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Abstract 

Due to limitation of the binding energy of a self-gravitating matter, the ra-
dius of a body is at least twice larger than the Schwarzschild radius. The total en-
ergy is adsorbed at the body surface, giving rise of a size-dependent surface ten-
sion. Since the Hawking temperature appears to be the critical one, the black holes 
possess zero surface tension. Microscopic neutrino stars are also introduced. 
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A black hole is so condensed that even light cannot escape due to the gravitational attrac-

tion. Leaving apart any resistance due to particle repulsion and exclusion the black hole formation 

seems also energetically impossible. Imagine a self-gravitating star, emitting radiation in all. The 

kinetic energy of the matter particles is continuously decreasing and the star is shrinking towards 

a black hole. However, due to the mass-energy equivalence, the star is losing its mass as well, 

thus reducing the inner strength of the self-gravitational attraction. As the Schwarzschild radius 

decreases also with decreasing mass, this Zeno effect leads to the conclusion that only an empty 

black hole could form with zero size, when the mass of the star becomes zero. 

To make the picture consistent, let us start from the Newton gravity. If the mass density 

  is radial-symmetrically distributed, the corresponding gravitational potential   obeys the Pois-

son equation 

 

2 2( ) / 4r rr r G          2/r rGm r        (1) 

 

The second integral form involves the mass 2

0
4

r

rm r dr   , enclosed within a central sphere 

with radius r . Naturally, m  contains the total mass 0M  of the self-gravitating matter. Using Eq. 

(1), one can calculate the overall potential energy 

 

2 2

0 0
2 ( / 2) ( / )rU r dr G m r dr

 

             (2) 
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Since no other interactions are considered and the excess energy is freely released as radiation 

in vacuum, the body contracts permanently due to the gravitational attraction. At the end, a mass 

point is formed with 0rm M  everywhere. According to Eq. (1), it corresponds to the classical 

Newton potential 0 /GM r   . As it is well known, U  diverges for a mass point, which indicates 

a generic problem of the Newton gravity. 

According to the Einstein special relativity theory, the total energy at rest 2

0E M c U   

is positively defined. The lowest value 0E   limits the binding energy to the maximal 100 % mass 

defect. The integral and differential forms of 2

0/U c M   reads 

 

2

0 0
( / 2) ( / ) ( )r r rG m cr dr m dr

 

     2( / 2)( / )r r rm G m cr     (3) 

 

The integration Eq. (3) leads straightforward to the radial mass distribution 

 

0 0/ (1 / )rm M R r      2

0 0 / 2R GM c     (4) 

 

which is not constant anymore due to the binging energy limitation. Substituting Eq. (4) in Eq. (1) 

yields after integration the restricted gravitational potential 

 

2

02 ln(1 / )c R r              (5) 

 

Far from the center it tends to the Newton potential, while near the center the logarithmic po-

tential 2

02 ln( / )c r R  is much weaker than 0 /GM r . That is why the potential energy (2) is finite. 

One can derive the mass density distribution by differentiating directly rm  from Eq. (4) 

 

2 2

0 0 0/ 4 ( )M R r r R             (6) 

 

If the mass 0M  is very small, Eq. (4) approaches a mass point as expected. In the opposite 

case of large masses, Eqs. (4) and (6) tends to 0 0( / )rm M r R  and 2

0 0/ 4M R r   , which are 
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independent of the mass 0M . They describe a compact body with radius 0R  and for 0r R  the 

density 0   is zero and 0rm M . One can calculate the corresponding pressure p  via the hy-

drostatic force balance 

 

2/r r rp Gm r               (7) 

 

It is zero outside the body but remarkably 2p c   resembles inside an equation of state. As is 

seen, the limitation of the binding energy resolves the mass point singularity. However, since 0R  

is one fourth of the Schwarzschild radius, a black hole singularity still holds. It points out that 

probably the maximal mass will prevent such a peculiarity as well. 

It is interesting what the effect would be of the binding energy limitation on black holes. 

To answer this question, we are going to repeat the analysis above, using the Einstein general 

relativity theory. In the frames of the latter, the problem is described by the Tolman-Oppenhei-

mer-Volkoff (TOV) equations1 

 

3 2 2 2( 4 / ) / (1 2 / )r r rG m r p c r Gm c r        2( / )r rp p c        (8) 

 

from which Eqs. (1) and (7) follow, respectively, in the non-relativistic limit. Note that the relativ-

istic mass M  is smaller than 0M  and the difference 2

0 /M M U c    is the binding energy mass 

defect. For a mass point, Eq. (8) reduces to 2 2/ (1 2 / )r GM r GM c r    , since rm M , 0   

and 0p  . Integrating this equation results straightforward in the well-known relativistic poten-

tial, where 22 /sr GM c  is the Schwarzschild radius,2 

 

22 / ln(1 / )sc r r             (9) 

 

Far from the center,   tends to the Newton potential /GM r . The singularity at sr  marks the 

event horizon,3 where the surface of the black hole takes place. 

