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Abstract: In this paper, the ductile fracture mechanism is discussed. The results of the numerical 

and experimental analyses are used to estimate of the onset of the crack front growth . It is assumed 

that the ductile fracture in front of the crack starts at the location along the crack front where the 

accumulated effective plastic strain reaches a critical value. It is also assumed that the critical 

effective plastic strain depends on the stress triaxiality and the Lode angle. The experimental 

programme was performed using five different specimen geometries, three different materials and 

three different temperatures of +20°C, -20°C and -50°C. Using the experimental data and the results 

of the finite element computations, the critical effective plastic strains are determined for each 

material and each temperature. However, before the critical effective plastic strain is determined, a 

careful calibration of the stress–strain curves was performed after modification of the Bai–

Wierzbicki procedure. Finally, by analysing the experimental results recorded during the 

interrupted fracture tests and scanning microscopy observations, the research hypothesis is verified. 

Keywords: ductile fracture, ductile fracture mechanisms, critical effective plastic strain, stress triaxiality, 

Lode angle. 
 

1. Introduction 

The failure of ferritic steels covers a wide spectrum of fracture mechanisms that depend on   

both micro-structure and temperature. At room temperature or at temperatures that are not too low, 

ductile fracture dominates. However, although the ductile fracture mechanism in most cases is a 

result of voids nucleation, growth and coalescence, different images of fracture surfaces can be 

observed. Different images are a result of different levels of the stress triaxialities and Lode angles 

(factors). When the stress triaxiality is high, the dimples are deep, and the coalescence mechanism is 

caused by necking of inter-void ligaments (Fig. 1a). When the stress triaxiality is low, the dimples are 

shallow and elongated, suggesting significant shear plastic strains and shear localization between 

voids (Fig. 1b,)..Also a ductile failure may take place as a result of a dislocation's glide along the slip 

planes (Fig. 1c). 

 Here, the stress triaxiality is measured using the η parameter: 
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(1) 

 

where m  and e  are the first stress tensor invariant and effective stress, respectively; 

23Je = , and J2 is the second stress deviator invariant. 
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Fig. 1a. Dimples in front of the crack, 

central part of the specimen 

 Fig. 1b. Dimples in front of the crack, 

located at the mid-part of the shear lips   

  

 

 Fig. 1c. The traces of dimples in front of 

the crack, located close to the specimen 

surface - shear lips 

 

 

All these mechanisms of ductile fracture can be observed in front of the crack. However, the 

stress triaxiality factor alone is not always sufficient to explain the changes in the failure mechanism. 

It is suggested that other parameters that could be helpful in qualitative and quantitative analysis of 

fracture mechanisms are the accumulated effective plastic strain and the Lode angle/factor. The Lode 

angle θ, or one of the Lode parameters ξ, or L are defined as follows: 

( ) ( )
3 3

3cos 3 / 27 / 2 /e er J   = = =   (2) 

 

where θ ( ) ( )( )( )
1/3 1/3

1 2 327 / 2det 27 / 2ij m m mr s       = = − − −    , sij is the stress tensor deviator, and J3 is 

the third invariant of the stress deviator. In this paper, the Lode factor is used, the value of which can 

be computed from the following formula: 
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and L is related to the ξ function by the relationship: ( ) ( )
3

2 29 / 3L L L = − + . In Eq. 3, σI is the 

highest principal stress, and σIII is the smallest principal stress; L=1(or L=-1) when the axial symmetric 

tensile (or compressive) loading is met; L=0 when pure shear is met in the plane stress state. Other 

loading cases are located in between the above values. 

The exemplary distributions of η, L and the accumulated effective plastic strain, εeff_pl, along the 

crack front are shown in Fig. 2. 

The curves in Fig. 2 were obtained by the finite element method using the ABAQUS program. 

The boundary conditions were adopted from the experiment with the single–edge–notch–bend 

(SEN(B)) specimen. The thickness of the specimen was B=12 mm, and the width was W=24 mm. The 

half of the specimen thickness was divided into 10 layers. 

