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Abstract: Cryptocurrencies like Bitcoin rely on a proof-of-work system to validate transactions and1

prevent attacks or double-spending. A new proof-of-work is introduced which seems to be the2

first number theoretic proof-of-work unrelated to primes: it is based on a new metric associated3

to the Collatz algorithm whose natural generalization is algorithmically undecidable: the inflation4

propensity is defined as the cardinality of new maxima in a developing Collatz orbit. It is numerically5

verified that the distribution of inflation propensity slowly converges to a geometric distribution of6

parameter 0.714 ≈ (π−1)
3 as the sample size increases. This pseudo-randomness opens the door to a7

new class of proofs-of-work based on congruential graphs.8
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1. Introduction13

A decentralized electronic payment system relies on a ledger of transactions shared on a network.14

The decentralization of a transaction ledger raises the question of security and integrity of the ledger.15

In the original Bitcoin protocol, the problem of double-spending or alteration of the ledger is solved16

by the use of blockchain, a system that requires proof-of-work by a network of computers to confirm17

transactions. In cryptography, intensive computation as proof-of-work allows one party to verify18

with little computational effort that a counterparty has spent a large amount of computational effort.19

The concept was originally developed by [6] as a spam prevention technique. [16] used for Bitcoin a20

proof-of-work based on [1]. The protocol consists in finding a nonce value such that the application21

of the SHA-256 hashing algorithm to a combination of that nonce and a block of information gives a22

hash starting with series of zeroes by targetting a given threshold. The idea behind the proof-of-work23

is that participants have an incentive to cooperate rather than to cheat because the computational24

power required to cheat is too large. However, as cryptocurrencies became more popular and diverse,25

an over-reliance on mainstream proof-of-work protocols, such as hashcash-SHA256, Ethash (Wood26

, 2014) or hashcash-Scrypt based proof-of-work (Percival , 2009) creates a new type of systemic risk27

in which a cryptographic breakdown would jeopardize cryptocurrencies that rely on these standard28

proofs-of-work. A weakness of proofs-of-work in cryptocurrency applications is the threat that29

a single individual (or a coordinated group) would be able to generate blocks faster than 50% of30

the network. In that case, this entity would completely control the blockchain-based validation31

system of transactions. In practice, attacks on hash functions could prevent new transactions or32

alter past ones. In financial markets, exchanges have the possibility to cancel trades in case of33

infrastucture breakdown or malfunction. By opposition, a systemic failure of the proof-of-work34

system in decentralized cryptocurrency markets could mean the destruction of the whole history of35

transactions. Potential risks clouding the proof-of-work system include innovation in technology,36
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Name ∼Fully Diluted (Y2050) Marketcap / 15 Oct. 2018 Underlying algorithm

Bitcoin (BTC) $134,308,812,450 SHA-256
Ethereum (ETH) $29,787,293,584 SHA-3
Bitcoin Cash (BCH) $9,225,442,784 SHA-256
Litecoin (LTC) $4,430,985,913 Scrypt
Dash (DASH) $2,956,683,098 X11
Monero (XMR) $2,300,499,210 CryptoNight
ZCash (ZEC) $2,262,517,311 Equihash
Ethereum Classic (ETC) $2,161,731,159 SHA-3
Dogecoin (DOGE) $1,402,169,807 Scrypt
Siacoin (SC) $564,862,312 Blake-2b
Bitcoin Gold (BTG) $526,927,423 Equihash
Digibyte (DGB) $483,402,492 SHA-256 and others
ReddCoin (RDD) $447,635,857 Scrypt
Bitcoin Diamond (BCD) $343,664,370 X13
ZenCash (ZEN) $275,245,426 SHA-3
Verge (XVG) $229,929,732 Scrypt
Zcoin (XZC) $194,506,940 Equihash
Monacoin (MONA) $124,690,762 Scrypt
Syscoin (SYS) $81,207,881 Scrypt
Zclassic (ZCL) $67,149,925 Equihash
Vertcoin (VTC) $53,917,212 Lyra2REv2
Bitcoin Private (BTCP) $51,124,537 Equihash
LBRY Credits (LBC) $41,220,511 LBRY
Einsteinium (EMC2) $25,808,910 Scrypt
GameCredits (GAME) $13,734,781 Scrypt

