Serum and salivary IgA, IgG, and IgM levels in oral lichen planus: A systematic review and meta-analysis of case-control studies

Hamid Reza Mozaffari1,2, Elisa Zavattaro3, Abas Abdolahnejad4, Pia Lopez Jornet5, Neda Omidpanah1, Roohollah Sharifi6, Masoud Sadeghi2,*, Mohammad Shooribi7, Mohsen Safaei8

1Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
3Dermatology Unit, Department of Translational Medicine, University of Eastern Piedmont “Amedeo Avogadro”, Novara, Italy
4Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
5Facultad de Medicina y Odontologia Universidad de Murcia, Hospital Morales Meseguer, Clinica Odontologic Adv Marques Velez s/n, Murcia 30008 Spain
6Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
7Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
8Oral and Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran

*Corresponding author: Masoud Sadeghi; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. Email: sadeghi_mbrc@yahoo.com
Abstract

Background and Aim: Immunoglobulins (IgA, IgG, and IgM) are significant anti-inflammatory factors. The meta-analysis aimed to assess the serum and salivary levels of Igs as more important immunoglobulins in patients affected by oral lichen planus (OLP) compared to the healthy controls. **Materials and Methods:** Four databases, including PubMed/Medline, Scopus, Web of Science, and Cochrane Library as well as Iranian databases were checked up to January 2018 without language restriction. The quality of each involved study was done using the NOS questionnaire. A random-effects model analysis was done by RevMan 5.3 software applying the mean difference (MD) plus 95% confidence intervals (CIs). The CMA 2.0 software was applied to calculate the publication bias among the studies. **Results:** Out of 70 studies found in the databases, eight studies were involved and analyzed in the meta-analysis. The meta-analysis included 282 OLP patients and 221 healthy controls. The pooled MDs of serum levels of IgA, IgG, and IgM were -0.13 g/L [95%CI: -0.24, -0.02; P = 0.02], 1.01 g/L [95%CI: -0.91, 2.93; P = 0.30], and -0.06 g/L [95%CI: -0.25, 0.14; P = 0.56], respectively; whereas, the salivary IgA and IgG levels were 71.54 mg/L [95%CI: 12.01, 131.07; P = 0.02] and 0.59 mg/L [95%CI: -0.20, 1.38; P = 0.14], respectively. **Conclusions:** Considering the few studies performed on saliva, the results suggested that the salivary levels, especially IgA level had a higher diagnostic value than the serum levels. Therefore, the salivary immunoglobulins can play a significant function in the OLP pathogenesis.

Keywords: oral lichen planus; immunoglobulin; serum; saliva
Introduction

Oral lichen planus (OLP) is a chronic inflammatory disorder associated with various other systemic disorders [1]. The prevalence of this disorder in the general population changes from 1 to 2% [2]. Local immune factors may have a function in protection against oral diseases, and these defenses may be related to responses of immunoglobulin (Ig) [3]. IgA and IgG are the most important antibodies in the serum that IgA has the highest daily synthesis rate. [4]. IgA is distributed distinctly between the systemic and mucosal immune system and has a key function in protecting immunity [5]. IgG molecules are a group of glycoproteins extremely important for supporting the body against the invading pathogens [6]. IgM is the first antibody made throughout a primary antibody response, and is predominantly created by B-1 cells [7]. These Ig have a strong anti-inflammatory effect [4-7]. Saliva as a diagnostic tool has a number of advantages in comparison with serum tests and other diagnostic tests, including being easily collected, non-invasive, accessible, safe, and precise as well as having approximately no side effects [8]. Therefore, the objective of the meta-analysis was to evaluate the serum and salivary levels of IgA, IgG, and IgM in the OLP patients as compared to the healthy controls.
Materials and Methods

This meta-analysis was done based on the guidelines for the PRISMA [9].

Search strategies

A comprehensive search was done in four databases, including PubMed/Medline, Scopus, Web of Science, Cochrane Library as well as Iranian databases with key terms (“oral lichen planus” or “OLP”), (“immunoglobulin”, “IgA”, “IgG”, or “IgM”), and (“saliva”, “salivary, or “serum”) up to January 2018, without language restriction.

Study selection

One author (M.S) evaluated the studies to investigate if they met the inclusion criteria. The second author (H.R.M) re-checked the studies with the mentioned criteria. The inclusion criteria for selecting the studies were: i) detection of IgA, IgG and/or IgM levels in the serum and/saliva of OLP patients in case-control studies; ii) the OLP diagnosis was in accordance with the clinical and/or histopathological WHO criteria [10]; iii) healthy controls were reported and no other skin and/or systemic diseases affected OLP patients.

Data Extraction

The relevant information extracted from every study was: the name of author, the year of publication, country, the number of OLP patients and healthy controls, male percent and the mean age of OLP patients and healthy controls, levels of Ig in two groups, detection method, and Ig values.

Quality evaluation

One author (M.S) measured the quality of each involved study applying the Newcastle-Ottawa Quality Assessment Scale (NOS) with a maximum total score of 9 for a case-control study [11]; score ≥7 being high quality.