 

  

Fig. 2a. Distributions of η, L and εeff_pl in 

front of the crack at the central part of the 

specimen 

 Fig. 2b. Distributions of η, L and εeff_pl in 

front of the crack at the layer located 1.75 

mm from the surface 

 

 

 Fig. 2c. Distributions of η, L and εeff_pl in 

front of the crack at the next to last layer 

from the specimen axis 

 

Large strains and J2 plasticity were assumed. Linear, hexagonal C3D8 elements (ABAQUS) with 

full integration were used. The crack tip was blunted by a 10 μm radius. The size of the finite elements 

increased with the distance from the crack tip. The size of the smallest element in the radial direction 
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was 27 μm. The thickness of the layers through the specimen thickness decreased towards the 

specimen external surface. The thinnest layer was 0.27 mm.    

In contrast to the cleavage fracture, it is very difficult to predict the onset of crack growth in 

ductile materials. Ductile crack growth due to voids nucleation–growth–coalescence is found to 

initiate at different moments at different locations along the blunted crack front. This moment is not 

noticeable when the load-deflection curve  is observed, and the onset of a crack growth usually 

occurs when this curve is still rising. This trait is a reason that standards are proposed to measure the 

critical value of the J-integral after the presumable 0.2 mm average crack front extension. 

The purpose of the research programme reported in this paper was to estimate and predict the 

moment and location of the onset of the ductile crack extension.  

The research hypothesis is that a crack starts growing by the void nucleation–growth–

coalescence mechanism when the accumulated effective plastic strain reaches the critical value. 

Following the results of numerous papers [1–16], it was assumed that the critical effective plastic 

strain depends on the triaxiality parameter and the Lode angle/factor. 

In Section 2, the mechanical properties of three materials measured at three temperatures are 

presented, and five specimen shapes used in the research program are shown. The shapes of the 

specimens were selected to generate different combinations of stress triaxialites and Lode angles. In 

Section 3, the calibration of the stress–strain curves is presented. The calibration was performed with 

the modified Bai-Wierzbicki procedure [4]. The modification included evolution of the stress 

triaxiality and Lode factors as well as the material softening due to the void growth and coalescence. 

In Section 4, the critical effective plastic strains are determined. In Section 5, the results of the 

numerical computations of the mechanical field's parameters in front of the crack are shown. The 

effect of the stress-strain calibration on the stress distribution is presented. Finally, in Section 6, the 

results of the interrupted fracture tests (SEN(B) specimens) are shown and compared with the 

evolution of the effective plastic strains in front of the crack. The verification of the research 

hypothesis is demonstrated.  

2. Materials and tested specimens 

The calibration of the constitutive equations and determination of the critical values of the 

accumulated effective plastic strains was performed using the specimens shown in Fig. 3. 

a  b  
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c  d  

Fig. 3. Tested geometries: a) two notched cylindrical specimens C04 with R=0.4 mm ( from 0.5 to 

1.6; L from 0.6 to 1) and C1 with R=1 mm ( from 0.4 to 1.4; L from 0.85 to 1); b) plate with side 

groove (PN), R=1 mm ( 0.4; L=0.4); c) plate with R=10 mm (PR)  ( 0.5; L=0.5) and d) pure shear 

(S) ( 0; L=0) 

The mechanical properties of the materials tested in the research programmes are listed in Table 

1. Different temperature levels were used to control the extent of plasticity. 

Table 1. The mechanical properties of the materials tested in the research programmes 

 Heat Treatment Microstructure 
Temp. 

oC 

E 

[GPa] 

ReL 

[MPa] 

ReH 

[MPa] 

Rm  

[MPa] 

S355JR 

steel, 

symbol 

NW 

Normalized 

and annealed 

(600°C, 150 h) 

Ferrite containing 

spheroidized 

carbide particles 

+20 210 382 368 470 

-20 200 376 419 502 

-50 212 390 396 526 

S355JR 

steel, 

symbol 

HW 

Quenching in 

oil and 

annealed 

(600°C, 150 h) 