Table 1. 25 top cryptocurrencies as of 15 October 2018 as can be seen on
https://onchainfx.com/v/SMT45r

mathematics and cryptography that could compromise the existing protocols. Proofs-of-work entirely37

based on existing hash algorithms such as SHA-256 have been under stress in recent years. [20]38

documented a well-known mining optimization (“ASIC-BOOST”) that allowed to mine Bitcoin39

blocks faster than the network average by taking advantage of a technical flaw in SHA-256. A40

specific optimization of the mining instruments allowed reducing the problem’s complexity by41

exploiting collision attacks on the SHA-256 hash algorithm. The multiplication of proofs-of-work42

help mitigate this type of hyper-specialized hardware attack. Bitcoin, Ethereum, Bitcoin Cash and43

Litecoin overwhelmingly dominate the market capitalization of minable coins. Such concentration of44

the volumes into a few cryptocurrencies represent equally a significant systemic risk. When looking45

at the top 25 cryptocurrencies by diluted market capitalization (see Table 1), 8 of them use Scrypt46

as underlying hash algorithm for proof-of-work. Introducing new types of proof-of-work is needed47

to help networks diversifying the protocols in case of increased concentration of hyper-specialized48

computational power.49

So, even though there exist hundreds of different hash functions already, more diversification50

of proofs-of-work could further mitigate cryptographic risks and improve robustness of the nascent51

crypto-economy. Several types of proof-of-work have been designed using new hash functions,52

such as prime numbers verification (King , 2013), graph-theoretic proof-of-work (Tromp , 2015)53

or proof-of-work based on the generalized birthday problem (Biryukov & Khovratovich , 2017).54

Post-quantum algorithms are currently being developed in the field of security, see e.g. [2]. In55

particular, [10] propose a quantum-safe blockchain that utilizes quantum key distribution. The56

application presented in the following sections seems to be the first documented attempt to establish a57

number theoretic proof-of-work unrelated to primes. The hash proposed is based on properties of the58

Collatz algorithm. In order to describe this algorithm, consider the following function from N0 to N0 :59
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T(x) =

{
x/2 if x is even

(3x + 1)/2 if x is odd
(1)

Now, apply the following iterate of T:60 {
T0(x) = x

T(k+1)(x) = T(Tk(x))
(2)

The Collatz conjecture states that ∀ x ∈ N0, ∃ a finite k such that Tk(x) = 1. [14] uses the following61

terminology: the “total stopping time” is defined as σ∞(x) = inf{k : Tk(x) = 1}. The “stopping time”62

σ(x) is inf{k : Tk(x) < x}. The “gamma value” is defined as γ(x) = σ∞(x)
log(x) .63

For instance, let us consider the case for x = 3:64 

T0(3) = 3,

T1(3) = (3× 3 + 1)/2 = 5,

T2(3) = (5× 3 + 1)/2 = 8,

T3(3) = 8/2 = 4,

T4(3) = 4/2 = 2,

T5(3) = 2/2 = 1.

(3)

In this example, the Collatz sequence1 is
{

3, 5, 8, 4, 2, 1
}

and σ∞(3) equals to 5 while σ(3) = 4. By65

definition, the value of σ∞(x) depends on the starting point of the algorithm. For example ∀ α ∈ N0,66

σ∞(2α) = α as67

Tα(2α) = 1. (4)

Analyzing the total stopping time ∀ x ∈ N0 has proven challenging: the lack of clear patterns68

and the absence of an analytical shortcut to estimate σ∞(x) have left practitioners with numerical69

methods to compute it and verify the conjecture. [18] proved computationally that the conjecture holds70

up until x = 20× 258. Current computational capabilities have allowed confirming the conjecture71

for very large numbers. For example, [8] introduced a GPU-based method to verify the Collatz72

algorithm. The authors could verify 1.31× 1012 64-bit numbers per second. A probabilistic approach73

is also a frequent workaround to justify the validity of the Collatz conjecture: assuming function74

Tk(x) is “random enough”, [5] showed that half of the time, the next number in the sequence will be75