Let us apply now the energy limitation to the TOV equations (8). In general, the pressure 

p X   is proportional to the energy density 2c    and we got 1X   in the semi-relativistic 

analysis above. Introducing 2p X c   in Eq. (8) yields 
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2 2( ) / (1 2 / )r r r r rG m Xr m r Gm c r        2 (1 )r rXc X         (10) 

 

Searching for a black hole, we are looking for a compact body of self-gravitating matter. For radii 

larger than the body radius R  the standard expressions rm M and 0   hold. It follows im-

mediately from Eq. (10) that Eq. (9) is the potential outside the body. It is well known that inside 

the body ( / )rm M r R  and 2/ 4M Rr    are solutions of Eq. (10),4 which is also supported by 

our semi-relativistic analysis. Introducing them in Eq. (10) leads to 

 

2/ 1 (1 ) / 4sR r X X      22 ln( / ) / (1 )R c r R X X       (11) 

 

To determine the important value of the factor X , one can employ a general formula,4 

relating the relativistic mass M  with the mass 0M  at the origin, 

 

2

0
2

0

1 4 / (1 )
1 2 /

M

r

r

dm
M X X M

Gm c r
   


       (12) 

 

 

Fig. 1. Plot of / sR r  (blue) and 0 /M M  (red) as a function of the factor X  
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The positive ratios / sR r  from Eq. (11) and the real ratios 0 /M M  from Eq. (12) are plotted in Fig. 

1. As is seen, there is no overlap between them for 0X  . Moreover, the negative X  is always 

related to a negative mass defect, which indicates lack of bounded body for dark matter. Looking 

for a positive binding energy, the necessary inequality 0M M  imposes that 0X  . If the mat-

ter is super-relativistic with 1/ 3X  , the corresponding mass defect is 24.4 %. If the particles are 

moving much slower than the speed of light, the doubled non-relativistic factor 2 / 3X   results 

in 28.6 % mass defect. The maximal mass defect about 29.3 % at 1X   should correspond to the 

lowest body temperature in order to prohibit any further energy loss by quantum reasons. It is 

less than 30 % and the matter particles are probably at rest. Logically, 1X   corresponds to the 

minimal body radius 22 4 /sR r GM c   from Eq. (11). According to Fig. (1), the radius of a self-

gravitating body is at least twice larger than the Schwarzschild radius. 

 

 

Fig. 2. The dimensionless potential 22 / c  from Eq. (13) (solid) and Eq. (9) (dash) versus /r R  

 

The finite value of the surface potential 2 ln2 / 2R c    follows from Eq. (9) at 2 sR r . 

Hence, the overall potential (11) acquires the form, where H  is the Heaviside step function, 

 

2 2 22 / ( ) ln( / 2 ) ( ) ln(1 / 2 )c H R r r R H r R R r           (13) 
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Its plot in Fig. 2 shows lack of singularity in contrast to the Schwarzschild potential (9). The po-

tential (13) possesses a kink at R , which reflects the effect of a pressure jump at the body sur-

face. Hence, the body possesses a capillary pressure, 2 3/ 4Rp Mc R  , which is related to the 

surface tension   via the Laplace law 2 /R Rp R    . The latter can be integrated directly to 

obtain 2 /Mc A  , where 24A R   is the area of the body surface. It is a particular example of 

a size-dependent surface tension, described via the Tolman formula.5 It vanishes at a flat surface 

and the bending elasticity 42 / 8R c G    coincides with the universal Einstein expression. Re-

markably, the full energy 2Mc A   of the body is at the surface, which supports our expectation 

that the body is energetically empty and that is why it cannot shrink anymore. 

The problem now is what causes the pressure 2p c   if the particles are not moving. This 

equation looks very similar to the ideal gas equation of state /Bp Nk T V  at constant tempera-

ture and we are going to explore such an identity. The characteristic potential of the body is the 

Helmholtz free energy ( , , )F T V N  as a function of the natural parameters. Substituting the ideal 

gas pressure in the thermodynamic relation 
,( )V T Np F    allows direct integration to obtain 

 

3[ln(8 / ) 1 ( )]B PF Nk T l N V g T           (14) 

 

where 3 1/2( / )Pl G c  is the Planck length and g  is an unspecified function. Using now the equiv-

alence of the pressure and energy density at 1X   determines the energy BE pV Nk T  . In 

the general case it reads /BE Nk T X . Substituting Eq. (14) into the thermodynamic relation 

,( )T V NE F T F    yields the unspecified function 2ln( / 4 )P Bg m c k T  , where 1/2( / )Pm c G  

is the Planck mass. So, the free energy reads 

 