Ferrite containing 

spheroidized 

carbide particles 

+20 197 412 406 511 

-20 191 437 444 555 

-50 210 463 488 581 

S355JR 

steel, 

symbol N 

Normalized 

at 950°C 
Ferrite–pearlite 

+20 197 367 375 496 

-20 202 402 407 526 

-50 220 401 428 553 

3. Calibration of the constitutive relationships 

To perform the finite element analysis on any shape and size of the machine or structural 

member the uniaxial stress–strain curves, are required. It turns out that the results of standard 

uniaxial tensile tests alone are not sufficient, especially when the large plastic strains are expected. It 

is not sufficient to only convert stresses to the true stresses and strains to the logarithmic strains. The 

stress triaxiality and the way a specimen is loaded should also be taken into account to ensure 

conformity between numerical and experimental results. Thus, the stress–strain curves must be 

calibrated before they are used by the finite element code. In research papers, when both the 

experimental and numerical results are used to prove some hypotheses, the problem of the stress–

strain relationship is not often discussed. The calibration of the tensile test curves is either not 

performed or it is a result of the curve fitting by the trial and error method; however, sometimes it is 

performed by a well-defined methodology, e.g., [3], [4], [11]. In this research programme, we adopt 

the Bai–Wierzbicki (BW) methodology [3], which involves both the stress triaxiality factor 𝜂 and the 
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Lode parameter. Eq. 4 is selected from the several equivalent formulae proposed by BW and other 

authors: 

( ) ( )  ( )




























+
−−+−−=

+

1
1

1

0
m

cccc
m

saxs
pyld


 

 

(4) 

where 0 is a reference value of the triaxiality coefficient; and 0=1/3 for the uniaxial tensile test. 

The  function represents a curve drawn at the deviatoric surface between the contours defined by 

the Huber–von Mises and Tresca criteria in the principal stress space. The  function satisfies the 

inequality 01, where =0 for plane stress or pure shear, and =1 for axial symmetry. BW postulated 

that the  function takes the following form: 

( )
( ) ( )

( ) 16/sec464.61
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In Eq. 4, the quantity axc is defined as follows: 
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1 6 /  = − . Eq. 4 contains four parameters to be determined: tc , cc , sc  and m. The term 

containing the m parameter is added to make the yield surface smooth and differentiable with respect 

to the Lode angle  in the neighbourhood of =1. These parameters must be determined 

experimentally; however, at least one of them is equal to unity. If ( )p  is found through a uniaxial 

tensile test using cylindrical specimens, then 1=tc . If a uniaxial compression test is performed, then 

1=cc , and in the case of a shear test, 1=sc . In the original BW methodology, both η and θ 

parameters are assumed constant during the specimen loading. Here, it is assumed that both η and L 

parameters change over the critical plane and over time during the loading process. The average 

values of these quantities over the critical plane are introduced into Eq. 4. The η function changes 

according to Eq. 7.  

avrpl
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
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(7) 

where index i denotes the initial state, index f denotes the final state, _ _pl avr final  is the average 

value of the effective plastic strain in the critical plane before the failure and _pl avr is the actual average 

effective plastic strain in the critical plane. A similar formula was used for the Lode parameter. The 

average values over the critical plane are assumed because the force–elongation curve represents the 

average response of the specimen to the external loading. 

Comparison of the experimental and numerical results during the calibration process leads to 

the conclusion that the softening of the material during the loading process caused by the void 

growth and coalescence at the final stage of loading should also be taken into account. Thus, it is 

assumed that cη in Eq.4 takes the form: 

( )( )_ _ _ _ _ _1 eff pl eff pl o eff pl eff pl oc H


      = + − −
   

(8) 

where εeff_pl_o denotes the value of the effective plastic strain at the presumed onset of rapid void 

growth. H(εeff_pl–εeff_pl_o) is the Heaviside step function; coefficients α and ζ should be determined 

experimentally. 

More details concerning the calibration of the stress–strain curves according to the procedure 

described above can be found in [17]. 

In Fig. 4, the exemplary curves determined experimentally and numerically after and before 

calibration are presented. The examples cover the whole temperature range and three specimens.  
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Before calibration, each stress–strain curve is converted to the true stress – logarithmic strain 

(TS-LS) curve, and after the maximum is reached, it is extrapolated either as a power function or 

linear function. An approximation of the TS-LS curve by a power function leads to good results for a 

plastic material at room temperature. When the test temperature is lowered, such an approximation 

is not always recommended because, in many cases, using the power function may lead to a situation 

where the calibration procedure proposed in this paper cannot be applied; see Fig. 4d. 

