions and present the80

estimation procedure. Section 4 explains our data sources, provides the fitted model, and summarizes81

some of the implications of the fitted model for rating transitions. Section 5 concludes the paper.82
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2. Our Modeling Approach and Related Literature83

In order to further motivate our approach, we now briefly outline our specification and discuss84

the connection between our model and existing literatures.85

A corporate’s credit risk is usually modeled via structural or reduced-form approach. Structural86

models provide an explicit relationship between a firm’s asset structure and its credit risk. Specifically,87

a standard structural credit risk model assumes that a firm defaults when the market value of its88

assets drops to a sufficiently low level relative to the firm’s liabilities. For instance, [3–7] model the89

market value of a firm’s asset as a geometric Brownian motion, so that a firm’s conditional probability90

of default is determined by the firm’s distance to default, or the number of standard deviations of91

annual asset growth by which the firm’s asset level exceeds its liabilities. Extensions of this approach to92

incorporate other complexities such as assuming jump-diffusion process for asset values or stochastic93

interest rates are considered by [8–11].94

Comparing to the structural approach that directly models the incentives or ability of a corporate95

to pay its debt, a reduced form approach models the dependence of default probabilities on explanatory96

variables through an econometric specification. [12] and [13] first used firms’ financial accounting97

data to estimate the likelihoods of firms’ default. [14] introduced a duration model of default based98

on Weibull distributed default times, and [15] extended it to include time-varying covariates. [16–18]99

further used duration models to predict firm’s bankruptcy. However, due to the interpretability issue,100

the explanatory variables in reduced form models need to be carefully selected to have the spirit of101

structural default models. [19] modeled the conditional probability of a default time when a firm’s102

distance to default is imperfectly observed, and suggested the existence of a default intensity process103

depending on firms’ distance to default and other covariates may provide more information about104

the firm’s financial condition. [20] considered a joint model of stochastic default intensities and the105

dynamics of the underlying time-varying covariates, and introduced likelihood estimation of term106

structures of default probabilities. These models did not discuss the issue of unobservable or missing107

covariates affecting default probabilities. Assuming that the rating transition intensities depend on a108

common unobservable factor, [21] introduced dynamic frailty models of default. [22] extended the109

frailty-based approach to incorporate the variables used by [20]. [23] further discussed the role of110

frailty in firms’ default during the recent financial crisis.111

Different from the above literature, our purpose is to understand the role of market structural112

breaks in firms’ credit risk. [24] discussed the effect of market structural breaks on homogeneous firms’113

rating transition. To study the effect of structural breaks on heterogeneous firms and further distinguish114

it from other risk factors, we model the market variation though time-varying coefficients in the115

rating transition intensity processes, and characterize observable and unobservable firm-specific and116

macroeconomic variables through parametric, nonparametric, and integration forms. The advantage117

of our specification is the way of handling the effects of unobserved risk factors in credit analysis. To118

separate the effect of frailty variables from that of market instability, our model assumes the effect119

of unobserved firm-specific covariates has been integrated out and model the effect of unobserved120

macroeconomic variables nonparametrically, so that the issue of unobserved covariates is nicely121

handled. However, such convenience complicates the model inference procedure. First, due to the122

semiparametric feature of the model, we have to discard the likelihood based inference procedure and123

consider an estimating equation approach. Second, the inference on the effects of market instability124

requires us to estimate the path of the point process, or more specifically, the piecewise constant125

coefficients and their jump locations, numbers and amplitude during the sample period, while the126

conventional credit analysis doesn’t require estimates of the path of default (or rating transition)127

intensities. To overcome such difficulties, we consider a mixtured estimating equation approach128

which synthesizes two basic statistical procedures that deal with two “degenerate cases” of the model.129

One degenerate case assumes the market is stable and hence the time-varying coefficients in the130

semi-parametric model become constant, and the other decomposes the jump process of coefficients131

into a series of disjoint events that correspond to sets of jump times of general market conditions with132
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probabilities. Then combining these two cases via a mixtured estimating equation yields a inference133

procedure for the effect of market instability.134

Our model extracts and aggregates the information of market structural variation from each135

obligor’s rating transition and accounting records, and the estimated time-varying coefficients136

demonstrate the extent of market instability and the risk of sudden shifts of general market conditions.137

Such feature is related to but different from the concept of systemic risk, which refers to the risk of138

collapse of the entire market caused by the risk exposure of one or a few agents. From this perspective,139

the model can also be used for regulatory agencies to analyze the risk of financial market instability.140