(3x + 1)/2, then for the next iteration, 1/4 of the time it will be (3x + 1)/4, then for the next iteration,76

1/8 of the time it will be (3x + 1)/8 and so on so that the average growth in the sequence will be77

( 3
2 )

1/2( 3
4 )

1/4( 3
8 )

1/8( 3
16 )

1/16( 3
32 )

1/32... = 3
4 < 1. [21] demonstrated that the set of integers {x:- x has78

stopping time ≤ k} has a limiting asymptotic density F(k) with F(k)→ 1 as k→ ∞. These elements79

tend to indicate that Tk(x) does not diverge to infinity as k grows. Using [15] machines, [4] showed that80

a problem generalizing the Collatz conjecture is not algorithmically decidable. [12] extended the proof81

to show that this generalization is Π2
0 complete. If the problem is truly algorithmically undecidable,82

then no information about the future inflation of the Collatz map is passed from one step k to the next83

step k + 1. To explore that hypothesis and the properties of this “pseudo-randomness”, let us define84

the inflation propensity of order K ξ(x, K) as the cardinality of the set of steps that lead to a number85

strictly larger than all previous numbers in the same sequence:86

1 also called “trajectory” or “forward orbit”
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ξ(x, K) = card
{

k : Tk(x) > max(Mx,k)

}
, k = 1, ..., k, ...K, (5)

where Mx,k =
{

T0(x), T1(x), ..., Tk−1(x)
}

. ξ(x, σ∞(x)) is a particular case. For the ease of notation:87

ξ(x) = ξ(x, σ∞(x)). In the above example of x = 3, ξ(3) = 2. Indeed, the set of numbers strictly88

larger than the previous maxima in the sequence are {5, 8} so that ξ(3) = card{5, 8} = 2. In the other89

example presented supra with x = 2α, ξ(2α) = 0 ∀ α ∈ N0 since no number in their sequences can be90

strictly larger than the initial one.91

This research paper investigates the distribution of ξ(x), the inflation propensity as a deterministic92

variable that resembles a random behavior. If past maxima anywhere in the sequence are independent93

from new maxima later computed in that orbit, we should have that ξ(x) ∼ G(ρ), a geometric94

distribution of parameter ρ with density f (ξ(x) = y) = ρy(1− ρ). The interests of fitting a density95

distribution to ξ(x) are multiple: first, in absence of proof of the Collatz conjecture, numerical analysis96

of the problem stays relevant towards resolving the question. Second, by properly addressing the97

behavior of the series for large numbers, one can help anticipate the computational challenges related98

to exploring the orbits of the Collatz map. Third, identifying pseudo-random behaviour of Collatz99

inflation propensity directly leads to a new class of proofs-of-work for blockchain applications. The100

remainder of this document is built as follows: the next section discusses the empirical distributions101

of σ∞(x), σ(x) and ξ(x) ∀ x ∈ N0. The third section details the observed density of ξ(x). The density102

parameter of a geometric distribution is estimated using all natural numbers up to 1e11 as sample. The103

fourth section presents a new proof-of-work based on inflation propensity. The last section concludes.104

2. Inflation propensity105

[13] describes the 3x + 1 conjecture as “a deterministic process that simulates random behaviour”106

and goes further to mention that the problem seems “structureless”. [23] formally proves the107

non-regularity of the Collatz’s graph. As a visual illustration of this “structurelessness”, the total108

stopping time for the first 1e6 natural numbers as a function of their value is presented in Figure 1.109

The equally “structureless” empirical distribution of the total stopping time for the same numbers110

is presented in Figure 2. In this context, “structureless” means that it is impossible to anticipate the111

frequency of the total stopping time. This is unfortunate since it means observing the total stopping112

times over a region of N0 gives no information whatsoever on the Collatz problem apart from strictly113

verifying its convergence. The mean of the total stopping time totally depends on the region over114

which it is computed, and, even when considering a closed subset of N0, the distribution of the total115

stopping time appears to be erratic and does not seem to follow any regular pattern. As such, the total116

stopping time has no apparent statistical properties that could be useful in applications such as, for117

instance, generating random numbers.118

119
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Figure 1. “Structureless” total stopping time for the first 1e6 natural numbers
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Figure 2. “Structureless”distribution of the total stopping time for the first 1e6 natural numbers
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Figure 3. Quasi-geometric distribution of the inflation propensity for the first 1e6 natural numbers