 

  

Fig. 4a. Calibrated true stress–logarithmic 

strain curves; material NW, specimen for 

calibration: R1, temp. +20°C 

Fig. 4b. Calibrated true stress-logarithmic 

strain curves; material HW, specimen for 

calibration: PN, temp. -20°C 

  

Fig. 4c. Calibrated true stress–logarithmic 

strain curves; material N, specimen for 

calibration: R04, temp. -50°C, linear 

approximation 

Fig. 4d. Calibrated true stress–logarithmic 

strain curves; material N, specimen for 

calibration: R04, temp. -50°C, power 

function approximation 

 4. Critical accumulated effective plastic strain 

According to several research reports, beginning with studies by McCintock [18] and Rice and 

Tracey [19], the critical strain at the onset of ductile failure depends (at least) on stress triaxiality, 

measured, e.g., by the η parameter. Recently, it was noticed [1], [2] that the critical strain also depends 
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on the Lode angle or Lode parameter defined in Section 1. The Lode angle describes how the 

specimen or structural member is loaded. 

The specimens used for the TS-LS curves calibration were also used for estimation of the critical 

effective plastic strains for all three materials and three temperatures.   

After specimen failure, the fracture surfaces of broken specimens were observed using the 

electron scanning microscope, and finite element analyses were performed using the ABAQUS 

program. During numerical computations, the finite elements from the ABAQUS standard library 

were used. In the case of specimens C04 and C1, 4–node, reduced–integration, axisymmetric, solid 

elements were used (symbol CAX4R). Because large gradients of the computed quantities were not 

expected, the size of the element next to the notch was 0.138 mm. The other two cases (PN and PR 

specimens) were modelled using linear 3D hexagonal elements with the reduced integration 

(C3D8R). The sizes of the element in the direction of the greatest stress gradient were 1/20 width of 

the specimen, that is, 1.0 mm for the PR specimen and 0.086 mm for the PN specimen. In the case of 

the S specimen, the C3D8R elements were used, and the size of the element in the shear region was 

0.2 mm. The symmetries of the modelled specimens were taken into account to reduce the time of 

computations. The specimens were loaded by displacements applied at the distance determined by 

the gauge length (see Fig. 3). As a result of numerical computations, the following quantities were 

recorded over the critical plane: η, L, εeff_pl_cr, and σ22, where σ22 is the crack faces opening stress. The 

microscopic observations revealed, in most cases, the ductile failure via the void mechanism (Fig. 5a 

and 5b), in some cases, failure due to the slip over slip planes (Fig. 5c) took place (in this case, the L 

parameter must be close to zero), and, in some cases, the cleavage failure mechanism (Fig. 5d) was 

observed. The later mechanism was observed at low temperatures.  

 

  

Fig. 5a. Dimples along the fracture surface 

in specimen C1; material N, temp. +20°C 

Fig. 5b. Dimples along the fracture surface 

in specimen PN; material N, temp. +20°C 
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Fig. 5c. Ductile fracture due to the 

dislocations glides along the slip planes; 

specimen PR; material HW, temp. -20°C 

Fig. 5d. Cleavage fracture next to the 

circumferential notch in specimen C04; 

material NW, temp. -50°C 

The microscopic observations alone are not sufficient to decide, in most cases, at which part of 

the critical plane the final stage of the void growth–coalescence process initiated. It was assumed that, 

at such a place, the dimples must be the largest. In the most cases, both within cylindrical and PN 

specimens, the differences between the sizes and shapes of caverns were not clearly noticeable. Thus, 

a working hypothesis had to be assumed to localize the critical spot. The origin of this hypothesis is 

Rice and Tracy's [19] results concerning the rate of growth of the isolated spherical void surrounded 

by an ideally plastic material. Their numerical results were well approximated by the formula:

0

0

0.263
2

m

e

R
exp

R






 
  

 

&
& . Because the whole critical cross-section of the loaded specimen is stretched at the 

same time, it is proposed to compare the quantity representing, in a very rough approximation, the 

extension of the voids’ radii, recorded along the fractured surface at the presumed moment of the 

rapid evolution of damage. The simplified formula is as follows:   