Another potential application of the model is to help bank understand the instability risk arising141

from the “market” that consists of all her own counterparties and exposures. Under the guideline of142

Basel Accords, banks are allowed to build their internal rating system to assess the risk of all their143

counterparties and exposures. The proposed model can be extended there to estimate the instability144

risk of a bank’s counterparties and exposures, and hence allows the bank to take necessary actions to145

mitigate the loss caused by such instability.146

3. A modulated semi-Markov model147

3.1. Information filtration148

To specify an intensity model for firm’s rating transitions, we shall discuss econometrician’s149

information filtration first. We fix a probability space (Ω,F ,P) and a complete information filtration150

{Gt : t ≥ 0}. We note that there are three types of information sets in Gt at time t. The first type, denoted151

asMt, is generated by observed and unobserved macroeconomic variables or events. We shall assume152

thatMt is also a minimal information set that summarizes events at the macroeconomic level. However,153

we shall note thatMt doesn’t contain any interactions between macroeconomic and microeconomic154

variables. The second type, denoted as Bt, is produced by the collection of all firms’ (or borrowers’)155

observed and unobserved covariates and events up to time t. This information set still doesn’t contain156

any interactions between macroeconomic and microeconomic variables, and it is independent ofMt.157

The third type, denoted as St, characterizes the time variation of market or economic environment,158

and summarizes the mechanism that microeconomic variables or events interact with macroeconomic159

variables or events. One such example of elements in St is that credit rating agencies’ rating criteria are160

not same during different economic situations. Notice that traditional credit risk models assume the161

existence of this information set implicitly, and they usually specify a functional form with constant162

coefficient as the only element in St, that is, St = {Λθ}, where θ is a parameter vector and Λ is a163

functional for rating transition intensities. GivenMt, Bt, and St, the complete-information filtration164

Gt is the σ-algebra generated by these three sets, that is, Gt = σ{Mt ∪ Bt ∪ St}, and, by the setup itself,165

Mt, Bt and St are mutually independent.166

3.2. Conventional models for firms’ rating transition intensities167

For a firm l (l = 1, . . . , n), we suppose its rating transition process follows a K-state modulated168

Markov process, that is, the arrival rates of rating transitions among two particular rating categories169

depend on a vector of covariates. The rating transition process of firm l is allowed to be left-truncated170

and right-censored, which corresponds to the cases of firm l entering and exiting the rating system171

respectively. Denote Pl(s, t) (l = 1, . . . , n) the rating transition probability matrix of firm l over the172

period (s, t), in which the ij’th element of Pl(s, t) represents the probability that a firm starting in state i173

at time s is in state j at time t. Let Al(t) be the rating category of firm l at time t, and N∗ijl(t) the number174

of transitions from rating category i to rating category j of the firm l that occur over the interval (0, t]175

for i, j ∈ {1, . . . , K}, j 6= i. If we know the intensity function of N∗ijl(t), then the transition matrices176

Pl(s, t) can be computed from them; see [25, Section 8.3].177

Let {Xl(t)} be a d-dimensional observable firm-specific covariate process during the period
(el,0, el,1), in which el,0 is the first time that covariate X(t) appears in the data and el,1 is the exit time
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of firm l. Let Bobs
ijl,t be the filtration generated by {Xl(s) : el,0 ≤ s ≤ t}, Nl,t the filtration generated

by {N∗ijl(s) : 1 ≤ i 6= j ≤ K, el,0 ≤ s ≤ t}, and λ
(i,j)
l (t) the intensity function of N∗ijl(t) associated

with Bobs
ijl,t ∪ Nl,t. Note that Bobs

t := ∪i,j,lBobs
ijl,t is only a subset of Bt, as it doesn’t contain firms’

unobserved covariates. To better explain our idea, we assume that Y(t) is a vector of macroeconomic
variables observed at time t andMobs

t is the filtration generated by Y(t). We denoteMunobs
t the set

of unobserved variables or events inMt, thenMt is the filtration generated byMobs
t andMunobs

t .
Let Fl,t is the information filtration generated by the observed variables

{
∪i,j,l Bobs

ijl,s; el,0 ≤ s ≤
min(t, el,1)

}
∪
{
Mobs

s ; 0 ≤ s ≤ t
}

. Then the econometrician’s information filtration is the union of Fl,t
and firm’s transition history Nl,t, that is, Fl,t ∪ Nl,t. When market or economic condition is stable,
conventional credit risk models assume the following intensity functions for rating transitions,