120
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Precisely because the Collatz graph is non-regular, its complexity gives rise to a pseudo-random121

behaviour. [17] and [11] explore similarities between the Collatz model and the following dynamical122

system:123

log2 TK(x) ≈ log2x− K + b3

K

∑
k=0

Yk, (6)

where b3 is a constant and Yk are IID (independant and identically distributed) Bernouilli random124

variables. The stochastic models predict that all orbits converge to a bounded set and that the total125

stopping time σ∞(x) for the 3x + 1 map of random starting point x is about 6.95212 log x steps, as126

x → ∞ have a normal distribution centered around that value. The authors point out that a suitable127

scaling limit for the trajectories is a geometric Brownian motion. This approach is extended in the128

current research in order to find a discrete metric that could exhibit some type of consistency and129

is independent from the starting point x. If a geometric Brownian motion can properly describe130

trajectories of large orbits, it means its Markov property can be exploited: each marginal step in the131

orbit is independent from the previous step. As a consequence, the probability to find new maxima132

after any random point Tk(x) of a large orbit does not depend on how many new maxima were133

discovered before that point. In other words, for any x >> 4 ∈ N:134

P
(

ξ(x) > M | ξ(x) ≥ ξ(x, k)
)
= P

(
ξ(x) > M− ξ(x, k)

)
, (7)

where M > ξ(x, k) and M ∈ N. If the inflation propensity is memoryless as described by equation135

(7), it directly implies that the density f (ξ(x) = y) follows a geometric distribution. It would mean136

that137

f (ξ(x) = y) = ρy(1− ρ) (8)

with ρ ∈ ]0; 1[ and y ∈ N. The moment generating function is138

µn = Li−n(ρ)− ρLi−n(ρ), (9)

where Lin(ρ) is the nth polylogarithm of ρ and139

ρ̂ =
µ1

1 + µ1
(10)

is the corresponding estimator of ρ based on equation (9). It is also the maximum likelihood140

estimator. The empirical distribution of ξ(x) defined in (5) is presented in Figure 3. The next step is to141

test the hypothesis that ξ(x) ∼ G(ρ).142

3. Empirical results143

The samples consist in the first 1e8, 1e9, 1e10 and 1e11 positive integers. For each sample, the144

maximum likelihood estimator of ρ is computed, then tests are performed to see if elements of the145

distribution follow a geometric distribution of parameter ρ:146

H0 : P(ξ(x) = n) = (1− ρ)n−1ρ ∀n = 1, ..., q (11)

H1 : P(ξ(x) = n) 6= (1− ρ)n−1ρ ∀n = 1, ..., q (12)

where q ∈ [0, N] and N is the largest observed maximum in the sample. When q = N, the entire147

distribution is tested for goodness of fit with a geometric distribution of parameter ρ̂. The tests are148

performed using Pearson’s χ2 test at a 10% confidence level. Table 2 summarizes the results of the149

tests. As the sample size increases, the hypothesis is not rejected when it comes to considering the150
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first quantiles of the distribution. For the last sample (1e11), the hypothesis that the distribution of151

the inflation propensity follows a geometric distribution cannot be rejected up to the 91th percentile,152

compared to the 49th percentile for the 1e9 sample. Computational limitations prevent at this stage153

investigating larger sample sizes so that the geometric behaviour of the inflation propensity over the154

entire domain (N0) needs to be conjectured. Interestingly, the estimator for ρ seems also to converge to155

a given value as the size of the sample increases and is very close to π−1
3 , which is coincidentally the156

solution to the equation 3x + 1 = π (see Figure 4). Table A1 in Appendix indicates the distribution of157

inflation propensities for the first 1e11 integers.158

Sample 1e8 Sample 1e9 Sample 1e10 Sample 1e11
ρ̂ 0.7133482 0.7135956 0.713667 0.713681
q percentile p-value p-value p-value p-value
0 29 0.01 0.15 0.70 0.64
1 49 0.04 0.19 0.70 0.14
2 64 0.09 0.00 0.23 0.25
3 74 0.15 0.00 0.36 0.39
4 82 0.08 0.00 0.11 0.35
5 87 0.05 0.00 0.01 0.37
6 91 0.07 0.00 0.00 0.13
7 93 0.11 0.00 0.00 0.03
8 95 0.00 0.00 0.00 0.04
9 97 0.00 0.00 0.00 0.03