( )_ expeff plV R  =  = 
  

(9) 

 

The exemplary results concerning two cylindrical specimens with different radii at the bottom 

of the circumferential notch are shown in Fig. 6 and Table 2. 
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Fig. 6a. Distribution of η, L, εeff_pl; specimen 

C04, material HW, temp. +20°C, last step of 

the integration 

Fig. 6b. Distribution of η, L, εeff_pl; specimen 

C1, material HW, temp. +20°C, last step of the 

integration 

Table 2. Values of the mechanical field parameters at the critical moment along the fracture surface 

for C04 and C1 specimens, material HW, temperature +20°C. 

 εeff_pl_cr η L σmax εeff_pl_cr·exp(η) 

R=0.4 

Specimen 

centre 
0.24 1.6 0.99 1443 1.19 

Next to 

the notch 
0.93 0.497 0.54 789 1.53 

R=1.0 

Specimen 

centre 
0.36 1.33 0.996 1298 1.36 

Next to 

the notch 
0.57 0.42 0.78 619 0.86 

 

It was concluded from the results listed in Table 2 that the final ductile failure process initiated 

at the centre of the C1 specimen and next to the notch in the C04 specimen. Similar results are shown 

for the PN specimen. In this case, the critical spot is either close to the specimen longer axis at the 

specimen centre or next to the notch at the specimen central part (see Table 3). 

 

  

Fig. 7a. Distribution of η, L, εeff_pl along 

longer specimen axis; specimen PN, 

material HW, temp. +20°C, last step of the 

integration 

Fig. 7b. Distribution of η, L, εeff_pl along 

notch; specimen PN, material HW, temp. 

+20°C, last step of the integration  
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Fig. 7c. Distribution of η, L, εeff_pl along 

shorter specimen axis; specimen PN, 

material HW, temp. +20°C, last step of the 

integration 

Fig. 7d. Maximum opening stress along 

the longer stress distribution and along the 

notch; specimen PN, material HW, temp. 

+20°C, last step of the integration 

Table 3. Values of the mechanical field parameters at the critical moment along the PN specimen 

fracture surface. Material N. Temperature +20°C 

 εeff_pl_cr η L σmax εeff_pl_cr ·exp(η) 

PN 

specimen 

Central part next 

to the axis 
0.27 1.3 0.033 1278 0.99 

Central part next 

to the notch 
0.92 0.626 0.013 477 1.16 

 

As a result of the observations and computations, each of the critical accumulated effective 

plastic strains is estimated as a function of the η and L parameters. Using these values and the least 

square method, the surfaces of the critical strains are estimated in the η, L, εeff_pl_cr, space for all three 

materials and temperatures. The equation used in the least square method is as follows: 

( ) ( ) 2

_ _ expeff pl cr a b L c d    = + + + +  (10) 

Parameters ω and β are determined as the coefficients of the exponential function in Eq. 10. This 

function approximates all experimental points for three materials tested, three temperatures and five 

specimen geometries. The experimental points and the trend line are shown in Fig. 8. The two 

parameters are ω=1.88 and β=-1.25. 
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Fig. 8. Exponential dependence between the critical strain and the triaxiality factor 

In Table 4, all parameters other than ω and β in Eq. 11 are shown. 

Table 4. Parameters entering Eq. 10 for the three materials and three temperatures tested. 

material HW HW HW N N N NW NW NW 

temp -20 -50 20 -20 -50 20 -20 -50 20 

a -0.065 -0.016 -0.099 -0.038 -0.01 -0.07 -0.04 -0.030 -0.12 

b 0.121 0.036 0.25 0.113 0.018 0.23 0.11 0.097 0.33 

c -0.046 -0.02 -0.118 -0.07 -0.026 -0.07 -0.087 -0.01 -0.015 

d 0.135 0.032 0.227 0.14 0.064 0.126 0.21 0.0024 -0.0027 

 

The exemplary surfaces for materials N and HW and temperature +20°C are shown in Fig. 9. To 

draw these surfaces, the values of the coefficients in Eq. 10 are as follows: a=-0.072, b=0.233; c=-0.074; 

d=0.126 (material N) and a=-0.099, b=0.252; c=-0.118; d=0.227 (material HW). 
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a  b  

Fig. 9. Three-dimensional dependence between η, L and εeff_pl_cr for N material (a), and HW material 

(b) 

5.  Stress distribution in front of the crack 

Stress distributions in front of the crack in the SEN(B) specimen computed numerically depend 

on the calibration process of the constitutive equations. The exemplary curves are shown in Fig. 10 

for uncalibrated stress–strain curves and for various calibration procedures.  