E{dN∗ijl(t)
∣∣Fl,t,Nl,t,S} = λ(i,j)(Xl(t), Y(t); θ(i,j))dt, (1)

in which dN∗ijl(t) is the increment N∗ijl{(t + dt)} − N∗ijl(t) of N∗ijl(t) over the small interval [t, t + dt).
We shall note that model (1) assumes that all covariates or risk factors are observable, which introduces
a downward biased estimate of tail portfolio losses. To relax such restriction, the frailty correlated
model in [22] drops the following assumption in (1) that all the influence of the prior events on future
rating transitions (or default) is demonstrated through observed covariates at time t, i.e.,

E{dN∗ijl(t)
∣∣Fl,t,Nl,t,S} = E{dN∗ijl(t)

∣∣Xl(t), Y(t),Nl,t,S},

and only assumes the following marginal intensity for rating transitions (or default),

E{dN∗ijl(t)
∣∣Xl(t), Y(t),Nl,t,S} = λ(i,j)(Xl(t), Y(t); θ(i,j))dt. (2)

Furthermore, [22] assume parametric process for Y(t) and unobserved macroeconomic and178

firm-specific covariates, and use Markov Chain Monte Carlo (MCMC) methods to perform maximum179

likelihood estimation and to filter for the conditional distribution of the frailty process.180

3.3. Our specification for firms’ rating transition intensities181

As we only observe firms’ covariates Xl(t), we consider the intensity model based on
E{dN∗ijl(t)

∣∣Xl(t),S}. To incorporate the effect of unobserved macroeconomic and firm-specific
covariates, we consider an approach different from the parametric treatment in [22]. We further
relax (2) and allow the frailty effect absorbed into the conditional expectation form. Specifically, we
express the model as

E{dN∗ijl(t)
∣∣Xl(t),S} = exp

[
Xl(t)Tθ(i,j)

]
dΛ(i,j)

0 (t), (3)

in which Λ(i,j)
0 (·) is an unknown continuous function and θ(i,j) is a parameter vector. This specification

allows arbitrary dependence structure among rating transitions and is applicable to many process
for rating migrations. For example, the unobserved heterogeneity among firms can be characterized
through the frailty model

λ(i,j)(Xl(t), t) = exp
[
ηl(t) + Xl(t)Tθ(i,j)

]
λ
(i,j)
0 (t),

in which ηl(t) is an unobserved firm-specific random process independent of Xl , and this model falls182

into the category of (3). Furthermore, assumption (3) merges the effect of observed and unobserved183

macroeconomic variables into the unspecified function Λ(i,j)
0 (·).184

We are now ready to characterize the effect of market structural breaks on a firm’s credit rating
transitions econometrically. We extend the constant market environment S to the time-varying case
St, which is a set of time varying functional forms. Specifically, we replace the constant coefficient
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θ(i,j) in (3) by a time-varying vector θ(i,j)(t). Denoting E{dN∗ijl(t)
∣∣Xl(t),St} by dΛ(i,j)

X (t), we obtain a
specification for firm l’s rating transition intensities with market structural breaks

E{dN∗ijl(t)
∣∣Xl(t),St} = exp

[
Xl(t)Tθ(i,j)(t)

]
dΛ(i,j)

0 (t), (4)

or

Λ(i,j)
X (t) =

∫ t

0
exp

[
Xl(u)Tθ(i,j)(u)

]
dΛ(i,j)

0 (u). (5)

in which the baseline rate Λ(i,j)
0 (·) is an unknown continuous function regarding unobserved185

macroeconomic and firm-specific covariates (and observed macroeconomic covariates if they are186

specified). Note that Λ(i,j)
X (t) = E{N∗ijl(t)|Xl(t),St} refers to the mean rate function of the transition187

from rating category i to rating category j, as Xl(t) here do not involve firms’ rating transition history188

[25, page 281]. Otherwise, they can only be interpreted as the cumulative rates.189

3.4. Dynamics of market structural breaks190

We now specify a time-varying scheme for parameter vector θ(i,j)(t). Since market structural191

changes can be either gradual or abrupt, we assume that θ(i,j)(t) follows a compounded Poisson192

process. This assumption best describes the time-varying feature of θ(i,j)(t), as both the number and193

locations of structural breaks in θ(i,j)(t) and the pre- and post-change values of θ(i,j)(t) are unobserved.194