Statistical analyses

A continuous analysis (random-effects model) was done by RevMan 5.3 software, using mean difference (MD) plus 95% confidence intervals (CIs). The pooled MD of the studies was calculated to estimate serum or salivary Ig levels of OLP patients as compared with the healthy controls. The Q and I^2 statistics were used to check heterogeneity between estimations. For the Q statistic, heterogeneity was supposed if P<0.1. P-value (2-tailed) <0.05 was supposed statistically significant. The CMA 2.0 software was applied to calculate the publication bias between the studies by funnel plot, as well as Begg’s and Egger’s tests. The unit of measurement of Ig was g/L in serum and mg/L in saliva.
Results

Out of 70 studies found in the databases, 35 studies were screened after removing the duplicate studies, 21 of which were not relevant and were excluded. After that, the full-texts of 14 studies were evaluated for eligibility, 6 of which were omitted with the reasons that are reported in Figure 1. At last, eight studies were involved and analyzed in the meta-analysis. Some characteristics of the eight studies involved in the meta-analysis are revealed in Table 1. The studies were reported from 1982 to 2016; two studies from Iran [12,13], one study from Scotland [14], one from Greece [15], one from Croatia [16], one from Sweden [17], one from India [18], and one from Spain [8]. The meta-analysis included 282 OLP patients and 221 healthy controls. IgA was measured in serum and saliva in five studies [12-15,17,18] and three studies [8,12,16], respectively; whereas, IgG was measured in serum and saliva in five studies [13-15,17,18] and two studies [12,16], respectively. Serum IgM was measured in four studies [13-15,17] without reporting the saliva. The detection methods of Ig are shown in Table 1.

Figure 2 illustrates the serum levels of Igs in the OLP patients as compared to the healthy controls. The pooled MDs of serum levels of IgA, IgG, and IgM were -0.13 g/L [95%CI: -0.24, -0.02; P = 0.02; I² = 0% (Pₙ=0.067)], 1.01 g/L [95%CI: -0.91, 2.93; P = 0.30; I² = 99% (Pₙ<0.0001)], and -0.06 g/L [95%CI: -0.25, 0.14; P = 0.56; I² = 64% (Pₙ=0.04)], respectively.

The comparison of salivary levels of IgA and IgG in the OLP patients as compared to the healthy controls is shown in Figure 3. The pooled MDs of salivary IgA and IgG levels were 71.54 mg/L [95%CI: 12.01, 131.07; P = 0.02; I² = 76% (Pₙ=0.02)] and 0.59 mg/L [95%CI: -0.20, 1.38; P = 0.14; I² = 76% (Pₙ=0.04)], respectively.

Quality assessment

Based on NOS questionnaire for case-control studies, a mean score of 6.75 was achieved for the studies (Table 2).

Publication bias

Figure 4 shows the funnel plot of the results of each analysis. There was no the publication bias based on the Begg’s and Egger’s tests (P>0.05) between the studies about the results of the serum levels of Igs (Figure 4A) and salivary IgA (Figure 4B). These tests could not be run for the result of the salivary level of IgG because there were less than three studies in this subgroup analysis (Figure 4B).
Discussion

Two meta-analyses [19,20] showed that serum and salivary cytokines (interleukin-6 and tumor necrosis factor-alpha), as important immunological factors involved in systemic inflammation, were significantly more in the OLP patients as compared to the controls. The present meta-analysis checked the serum and salivary Ig levels in OLP patients compared to controls, and showed no elevation in the serum levels. However, there was an elevation in the salivary levels of IgA and IgG, unless only IgA values reached significant difference. Out of five studies reporting the serum IgA and IgG levels [13-15,17,18], only one [15] reported a significant difference for IgA level (a lowered level), while three studies [13,14,17] reported a significant difference for IgG level (an elevated level in two studies and a lowered level in the other) in OLP patients as compared to the healthy controls. Three studies [8,12,16] reporting salivary IgA level and two studies [12,16] reporting salivary IgG level reported an elevated level of both IgGs and a significant difference in the OLP patients as compared to the healthy controls. One study [16] checked salivary subclasses of IgG and IgA in the OLP patients compared to healthy controls (a higher level in OLP for each subclass) and concluded that these salivary Ig could have a significant function in pathogenesis of OLP. The IgG and IgA levels obtained in the saliva samples were determined only in very few samples and could not be detected precisely in most of the samples, possibly because of low sensitivity of the equipment in measuring the Ig [18]. Other studies [8,12,16] used radial immunodiffusion test or enzyme-linked immunosorbent assay (ELISA) to detect salivary IgA and IgG, which showed a high detection in all samples. One study [21] reported the salivary IgA detection by ELISA method that had much smaller coefficients of variation than the single radial immunodiffusion method.

Racial, geographical, and environmental effects were found to impact the etiology of OLP. In addition, sampling, number of samples, endemic infections and dietary habits, and interfering factors such as age, sex, and clinical variants of OLP were other effective factors which were different among the studies. All factors could have caused the observed differences among studies, but further investigations are required to find the most important factors involved in the observed difference [13]. In this meta-analysis, it was found that the measurement method could be another factor to be considered.