The details of the specimen geometry and the finite element computations are shown in Section 1.    

Note that the calibration that takes into account material softening at the last stage of loading 

leads to acceptable results from the physical point of view; the curves go down towards the crack tip 

after the stress maximum is reached. It is not very important what shape of specimen is used for the 

calibration, provided the stress triaxiality is high enough. The stress maximum in front of the crack 

after calibration of the constitutive equation (N material, temp. +20°C) is lower by 2.6% with respect 

to the results obtained after computation without calibration. The stress maximum is in the range of 

1291 to 1297 MPa for the results of computations obtained using calibrated stress–strain curves. 

Differences between the distances of the stress maximum from the crack tip are within the range of 4 

μm. Thus, it turns out that if the region next to the crack front is not of the researcher's interest, the 

calibration procedure can be ignored. 
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Fig. 10. Opening stress distribution computed numerically using stress–strain curves after several 

calibration procedures 

6. Accumulated effective plastic strain distributions in front of the crack 

In Fig. 11a, selected exemplary curves (5 of 16) of the strain distributions in front of the crack are 

presented. The difference between the values of the effective plastic strain at the blunted crack tip 

obtained after computations using uncalibrated stress–strain curves and calibrated curves including 

the process of material softening is 15%. In Figs 11b–11d, the effective plastic strain distributions are 

presented for all layers through the specimen thickness for three selected steps of integration. These 

curves may be used together with the results presented in Fig. 9 (Eq. 10 and Table 4) to estimate the 

onset and location of the ductile failure mechanism in front of the crack. The first example concerns 

the SEN(B) specimen made of the N steel tested at +20°C. 

 

  

Fig. 11a. Distributions of the effective 

plastic strain along the crack front at the 

final moment of loading after calibration 

using specimen R1 and the material 

softening option; material N, 

temp.+20°C 

Fig. 11b. Distributions of the effective plastic 

strain along the front of the crack at the final 

moment of loading after calibration using 

specimen R1 and the material softening 

option; material N, temp.+20°C 

  

Fig. 11c. Distributions of the effective 

plastic strain along the front of the crack 

at the 25th/30th step of loading after 

calibration using specimen R1 and the 

material softening option; material N, 

temp.+20°C 

Fig. 11d. Distributions of the effective plastic 

strain along the front of the crack at the 

20th/30th step of loading after calibration 

using R1 specimen and the material 

softening option; material N, temp.+20°C 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2018                   doi:10.20944/preprints201809.0511.v1

Peer-reviewed version available at Materials 2018, 11, 2026; doi:10.3390/ma11102026

http://dx.doi.org/10.20944/preprints201809.0511.v1
http://dx.doi.org/10.3390/ma11102026


 16 of 19 

 

 

In Fig. 12 the image of the middle part of the SEN(B) specimen after unloading is shown. After 

the test was interrupted, the specimen was unloaded and then cut off along the central surface of the 

specimen in the perpendicular direction to the crack front. Next, the machined surface was polished 

and etched. The image of the crack tip and the voids enables the assessment of the extension of the 

crack. The crack extension at this location along the crack front due to the voids nucleation and 

coalescence of voids is in the range of 170–190 μm. The coefficients are η = 0.67 and L=0.03. According 

to Eq. 10, εeff_pl_cr=0.887. The strain distributions along the crack front at the moment of unloading are 

shown in Fig. 11b. The line denoting the critical strain is also shown. One can easily read from these 

curves that the crack might grow to a distance of approximately 180 μm, and it is very likely that the 

crack has also grown until the layer 8 along the crack front is reached. One can also presume that the 

process of nucleation and growth of voids might have started at the middle part of the specimen in 

front of the crack at the 20th step of loading (max. number of the loading steps was 30), see Fig. 11d. 