Furthermore, this assumption captures abrupt and gradual changes of general market conditions via195

large and small size jumps of θ(i,j)(t), respectively. Since the entire path of the jump process θ(i,j)(t)196

need to be estimated in our model so that firms’ transition intensities or probabilities can be evaluated,197

we consider the following assumptions for θ(i,j)(t),198

(A1) the number of jumps in β(i,j)(t) follows a Poisson process {J(i,j)(t); t ≥ 0} with rate η and are199

independent of Xl(t);200

(A2) if a jump occurs at time t, the post-change value of θ(i,j)(t) is independent of its pre-change201

value, in particular, denote θ(i,j)(t) = ω
(i,j)
J(i,j)(t)

, where ω
(i,j)
0 , ω

(i,j)
1 , ω

(i,j)
2 , . . . are independent and202

identically distributed (i.i.d.) normal random vectors with mean µ(i,j) and covariance V(i,j).203

Assumption (A1) implies that the duration between two adjacent jumps in θ(i,j)(t) follows an204

exponential distribution with mean 1/η, and θ(i,j)(t) between two adjacent jumps are constant. The205

prior assumption with mean µ(i,j) and covariance V(i,j) in Assumption (A2) allows econometricians to206

incorporate their view on rating transmission channel into the model.207

Model (4) or (5) with assumptions (A1) and (A2) complete our model specification.208

4. Inference procedure209

The proposed model has two types of complexities, one is the semiparametric feature of the210

intensity functions, and the other is the nonlinear dynamics of regression coefficients θ(i,j)(t). To211

develop an inference procedure, we borrow the idea of mixtured estimating equations developed212

by [26]. Specifically, we first consider an estimating equation for the case that there are no structural213

breaks in θ(i,j)(t) during the period (t∗, t∗), we then link all estimating-equation-based estimates by214

mixture weights that can be computed explicitly.215

4.1. Inference when no structural breaks exist216

When θ(i,j)(t) is constant and doesn’t undergo any structural breaks during the time interval
(t∗, t∗), i.e., θ(i,j)(t) ≡ θ(i,j), t ∈ (t∗, t∗), model (4) can be reduced to

E{dN∗ijl(t)
∣∣Xl(t),S} = exp

[
Xl(t)Tθ(i,j)

]
dΛ(i,j)

0 (t), t ∈ (t∗, t∗),
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which is same as the Cox’s regression model for counting process in [27], except that regression
coefficients θ(i,j) is imposed a Normal prior distribution N(µ(i,j), V(i,j)). Beside the prior mean µ(i,j)

and the prior covariance V(i,j) can be informative from econometric perspective, they also serve the
shrinkage role when not enough data are available when the time interval (t∗, t∗) is too short. As the
Cox model without priors can be solved by standard estimating equation procedure, we extend below
the procedure by incorporating the prior distribution for θ(i,j). As Al(t) represents the rating category
of firm l at time t, we denote Yil(t) = I(Al(t−) = i, Ci ≥ t), i.e., the indicator that the lth obligor is
in state i and under observation at time t−, i ∈ {1, . . . , K}. For the n firms during the time interval
(t∗, t∗), we let

S(k)(θ(i,j), t) = n−1
n

∑
l=1

Yil(t)Xl(t)⊗k exp{Xl(t)Tθ(i,j)}, (6)

(k = 0, 1, 2), where a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . Let F(t∗ ,t∗) be the information set generated
by the observed variables during (t∗, t∗), i.e.,

{
∪i,j,l Bobs

ijl,s; max(t∗, el,0) ≤ s ≤ min(t∗, el,1)
}

, and

define X(θ(i,j), t) = S(1)(θ(i,j), t)
/

S(0)(θ(i,j), t). The partial likelihood score function for θ(i,j) with prior
distribution N(µ(i,j), V(i,j)) can be defined as follows

U(θ(i,j), t|F(t∗ ,t∗)) = [V(i,j)]−1(θ(i,j) − µ(i,j)) +
n

∑
l=1

∫ t

t∗

[
Xl(u)− X(θ(i,j), u)

]
dN(i,j)

l (u). (7)

Denote the solution to U(θ(i,j), t∗|F(t∗ ,t∗)) = 0 by θ̂
(i,j)
(t∗ ,t∗). A Newton-Raphson algorithm can be used217

to calculate θ̂
(i,j)
(t∗ ,t∗) and we then estimate θ(i,j) by θ̂

(i,j)
(t∗ ,t∗). Furthermore, following the method in [28,218

Section 2], we can show that n1/2(θ̂(i,j)(t∗ ,t∗) − θ
)

converges in distribution to a d-variate zero-mean219

normal random vector, whose covariance doesn’t depend on the prior as the effect of prior diminishes220

when n −→ ∞ and can be estimated from data.221

4.2. Mixtured estimating equations222

We now consider the case that θ(i,j)(t) have structural breaks, or θ(i,j)(t) are piecewise constant223

with the unknown number of jumps, jump times, and jump amplitudes. Since firms’ rating and224

accounting records are in discrete time, we consider an evenly spaced partition for the period (0, T),225