2 2[ln(2 / ) 1]B BF Nk T G N c k TV           (15) 

 

Using this fundamental equation, one can calculate the chemical potential of the gas 

 

2

,( ) 2 ln( / 2 ) ln(8 / )N T V B B BF k T k T k T Gp c            (16) 
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Considering the self-gravitating body with pressure 2p c  , at constant temperature the 

gradients of the chemical and gravitational potentials cancel exactly in agreement with Eq. (10), 
2/ 2 / 0r B rk T c      . Integrating the latter equation yields the gravito-chemical potential 

 

22 / 2 ln( / 4 )B B Bk T c k T c Rk T            (17) 

 

which is constant everywhere in the body. Since the body is energetically hollow, the correspond-

ing ( ) 0T   determines the temperature of the body 

 

/ 4 BT c Rk            (18) 

 

This is, in fact, the minimal energy-time Heisenberg relation. In black holes Eq. (18) reduces at 

sR r  to the Hawking temperature, / 4H s BT c r k  .6 Therefore, due to 2 sR r  the temperature 

of the body is half of the Hawking temperature. The relation 2Mc A   implies also that the body 

entropy compensates exactly the negative pressure-volume term / BS pV T Nk   to cancel the 

internal energy completely. Substituting here the temperature (18) yields that the body entropy 

coincides with the Bekenstein-Hawking one7 

 

2 2/ / 4B PS Mc T k A l           (19) 

 

Replacing this expression in the thermodynamic Maxwell equation T AS     allows direct in-

tegration to obtain the temperature dependence of the surface tension 2( ) / 4B c Pk T T l    with 

the critical temperature cT . Substituting here 2 /Mc A   and / 2HT T  yields straightforward 

that the critical temperature c HT T  is the Hawking one. Therefore, a black hole possesses zero 

surface tension 0  , which means a zero mass M . 

The mass of a gas particle 2/ /Bm M N k T c   is extremely small at moderate tempera-

tures. Because any movement in the body is frozen, temperature causes solely some energy fluc-

tuation 2mc  with lifetime 2/ 2 2 /mc R c    . Since the mass and energy are synonyms, m  

should be considered as the typical mass fluctuation as well. The temperature dependence of the 

free energy (15) follows directly from the following exponential Boltzmann distribution 
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2 2( / )exp( / )m B Bf c k T mc k T          (20) 

 

Perhaps, the neutrino is the only known particle possible to transmit the energy fluctuations in a 

cold body. Moreover, 2 /16Pm m M   could be explained via the seesaw mechanism.8 From this 

perspective, it is interesting to consider a pure neutrino star. Measurements of the neutrino mass 

are very difficult, but important progress is achieved in the measurement of the difference in the 

squares of masses 2 2 2

12 1 2m m m     via KamLAND.9 Assuming logically independent neutrinos 

in the ideal gas, it follows 

 

1 2

2 2 2 2

12 1 2 1 2
0 0

3m mm m m f f dm dm m
 

            (21) 

 

Using the experimental value 2

12 79m   meV2/c4, the corresponding temperature of the neu-

trino star 60T   K is low enough to neglect any motion. One can estimate further from Eq. (18) 

a very small radius 3R   µm of the neutrino micro-star, while its mass 2110M   kg is 6000 times 

smaller than the mass of the Earth. The number of neutrinos in the star is 2 59/ 10BN Mc k T   

and from the volume per a particle 3 754 / 3 10v R N     m3 one can estimate the neutrino di-

ameter as smaller than 2510  m. 

Obviously, the Fermi energy is huge due to the enormous density of the neutrino star and 

the tiny neutrino mass. This implies that the neutrinos form probably bosonic Cooper pairs (e.g. 

majorons) to avoid the fermionic repulsion due to the Pauli principle. Perhaps, this is the reason 

for the factor 2 in the gravito-chemical potential 2m     . Thus, the neutrino star is a Bose-

Einstein condensate, since T  is below the BEC critical temperature and 0  . That is why the 

body cannot emit energy anymore to collapse in a black hole. In a previous paper, we derived 

that a self-gravitating quantum matter should always form a central hollow cavity.10 To examine 

this prediction, one can introduce now the exact relativistic density 2/ 4M r R    into the Bohm 

quantum potential to obtain 

 

2 2 1/2 2 1/2 2( / 2 ) ( ) / ( ) / 16 ( ) /r rQ m r r r mr GM r cr               (22) 

 

where   is the Dirac delta-function. Equation (22) describes an infinite repulsion in the body 

center. This singularity is much stronger than the gravitational one and it will definitely cause a 

central hollow cavity due to the Heisenberg constraint / rr m c  or 2 Pr l . It is also evident 
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from the unphysical divergences of the gravitational potential   and the density   in the body 

center. 

 

The paper is dedicated to Stephen Hawking (1942-2018). 
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