 

 

Fig. 12. The image of the surface in front of the crack located at the specimen centre 

perpendicular to the crack front; material N, temp. +20°C 

Another example is shown in Fig. 13. The SEN(B) specimen was made of NW steel and tested at 

-50°C. When the loading was interrupted, the following values were recorded at the crack tip: η=0.81, 

L=0.22, and εeff_pl_cr=0.68. In this case, the plastic strain distribution in front of the crack suggests that 

the crack front might have grown to approximately 160 μm. The microscopic image shows that the 

crack has grown at this plane by 70-80 μm; however, new voids have already grown in front of the 

growing crack at the distance of 40-50 μm.  
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Fig. 13a. Distributions of the effective 

plastic strain along the crack front at the 

final moment of loading after calibration 

using specimen PR and the material 

softening option; material NW, temp.-50°C 

Fig. 13b. Distributions of the η and Lode 

functions at the crack centre at the 

moment when the loading was stopped 

  

Fig. 13c. The image of the domain in front 

of the crack at the moment of unloading; 

the ductile failure mechanism evolves; 

material NW, temp.-50°C 

Fig. 13d. The image of the domain in front 

of the crack at the moment of unloading; 

the new voids are visible in front of the 

growing crack 

Next example is shown in Fig. 14. The loading of the SEN(B) specimen made of the HW material 

and tested at +20°C was interrupted before the onset of crack extension. In the image shown in Fig. 

14c, one may observe in the fracture surface the trace of a blunted crack front and the individual voids 

ahead of the blunted crack front. After the specimen unloading, the fatigue loading was applied until 

the final failure. At the unloading, the following values were recorded at the crack tip: η=0.88, L=0.22, 

and εeff_pl_cr=0.76 (see Fig. 14b and Eq. 10). The image of the fracture surface and the effective plastic 

strain distribution in front of the crack at the moment of the specimen unloading indicate that the 

loading process had been interrupted just before the onset of the crack extension. 

 

  

Fig. 14a. Distributions of the effective 

plastic strain in front of the crack along the 

crack front at the final moment of loading 

after calibration using specimen PR and the 

Fig. 14b. Distributions of the η and Lode 

functions in front of the crack at the crack 

centre at the moment when the loading was 

stopped 
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material softening option; material HW, 

temp.+20°C 

 

 

Fig. 14c. The image of the fracture surface 

obtained using the scanning microscope 

 

7. Summary and conclusions 

In this report, selected results of the research programme concerning the analysis of the ductile 

failure in front of the crack were shown. Three different materials (Table 1) were tested at three 

different temperatures of +20°C, -20°C and -50°C to control the level of plasticity. The onsets and 

evolutions of ductile failure in front of the cracks in the SEN(B) specimens were assessed and 

analysed. It was assumed that a crack starts growing by the voids nucleation–growth–coalescence 

mechanism when the accumulated effective plastic strain reaches the critical value. In turn, it was 

assumed after the  numerous published papers [1–16] that the critical accumulated effective plastic 

strain depends on the triaxiality factor and Lode angle. To confirm these assumptions, the 

experimental programme and numerical computations were performed to a) calibrate the uniaxial 

tensile curves and b) estimate the critical effective plastic strains. Both tasks were conducted by 

testing numerous specimens of different five shapes (Fig. 3). The calibration was performed 

according to the modified BW procedure. The modification included different methods of computing 

both η and L functions and the softening of material at the last stage of loading via the growth and 

coalescence of voids. The effect of softening turned out to be the important factor because it caused 

more physical stress distribution in front of the crack than obtained without softening. The critical 

effective plastic strains were computed individually for each material and each temperature using 

the experimental data and the least square statistical method.  

Using the distribution of the plastic strains along the crack front and the values of the assessed 

critical effective plastic strains, the moment and the location of the onset of the ductile crack extension 

was estimated. The estimations were successfully verified by the scanning microscope observations 

of the domains in front of the cracks after interrupted tests on the SEN(B) specimens. 

Conclusion: The results of the experimental–numerical research programme positively verify 

the research hypothesis formulated in the Introduction of this paper. 
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