0 = t0 < t1 < · · · < tH = T, and assume that structural breaks can only happen at times t1, . . . , tH .226

We define the variables J1 = 1 and Jh = J(th−)− J(th−1−) for h = 2, . . . , H to indicate if θij(t) has a227

structural break at th−1, then Jh are independent Bernoulli random variables with success probability228

p = 1− exp(−ηT/H). We also assume that there is at most one structural break at time th. Note that229

these assumptions are reasonable to identify structural breaks in θ(i,j)(t) as long as the partition of230

(0, T) is fine enough.231

Let θ
(i,j)
(tm ,tk)

be the constant regression coefficient for t ∈ (tm, tk) when tm and tk are two adjacent

structural breaks around th. To estimate θ(i,j)(t) given F(0,tH), we first notice that, for any estimating
function U(·|F(0,tH)),

U(θ(i,j)(th)|F(0,tH)) = ∑
1≤m≤h≤k≤H

πmhkU(θ
(i,j)
(tm−1,tk)

|F(tm−1,tk)
), (8)

in which πmhk is the probability that two most recent change-times around th are tm and tk (tm ≤
th < tk). We then compute the mixture probabilities {πmhk}. Let Rh = max{tm−1|Jm = 1, m ≤ l} and
ηm,h = P(Rh = tm−1|F(0,sh)

). Then the conditional distribution of θ(i,j)(tl) given F(0,th)
is expressed as

f (θ(i,j)(th)|F(0,th)
) =

l

∑
m=1

ηm,l f (θ(i,j)
(tm−1,th)

|F(tm−1,th)
), (9)
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in which f (θ(i,j)
(tm−1,th)

|F(tm−1,th)
) is the conditional distribution of θ(th) given Rh = tm−1 and F(tm−1,th)

,

and the mixture probabilities are expressed as ηm,h = η∗m,h
/

∑h
u=1 η∗u,h, and

η∗m,h =

{
pψth ,th m = h,
(1− p)ηm,h−1ψtm ,th /ψtm ,th−1 m < h.

(10)

Note that ψtm ,th represents the likelihood of F(tm−1,tl)
given Rh = tm−1, for which we replace it by the232

partial likelihood for observations in (tm−1, th) and evaluated at at θ̂
(i,j)
(tm−1,th)

.233

Denote R̃l+1 = min{tk|Jk = 1, k > h} and η̃k,h+1 = P(R̃h+1 = tk|Fth+1,tH ), then the conditional
distribution of θ(i,j)(th) given F(th ,tH) is

f (θ(i,j)(th)|F(th ,tH)) = p f (θ(i,j)(th)|F0) + (1− p)
H

∑
k=h+1

η̃k,h+1 f (θi,j)
(th ,tk)

)|F(th ,tk)
), (11)

in which f (θ(i,j)(th)|F0) represents the density of θ(i,j)(th) without any observations, the mixture
probabilities η̃k,h+1 = η̃∗k,h+1

/
∑H

u=h+1 η̃∗u,h+1, and

η̃∗k,h+1 =

{
pψth+1,th+1 k = l + 1,
(1− p)ηh+2,kψth+1,tk /ψth+2,tk k > l + 1.

(12)

Finally we use the Bayes theorem to combine functions (9) and (11) to obtain the conditional of θ(i,j)(th)

given all observations F(0,tH)

f (θ(i,j)(th)|F(0,tH)) = ∑
1≤m≤h≤k≤L

πmhk f (θ(i,j)
(tm−1,tk)

|F(tm−1,tk)
), (13)

in which πmhk = π∗mhk
/

∑1≤u≤h≤v≤H π∗uhv and

π∗mhk =

{
pηm,h m ≤ h = k,
(1− p)ηm,hη̃k,h+1ψtm ,tk

/(
ψtm ,th ψth+1,tk

)
m ≤ h < k.

(14)

As the above procedure provides explicit formulas to compute the mixture weights {πmhk}, we
use (8) to construct the estimation procedure as follows. First, we use expressions (10), (12), and (14) to
compute the mixture probabilities {πmhk}, then we use observations F(tm−1,tk)

to estimate θ
(i,j)
(tm−1,tk)

by

the procedure in the preceding section and denote the estimate by θ̂
(i,j)
(tm−1,tk)

. Finally, in the spirit of (8),

we construct the estimate of θ(i,j)(th) given F(0,tH),

θ̂
(i,j)

(th) = ∑
1≤m≤h≤k≤H

πmhkθ̂
(i,j)
(tm−1,tk)

. (15)

and extend it to the whole sample period by θ̂
(i,j)

(t) = θ̂
(i,j)

(th), for t ∈ (th−1, th), h = 1, . . . , H.