Limitations: i) there were a few studies on saliva; ii) there were different measurement methods of Ig; iii) heterogeneity was among most subgroups. Strengths: i) there were the age- and sex-matching controls with the OLP patients in most of the studies; ii) most of the studies had high quality.

Conclusion

Unless only few studies were conducted on saliva, the results indicated that the Ig salivary levels had higher diagnostic value than serum levels, and this was remarkable for IgA. Despite we believe that future studies are required to evaluate salivary Ig levels, it seems that they have a significant function in pathogenesis of OLP. These studies should be aware of the effective factors involved in OLP in order to find better and more accurate results.
Acknowledgments

This work was performed in partial fulfillment of the requirements for General Dentistry (Abas Abdolahnejad) in Faculty of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Financial support and sponsorship

The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences (Grant Number: 96581) for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.
References

Table 1: Characteristics of the studies included in the meta-analysis (n=8)

<table>
<thead>
<tr>
<th>The first author (year)</th>
<th>Country</th>
<th>Number of patients/mean age (year)/male%</th>
<th>Number of controls/mean age (year)/male%</th>
<th>IgA</th>
<th>IgG</th>
<th>IgM</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scully (1982)¹⁴</td>
<td>Scotland</td>
<td>35 42 yrs 48.6%</td>
<td>27 40 yrs 48.1%</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
<td>Modified single radial immunodiffusion (Mancini, Carbonara & Heremans, 1965)</td>
</tr>
<tr>
<td>Sklavounou (1983)¹⁵</td>
<td>Greece</td>
<td>50 53 yrs 40%</td>
<td>20 46.4 yrs 50%</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
<td>The single radial immunodiffusion (Mancini, Carbonara & Heremans, 1965)</td>
</tr>
<tr>
<td>Lundström (1985)¹⁷</td>
<td>Sweden</td>
<td>34 55.9 yrs 20.6%</td>
<td>23 56.4 yrs 26.1%</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
<td>IgG (immunochemical turbidimetric) and IgA and IgM (electroimmuno Assay)</td>
</tr>
<tr>
<td>Sistig (2002)¹⁶</td>
<td>Croatia</td>
<td>6 54 yrs 33.3%</td>
<td>20 37 yrs 50%</td>
<td>Saliva</td>
<td>Saliva</td>
<td>-</td>
<td>IgG (ELISA) and IgA (radial immunodiffusion)</td>
</tr>
<tr>
<td>Ghaleyani (2012)¹²</td>
<td>Iran</td>
<td>44 45.6 yrs 34.1%</td>
<td>44 44.8 yrs 38.6%</td>
<td>Saliva</td>
<td>Saliva</td>
<td>-</td>
<td>IgA (Human IgA Saliva Diametra kit, the binding Site, Italy), and IgG (radial immunodiffusion)</td>
</tr>
<tr>
<td>Mehdipour (2013)¹³</td>
<td>Iran</td>
<td>50 40 yrs 48%</td>
<td>25 37 yrs 48%</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
<td>Autoanalyzer (Abbot- alcion, USA) and Pars Azmon kits</td>
</tr>
<tr>
<td>Divya (2014)¹⁸</td>
<td>India</td>
<td>30 matched matched</td>
<td>30 matched matched</td>
<td>Serum</td>
<td>Serum</td>
<td>-</td>
<td>Dade Behring BN ProSpec Nephelometer (Sri Ramachandra University),</td>
</tr>
<tr>
<td>Lopez-Jornet (2016)⁸</td>
<td>Spain</td>
<td>33 57 yrs 21.2%</td>
<td>32 53 yrs 25%</td>
<td>Saliva</td>
<td>-</td>
<td>-</td>
<td>ELISA kit (Bethyl, Montgomery, TX, USA)</td>
</tr>
</tbody>
</table>

Abbreviations: Ig, immunoglobulin; ELISA, enzyme-linked immunosorbent assay

Table 2: Quality ratings for the studies included on the basis of Newcastle-Ottawa quality assessment scale (n=8)

<table>
<thead>
<tr>
<th>The first author, year</th>
<th>Selection</th>
<th>Comparability *</th>
<th>Outcome</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scully (1982)¹⁴</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Sklavounou (1983)¹⁵</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Lundström (1985)¹⁷</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Sistig (2002)¹⁶</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Ghaleyani (2012)¹²</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Mehdipour (2013)¹³</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Divya (2014)¹⁸</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Lopez-Jornet (2016)⁸</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Mean score 6.75

* One star for age-matching and another star for sex-matching.
Figure 1: Flow-chart of the study

* 3 studies were meeting abstract; 2 didn't report the mean; 1 reported the mean after treatment, not baseline mean.
Figure 2: Forest plot of random-effects of serum immunoglobulins (IgA, IgG, and IgM) levels in oral lichen planus (OLP) patients compared to the healthy controls.
Figure 3: Forest plot of random-effects of salivary immunoglobulins (IgA and IgG) levels in oral lichen planus (OLP) patients compared to the healthy controls.

Figure 4: Funnel plot of (A) the serum levels and (b) salivary levels of immunoglobulins.