10 98 0.00 0.00 0.00 0.00
Table 2. Pearson’s χ2 tests for goodness of fit with a geometric distribution

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   doi:10.20944/preprints201809.0472.v2

Peer-reviewed version available at J. Risk Financial Manag. 2018, 11, 83; doi:10.3390/jrfm11040083Peer-reviewed version available at J. Risk Financial Manag. 2018, 11, 83; doi:10.3390/jrfm11040083

http://dx.doi.org/10.20944/preprints201809.0472.v2
http://doi.org/10.3390/jrfm11040083
http://dx.doi.org/10.3390/jrfm11040083


10 of 18

6 7 8 9 10 11

0
.7

1
1

0
.7

1
2

0
.7

1
3

0
.7

1
4

0
.7

1
5

sample size

M
L

 e
s
ti
m

a
to

r

Figure 4. ρ̂ as a function of the sample size (log10-scale)
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4. Application159

4.1. Collatz-based proof-of-work160

Because the distribution of the inflation propensity of Collatz orbits can be assumed to be161

geometric over large samples, and that a natural generalization of the Collatz algorithm has been162

proven to be undecidable, the inflation propensity can be considered as a new candidate to generate163

proofs-of-work, conjecturing the Collatz algorithm is also undecidable. Consider the following164

problem: find any set X made of n natural numbers {X1, ..., Xi, ..., Xn} whose values are between B and165

B∗ = B + α, a larger number, and that have inflation propensities of given values {Q1, ..., Qi, ..., Qn}166

with n << α. In other terms, find a solution to the problem167

Qi = ξ(Xi) ∀i ∈ {1, ..., n}, (13)

where Qi is known, Xi ∈ [B, B∗] and Xi 6= Xj ∀i 6= j ∈ {1, ..., n}. α, B, B∗, Q, X ∈ N0. B is168

the unsigned integer value corresponding to a 256 bits block of hashed information. α is set to an169

arbitrarily large value, for example α = 264. Note that this is still a fraction of the value for B so that170

pre-computation is virtually impossible in practice.171

Since P(ξ(Xi) = Qi) ≈ (π−1
3 )Qi (1 − π−1

3 ) the difficulty to the problem can be designed in a172

straightforward manner: solutions for higher targets Qi will be exponentially more difficult to find.173

Nevertheless, verifying the proof given inputs X and B is immediate, a desirable property for a174

proof-of-work. Once a valid solution set X has been found, the nounce ν is simply :175

ν = X− B, (14)

which in practice is an array if X is a set and is an integer if X is a scalar. At the exception of the176

nonce and the target Q, the remainder of blockchain application based on Collatz is identical to the177

existing Bitcoin protocol. In practice, the target set Q can be selected by the network so that, similar178

to Bitcoin, 6 blocks are mined per hour. Every 2016 blocks, clients can compare the performance of179

the network and adjust the difficulty accordingly. Thanks to the geometric nature of the inflation180

propensity, a protocol for this adjustment is straightforward. Let us assume U0 is the average amount181

of time required by the network to find any single value ξ(x). Any total computational time UT ≥ U0182

can be easily selected by finding a set Q solving the following problem:183

UT = ∑
q∈Q

1
ρq U0 + ε. (15)

Two additional constraints must be considered for the protocol to be properly defined: the set Q184

must be chosen so that 0 ≤ ε ≤ U0 and the cardinality of the set must be as small as possible.185