Estimates for standard errors of θ̂
(i,j)

(th) can be constructed in the same spirit. Furthermore, we
also obtain a natural estimator for the baseline cumulative intensity Λ(i,j)

0 (t) which is given by the
Aalen-Breslow-type estimator

Λ̂(i,j)
0 (t) =

∫ t

0

dN̄(i,j)(u)

nS(0)(θ̂
(i,j)

(u), u)
, (16)

in which N̄(i,j)(u) = ∑n
l=1 N∗ijl(u) and S(0)(θ(i,j)(t), t) is defined via (6).234
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4.3. Estimation of informative prior235

The preceding estimation procedure contain hyperparameters Φ = {η, µ(i,j), V(i,j); 1 ≤ i, j ≤236

K, i 6= j}. These informative prior represents the information of market structural changes, and can be237

estimated by a quasi Expectation-Maximization algorithm.238

5. An Empirical Study239

5.1. Data description240

The data are obtained from Compustat and consist of Standard & Poor monthly credit ratings,241

long-term and short-term debt of U.S. corporates over 23 years starting January 1986 and ending242

December 2008. As our model involves corporates’ credit rating and covariates, our empirical study243

only focuses on corporates which have both credit rating and debt records in the sample period.244

The credit rating data contain ten rating categories, A A A , A A , A , BBB, BB, B, C C C , C C ,245

C and D (default), and 25 rating subcategories. Subcategories are obtained by possibly adding “+” or246

“-” to the letter grade of categories, which shows relative standing within the major rating categories.247

We then clean the data as follows. We first group C and C C into C C C as the records in the former248

two rating categories are relatively few, and then remove rating records of two invalid ratings “N.M.”249

and “Suspended”. After the above data-cleaning process, we extract the initial rating and transition250

information from the rating records. Then we obtain 1814 initial rating and 2926 transition records251

covering 1172 firms, and eight rating categories, A A A , A A , A , BBB, BB, B, C C C , and D . For252

observable firms-specific covariates, we follow [22] and adopt the firm’s distance to default and trailing253

1-year stock return as Xl,1(t) and Xl,2(t), respectively. The distance to default is a volatility-adjusted254

measure of leverage and has theoretical underpinnings in the Black-Scholes-Merton structural model255

of default probabilities. We make use of the market equity data, Compustat book liability data (current256

liabilities, long-term debt, common shares outstanding, total current liabilities, stock price closed), and257

1-year Treasury bill rate to construct this covariate. The construct method follows the lines of that used258

by [18,19,22]. The firm’s trailing 1-year stock return is a covariate of forecasting bankruptcy suggested259

by [16].260

5.2. Estimates of regression coefficients and baseline cumulative intensities261

We use the inference procedure developed in Section 4 to first estimate the hyperparameters Φ and262

then the time-varying coefficients θ(i,j)(t). Figures 1 and 2 show the estimated regression coefficients,263

i.e., θ̂
(i,j)
1 (t) and θ̂

(i,j)
2 (t), and their 95% confidence bands, respectively. The estimated coefficients264

show clearly the market instability over time, and in particular, big changes around October 1994,265

March 2001, April 2007, and January 2010. It is intriguing to notice that the credit market in U.S. did266

experience big change around those periods. During February 1994 to February 1995, the U.S. Federal267

Reserve doubled short-term interest rates to 6% in a year, which make the US bond market suffered268

a major shock. Around the beginning of 2001, the collapse of the Internet bubble reaches its peak.269

Furthermore, the U.S financial market experiences a severe crisis starting from the housing bubble270

burst in the beginning of 2007, and seemingly beginning to recover in the second half of 2009.271

Different from [22] who found firm’s trailing returns provide a significant incremental explanatory272

power, we find that all the 95% confidence bands of θ̂
(i,j)
2 (t) in Figure 2 includes the value 0, indicating273

the effect of firms’ trailing 1-year stock return is not significant. This may be due to the fact our model274

specification integrates out all the frailty effects, while [20] only considered a specific dynamics as the275

frailty effect in the model.276

Figure 3 shows the estimated baseline cumulative intensities (solid lines) based on (16). To see277

the effect of structural breaks, we also plot the estimated baseline cumulative intensities (dotted278

lines) when no structural breaks are assumed during the sample period. We see that for some rating279

transitions such as AAA → AA, AA → A and A → AA, the cumulative intensities with structural280
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Figure 1. Estimated coefficients (solid) and their 95% confidence bands (dotted) for firms’ distance to
default.
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Figure 2. Estimated coefficients (solid) and their 95% confidence bands (dotted) for firms’ trailing
returns.
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Figure 3. Estimated baseline cumulative intensities with (solid) and without (dashed) structural breaks.

break assumption are more steep than those without structural break assumption, while the other way281

around for other cases such as A → BBB, BBB → B and C → D. This indicates that some rating282

transitions are more sensitive to market structural breaks than others.283

5.3. Firms’ rating transition intensities and probabilities284

With the estimated θ(i,j)(t) and baseline intensities, we can use (4) and (5) to compute all types of285

rating transition intensities for each firm and furthermore the rating transition probabilities. Note that286

the firm’s intensities given by (4) and (5) are the mean functions after integrating all random effects.287

Take the Costco Wholesale Corporation for example, Figure 4 plots the estimated mean functions of288

cumulative intensities for different rating transitions with (solid) and without (dashed) the assumptions289

of structural breaks. We notice that for some rating transition types such as AAA → AA, AA → A290

and A → AA, the cumulative intensities of Costco under structural breaks assumption are smaller291

than the ones without structural breaks assumption, while larger for other transitions types such as292

BB → B and C → D, which is contrary to the finding for baseline cumulative intensities. This further293

confirms the significant effect of firms’ covariates on firms’ rating transitions.294

We further compute the Costco’s transition probability matrices for different periods and with295

different assumptions. The first panel of Table 1 shows the estimated transition probability matrix for296

the whole sample period without structural break assumption, and the second and third panels show297

the estimated matrices for two periods with the structural break assumption. We choose these two298

periods because both the estimated baseline and the Costco’s cumulative intensities show big shifts299

around these periods. We find that the transition probabilities from non-default ratings to the default300

state are much smaller when the assumption of market structural break is incorporated.301

6. Concluding remarks302

To incorporate the impact of market structural breaks on firm’s credit risk, we have developed a303

modulated semi-Markov model with unknown number, locations and magnitude of market structural304

breaks for firms’ credit rating transition intensities. The model allows a mixtured estimating equation305

approach to make inference on the time-varying regression coefficients that represent the effect of306

market structural breaks, baseline intensities of rating transitions for all firms and rating transition307

intensities for each individual firm.308
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Figure 4. Mean functions of the Costco Wholesale Corporation’s cumulative intensities.

As market structural breaks cannot be simply represented as a risk factor in credit risk modeling,309

the proposed model aggregates firm’s rating and accounting records, and extracts the market structural310

break information effectively. The model also characterizes the impact of market structural break on311

firm’s rating transitions, and allow explicit computation of firms’ rating transition probabilities in the312

presence of unknown market structural breaks. The proposed model has potential applications for the313

regulatory authority to monitor the market movement. It can also be used as a tool of risk analysis for314

banks to monitor the risk of structural change faced themselves.315
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Table 1. Estimated transition probability matrices of the AT&T Inc.

A A A A A A BBB BB B C C C D
January 1986—September 2012 (without structural break assumption)
A A A .9993 7e-4 3e-6 2e-8 2e-10 2e-11 1e-12 2e-14
A A 1e-4 0.9927 7e-3 9e-5 8e-7 1e-7 9e-9 1e-10
A 9e-8 .0012 .9742 0.0241 3e-4 5e-5 5e-6 1e-7
BBB 3e-10 6e-6 0.0098 0.9577 0.0274 0.0043 6e-4 2e-5
BB 1e-12 4e-8 9e-5 0.0183 0.9173 0.0552 0.0087 2e-4
B 7e-15 3e-10 8e-7 2e-4 0.0219 0.7215 0.2463 0.0100
C C C 3e-17 1e-12 5e-9 2e-6 3e-4 0.0208 0.9066 0.0722
October 1994—March 2001 (with structural break assumption)
A A A 0.9998 2e-4 3e-7 6e-10 2e-13 1e-14 2e-20 5e-24
A A 2e-5 0.9968 0.0031 1e-5 5e-9 3e-10 5e-16 2e-19
A 3e-9 3e-4 0.9933 0.0063 4e-6 2e-7 6e-13 2e-16
BBB 4e-12 7e-7 0.0041 0.9944 0.0013 8e-5 3e-10 9e-14
BB 5e-15 1e-9 1e-5 0.0055 0.9935 0.0010 4e-9 1e-12
B 3e-18 9e-13 1e-8 8e-6 0.0028 0.9971 8e-6 2e-9
C C C 2e-23 7e-18 1e-13 1e-10 6e-8 4e-5 0.9999 4e-9
April 2007—January 2010 (with structural break assumption)
A A A .9999 1e-4 1e-8 7e-12 3e-15 3e-17 5e-23 9e-27
A A 7e-6 .9998 .0002 2e-7 1e-10 1e-12 2e-18 4e-22
A 9e-11 3e-5 0.9981 0.0018 2e-6 1e-8 4e-14 8e-18
BBB 4e-14 1e-8 0.0011 0.9972 0.0017 2e-5 6e-11 1e-14
BB 2e-17 1e-11 1e-6 0.0023 0.9967 9e-4 4e-9 8e-13
B 7e-21 5e-15 7e-10 2e-6 0.0016 0.9984 8e-6 2e-9
C C C 1e-25 8e-20 2e-14 6e-11 7e-8 9e-5 0.9999 1e-5