4.2. Example: Bitcoin genesis hash186

A new Bitcoin genesis hash is created using original inputs by [16], but exploiting inflation187

propensity proof-of-work instead of hashcash. The inputs are: a hash merkle root that condenses188

all information related to the first Bitcoin transaction, a version number, a public key, a date, a time189

stamp that is used as coinbase parameter, and a target for complexity. A genesis block is the first190

block of a blockchain. To create a genesis hash using inflation propensity as proof-of-work, only two191

adjustments to the Bitcoin protocol are required: first, the target for complexity is expressed with192

an integer, which is the targeted inflation propensity. This directly relates to a specific probability of193

occurence. Second, the hashcash is replaced with the inflation propensity algorithm. In practice, the194

block header is hashed using SHA-256 then converted into an integer using hexadecimal encoding.195

This corresponds to B in equation (14). The target set Q is arbitrarily set to a single value of 40 for the196

generation of this first hash, which corresponds to a probability of occurence of ∼ 4e-07. The value of197
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previous hash nonce
=
X1

BLOCK 1

previous hash nonce
=
X2

BLOCK 2

Figure 5. Proof-of-work system in the blockchain
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B given Nakamoto’s other initial inputs is of ∼2.52e76. The X nonce is then incrementally added to the198

integer B and inflation propensity is computed until the target of 40 is reached. The values obtained199

from each iteration are hereafter named “Xis”. In the Python implementation of the algorithm, 2056200

Xis are computed per second on an Intel Core i7-4700MQ CPU with 8 x 2.40GHz. After 28 minutes201

of computation, the solution is found. Verification of the solution is done in ≈ 5e-04 seconds on the202

same machine. Table 3 describes diagnostics and results of the genesis hash. Using this first instance to203

calibrate the computational difficulty, the smallest set Q that solves equation (15) that would yield an204

expected computational time of 10 minutes for the next block would be {2, 6, 16, 19, 22, 26, 31, 36, 41}.205

block header hash 37d25f7f472fde7bb5b84f4bb319097c580383911b45eff10e68afa06073d6c0
corresponding integer 25248903652996148805237565338196318809513309980842754974279018460154571249344
merkle hash 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
pszTimestamp The Times 03/Jan/2009 Chancellor on brink of second bailout for banks
pubkey 04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f

35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f
time 1231006505
inflation propensity target 40 (0x28)
nounce 3420991
genesis hash 9ed4d59e375c60e568524ac7fdfcce2c36dd8d449a20b0be8c9f6f9dbd2f8709
computational time 28 minutes

Table 3. A genesis hash based on original Bitcoin’s inputs for genesis but using inflation propensity as
proof-of-work

4.3. Advantages of the Collatz-based proof-of-work206

The advantages of a Collatz-based proof-of-work are many. From a practitioner perspective, the207

algorithm is easy to implement in code since the underlying problem is made of simple arithmetic208

operations, however, bigint arithmetics are needed in case values inflate beyond 2256. Also, the natural209

generalization of the Collatz algorithm is known to be algorithmically undecidable. If this holds for210

Collatz algorithm, asymmetry is guaranteed: it is difficult to find the targeted value but easy to verify.211

From an engineering point of view, difficulty control based on a geometric distribution is significantly212

more complex than one based on hashcash, however, from a statistical perspective, the geometric213

distribution allows a very convenient tailoring of the computational complexity. It is very easy to214

adjust a specific targeted inflation-propensity, or a combination of targets. The same algorithm can215

also be indefinitely extended to meet new computational improvements since the upper bound of the216

orbits is infinity. In addition to this scalability, it could be possible to generalize the 3x + 1 algorithm to217

other congruential graphs exhibiting the same properties (for example, the 5x + 1 graph). Provided218

further research confirms this hypothesis, such a feature could allow more possibilities to generate219

new proofs-of-work.220

5. Conclusion221

For the classical 3x + 1 map, it is conjectured that inflation propensity ξ(x) = card
{

k : Tk(x) >222

max(Mx,k)

}
, k = 1, ..., k, ...σ∞(x) has a geometric density distribution whose parameter’s value ρ ≈223

π−1
3 . This has been verified numerically for the first 1e11 integers. The inflation propensity of224