Appendix A quasi EM approach to estimate hyperparameters325

We consider a quasi EM approach to estimate Φ. We first note that the partial likelihood lc(Φ) of
the complete data, which consists of all observations and time varying parameters {θ(i,j)(t); 1 ≤ i 6=
j ≤ K, 0 < t < T}, can be written as

lc(Φ) =
H

∑
h=1

K

∑
i=1

∑
j 6=i

n

∑
l=1

{
log P(dN(i,j)

l (th) = 1
∣∣dN(i,j)

· (th) ≥ 1,Fth−)
}

− 1
2

H

∑
h=1

K

∑
i=1

∑
j 6=i

l(i,j)c (Φ)
{
(θ(i,j)(th)− µ(i,j))T[V(i,j)]−1

(θ(i,j)(th)

− µ(i,j)) + log |V(i,j)|+ d log(2π)
}

1
{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

+
H

∑
h=1

{[
log(1− p)

]
1
{θ(i,j)

(th)=θ(i,j)
(th−1);1≤i 6=j≤K}

+ (log p)1
{θ(i,j)

(th) 6=θ(i,j)
(th−1);1≤i 6=j≤K}

}
.

(A1)

Note that the E-step of the EM algorithm involves the following conditional probabilities or326

expectations,327

(a) P
(
θ(i,j)(th) 6= θ(i,j)(th−1)

)
|F(0,tH)

)
,328

(b) E
(

log P(dN(i,j)
l (th) = 1

∣∣dN(i,j)
· (th) = 1,Gth−)

∣∣F(0,tH)

)
,329

(c) E
(
(θ(i,j)(th)− µ(i,j))T[V(i,j)]−1

(θ(i,j)(th)− µ(i,j))
∣∣F(0,tH)

)
.330
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then in view of the above complete log partial likelihood, the M-step of the EM algorithm yields the331

closed-form updating formulas332

µ̂(i,j)
new =

∑H
h=1 E

(
θ(i,j)(th)1{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

∣∣F(0,tH), Φ̂old
)

∑H
h=1 P

(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

) ,

V̂(i,j)
new =

∑H
h=1 E

(
(θ(i,j)(th)− µ̂

(i,j)
old )⊗21

{θ(i,j)
(th) 6=θ(i,j)

(th−1)}
|F(0,tH), Φ̂old

)
∑H

h=1 P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

) ,

p̂new =
H

∑
h=1

P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

)/
H.

For the updating formulas above, we can show that

P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH)

)
= ∑

h≤k≤H
πhkh.

E
(
θ(i,j)(th)1{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

∣∣F(0,tH)

)
= ∑

h≤k≤H
πhkhE

(
θ
(i,j)
(th ,tk)

∣∣F(th ,tk)

)
,

and
E
(
(θ(i,j)(th)− µ̂

(i,j)
old )⊗21

{θ(i,j)
(th) 6=θ(i,j)

(th−1)}
|F(0,tH)

)
= ∑

h≤k≤H
πhkhE

(
(θ

(i,j)
(th ,tk)

− µ̂
(i,j)
old )⊗2|F(th ,tk)

)
.

We then approximate E
(
θ
(i,j)
(th ,tk)

∣∣F(th ,tk)

)
and E

[
θ
(i,j)
(th ,tk)

)⊗2
∣∣F(th ,tk)

]
by the first and second moments of333

the asymptotic distributions of the estimate θ̂
(i,j)
(th ,tk)
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