Collatz orbits is a new metric that exhibits properties particularly well suited to be the base for new225

cryptography applications. A new proof-of-work is suggested: finding a set X of n integers greater than226

a hashed block of information B but smaller than a threshold B∗ such that their inflation propensities be227

of n given values Q1, ..., Qn. Advantages of this approach are multiple including an infinite scalability228

and the possibility to easily tune complexity of the algorithm. This work seems to be the first number229

theoretic proof-of-work unrelated to primes. Further research is needed to generalize this type of230

proof-of-work to a larger class of congruential graphs.231
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Appendix232

Distribution of inflation propensity for first 1e11 integers233

ξ(x) Observations
0 28631964381
1 20434254718
2 14583348496
3 10407804534
4 7427954284
5 5301161512
6 3783166989
7 2699976430
8 1927052441
9 1375229862
10 981424318
11 700353911
12 499868474
13 356795944
14 254706290
15 181761315
16 129757032
17 92628127
18 66127176
19 47199172
20 33676458
21 24024158
22 17138021
23 12231945
24 8727118
25 6225787
26 4432544
27 3162432
28 2251004
29 1599248
30 1139341
31 814975
32 583455
33 416994
34 298683
35 212914
36 150443
37 106613
38 76749
39 55452
40 39947
41 28495
42 20259
43 14253
44 10396
45 7791
46 5431
47 3690
48 2640
49 1984
50 1448
51 1041
52 745
53 595
54 467
55 347
56 234
57 170
58 127
59 72
60 41
61 21
62 20
63 17
64 17
65 9
66 2
67 0
68 1
69 0

Table A1. Distribution of inflation propensity ξ(x) for the first 1e11 integers
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Python code for genesis block234

Modified from [7].235

236

import hashlib, struct, binascii, time, sys, optparse237

238

from construct import *239

240

def main():241

options = get_args()242

input_script = create_input_script(options.timestamp)243

output_script = create_output_script(options.pubkey)244

tx = create_transaction(input_script, output_script,options)245

hash_merkle_root = hashlib.sha256(hashlib.sha256(tx).digest()).digest()246

print_block_info(options, hash_merkle_root)247

block_header = create_block_header(hash_merkle_root, options.time, options.bits, options.nonce)248

genesis_hash, nonce = generate_hash(block_header, options.nonce, options.bits)249

announce_found_genesis(genesis_hash, nonce)250

251

def get_args():252

parser = optparse.OptionParser()253

parser.add_option("-t", "--time", dest="time", default=int(1231006505), type="int", help="the (unix) time254

when the genesisblock is created")255

parser.add_option("-z", "--timestamp", dest="timestamp", default=256

"The Times 03/Jan/2009 Chancellor on brink of second bailout for banks",257

type="string", help="the pszTimestamp found in the coinbase of the genesisblock")258

parser.add_option("-n", "--nonce", dest="nonce", default=0,259

type="int", help="the first value of the nonce that will be incremented260

when searching the genesis hash")261

parser.add_option("-p", "--pubkey", dest="pubkey", default="04678afdb0fe5548271967f1a67130b7105cd6a828e03909262

a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f",263

type="string", help="the pubkey found in the output script")264

parser.add_option("-v", "--value", dest="value", default=5000000000,265

type="int", help="the value in coins for the output, full value (exp. in bitcoin 5000000000266

- To get other coins value: Block Value * 100000000)")267

parser.add_option("-b", "--bits", dest="bits",268

type="int", help="the target in compact representation, associated to a difficulty of 1")269

(options, args) = parser.parse_args()270

if not options.bits:271

options.bits = 40272

return options273

274

def create_input_script(psz_timestamp):275

psz_prefix = ""276

if len(psz_timestamp) > 76: psz_prefix = ’4c’277

script_prefix = ’04ffff001d0104’ + psz_prefix + chr(len(psz_timestamp)).encode(’hex’)278

print (script_prefix + psz_timestamp.encode(’hex’))279

return (script_prefix + psz_timestamp.encode(’hex’)).decode(’hex’)280

281

def create_output_script(pubkey):282

script_len = ’41’283

OP_CHECKSIG = ’ac’284

return (script_len + pubkey + OP_CHECKSIG).decode(’hex’)285

286

def create_transaction(input_script, output_script,options):287
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transaction = Struct("transaction",288

Bytes("version", 4),289

Byte("num_inputs"),290

StaticField("prev_output", 32),291

UBInt32(’prev_out_idx’),292

Byte(’input_script_len’),293

Bytes(’input_script’, len(input_script)),294

UBInt32(’sequence’),295

Byte(’num_outputs’),296

Bytes(’out_value’, 8),297

Byte(’output_script_len’),298

Bytes(’output_script’, 0x43),299

UBInt32(’locktime’))300

301

tx = transaction.parse(’\x00’*(127 + len(input_script)))302

tx.version = struct.pack(’<I’, 1)303

tx.num_inputs = 1304

tx.prev_output = struct.pack(’<qqqq’, 0,0,0,0)305

tx.prev_out_idx = 0xFFFFFFFF306

tx.input_script_len = len(input_script)307

tx.input_script = input_script308

tx.sequence = 0xFFFFFFFF309

tx.num_outputs = 1310

tx.out_value = struct.pack(’<q’ ,options.value)311

tx.output_script_len = 0x43312

tx.output_script = output_script313

tx.locktime = 0314

return transaction.build(tx)315

316

def create_block_header(hash_merkle_root, time, bits, nonce):317

block_header = Struct("block_header",318

Bytes("version",4),319

Bytes("hash_prev_block", 32),320

Bytes("hash_merkle_root", 32),321

Bytes("time", 4),322

Bytes("bits", 4),323

Bytes("nonce", 4))324

325

genesisblock = block_header.parse(’\x00’*80)326

genesisblock.version = struct.pack(’<I’, 1)327

genesisblock.hash_prev_block = struct.pack(’<qqqq’, 0,0,0,0)328

genesisblock.hash_merkle_root = hash_merkle_root329

genesisblock.time = struct.pack(’<I’, time)330

genesisblock.bits = struct.pack(’<I’, bits)331

genesisblock.nonce = struct.pack(’<I’, nonce)332

return block_header.build(genesisblock)333

334

#Collatz inflation propensity335

def inflation_propensity(x):336

xMax=x337

stepToMaximum=0338

while x > 1:339

if x % 2 == 0:340

x = x / 2341

else:342
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x = (3 * x + 1) / 2343

if x > xMax:344

xMax=x345

stepToMaximum+= 1346

return stepToMaximum347

348

def generate_hash(data_block, start_nonce, bits):349

print ’Searching for genesis hash..’350

nonce = start_nonce351

last_updated = time.time()352

header_hash = generate_hashes_from_block(data_block)353

print(binascii.hexlify(header_hash))354

orbitTrajectory=int(header_hash.encode(’hex_codec’), 16)355

print(orbitTrajectory)356

timeInit=time.time()357

while True:358

xi=inflation_propensity(orbitTrajectory)359

last_updated = calculate_hashrate(nonce, last_updated, orbitTrajectory,timeInit)360

if xi==bits:361

return (generate_hashes_from_block(data_block), nonce)362

else:363

nonce = nonce + 1364

orbitTrajectory += 1365

data_block = data_block[0:len(data_block) - 4] + struct.pack(’<I’, nonce)366

367

def generate_hashes_from_block(data_block):368

header_hash = hashlib.sha256(hashlib.sha256(data_block).digest()).digest()[::-1]369

return header_hash370

371

def calculate_hashrate(nonce, last_updated, orbitTrajectory, timeinit):372

if nonce % 10000 == 0:373

now = time.time()374

hashrate = round(10000/(now - last_updated))375

sys.stdout.write("\r%s Xis/s, Orbit: %s, Total time: %s minutes "376

%(str(hashrate), str(orbitTrajectory), str((now-timeinit)/60)))377

sys.stdout.flush()378

return now379

else:380

return last_updated381

382

def print_block_info(options, hash_merkle_root):383

print "merkle hash: " + hash_merkle_root[::-1].encode(’hex_codec’)384

print "pszTimestamp: " + options.timestamp385

print "pubkey: " + options.pubkey386

print "time: " + str(options.time)387

print "bits: " + str(hex(options.bits))388

389

def announce_found_genesis(genesis_hash, nonce):390

print "genesis hash found!"391

print "nonce: " + str(nonce)392

print "genesis hash: " + genesis_hash.encode(’hex_codec’)393

394

main()395
396
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