Human Exposures to Rare Earth Elements:

Present Knowledge and Research Prospects

Giovanni Pagano¹*, Philippe J. Thomas² and Marco Trifuoggi¹

1 Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy

2 Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center – Carleton University, Ottawa, Ontario K1A 0H3, Canada

* Corresponding author

E-mail: gbpagano@tin.it
Abstract: The extensive use of rare earth elements (REEs) in a number of technologies is expected to impact on human health, including occupational REE exposures. A body of experimental evidence on REE-associated toxicity has been accumulated in recent decades. Unlike experimental studies, the consequences of REE exposures to human health have been subjected to relatively fewer investigations. Geographical studies have been conducted on residents in the Chinese REE mining districts, reporting on REE bioaccumulation, and associations between REE residential exposures and adverse health effects. A more limited series of studies has been focused on occupational REE exposures, such as movie operator (with occurrence of cerium aerosol) with the observation of pneumoconiosis and lung fibrosis. Similar effects have been reported in case reports for other workers, such as a lens grinder and a printer exposed to carbon-arc lamp emission. As for the occupations related to REE mining and processing, REE bioaccumulation in scalp hair and excess REE urine levels were reported. A study was devoted to workers employed in e-waste separation, showing alterations of several plasma markers. As for other REE occupational exposures, mention should be made of: a) mechanical workshops, with exposures to diesel exhaust microparticulate (containing nanoCeO₂ as a catalytic additive) and, b) production and manufacture of REE supermagnets for hybrid engines and wind turbines. Diesel exhaust microparticulate has been studied in animal models, leading to evidence of several pathological effects in animals exposed by respiratory or systemic routes. As for supermagnet production and manufacture, a body of literature is reviewed of experimental studies, and of human exposure studies showing several pathological effects of static magnetic fields, warranting further investigations.

Keywords: rare earth elements; toxicity; occupation; diesel exhaust; supermagnet
1. Introduction

Rare earth elements (REEs) have become an essential component of present-day life due to their pervasive applications in a number of technologies [1-3]. A body of experimental evidence, mostly obtained since the 2000s has established the multiple REE-associated adverse effects in a number of biota, including mammals (both in vivo and in vitro models) [4-16], other vertebrates [17-18], invertebrates [19-28], plant and microbial models [29-37], as shown in Tables 1A-1B. The array of REE-induced toxicity includes extensive adverse events, such as organ pathologies in mammals [4-12], cytogenetic and embryologic damage [14,19-21], and growth inhibition [22-31]. Individual REEs were found to exert different toxicities in comparative studies that suggested toxicity gradients according atomic mass and magnetic properties [21,35]. It is worth noting, however, that a line of studies pointed to beneficial (hormetic) effects of REEs [38-40], which are also utilized as fertilizers in agronomy and or feed additives zootechny [41-45].

Altogether, the current experimental evidence for REE-associated toxicity raises environmental health concern on the possible adverse effects in areas affected by excess REE pollution, such as close to mining districts or related to REE manufacturing. Unlike experimental evidence, human REE exposures have been focused to date in a lesser number of investigations. The present review attempts to evaluate the available literature on human REE exposures, both including environmental/residential and occupational exposures, trying to raise working hypotheses on currently unexplored fields in human REE exposures. The literature concerning iatrogenic or occupational REE exposures in radiologic or nephrologic practice is not evalutaed herein.
2. Human Environmental REE Exposures

The residents in Chinese regions involved in REE mining and processing have been investigated in a set of studies assessing scalp hair REE accumulation as a function of distance from mining sites and with different accumulation extent according to gender and age, raising health concern for highly REE-exposed children [46-52]. A possible association between environmental REE exposures and specific pathologies was investigated. Two studies by Wang et al. [50-51] reported on excess hypertension risk among housewives residing in Shanxi Province, as a function of REE hair levels, or to REE-containing indoor air pollution (Table 2). Excess REE levels were reported in vegetables, soil and street dust in REE mining levels, suggesting exposure routes via dietary or respiratory REE exposures [53-55].

As an additional component of environmental concern, REE ores are associated with naturally occurring radioactive materials (NORM) that have been quantified and both include thorium and uranium, with concentrations of ThO$_2$ up to 0.05% and of U$_3$O$_8$ up to 0.002%. [56-59]. Moreover, Wang et al. [59] reported that activity levels of airborne 232Th in total suspended particulate (TSP) ranged from three to five orders of magnitude in a mining area and in a smelting area, above the world reference of 0.5 μBqm$^{-3}$. Thus, one can speculate that REE ores and their by-products may both affect exposed populations due to REE-specific and to NORM-associated adverse effects.

One may be tempted to consider environmental REE exposures as a prerogative of residents in REE mining and processing areas, with exceedingly high environmental REE levels. However, the existence of areas featuring REE pollution, such as e-waste dumping sites [60,61] or heavy traffic urban areas [62] (see below) makes these subjects unexplored to date and should prompt ad hoc investigations.
3. Occupational REE Exposures

3a. REE mining and processing

Based on the as yet limited literature on REE environmental exposures in REE mining and processing areas, one might infer that occupational exposures should imply health risks to miners and workers employed in REE manufacturing. At least three reports – to the best of our knowledge – suggest the occurrence of occupational-related health damage to REE-exposed workers. An indirect association to occupational REE exposure was suggested by Chen et al. [63], who investigated the rates of respiratory tract diseases in groups of miners exposed in high-dust and low-dust workshops employed in REE mining and iron mining. Unfortunately, this report was only focused on «thorium lung burden» and no mention was provided regarding analytical data of REE levels either in dust or in term of REE uptake. Though with such limitation, that report may provide grounds for studies of possible links between occupational exposures to REE dust and respiratory tract diseases.

Urinary REE levels were measured by Li et al. [63] in workers manufacturing cerium and lanthanum oxide and nanoparticles, and excess levels of La, Ce, Nd and Gd were found in exposed workers vs. controls.

Liu et al. [64] measured scalp hair levels of REEs and other eight metals in REE miners and controls, and performed proteomic analysis for a set of plasma proteins. These authors found excess REE and Fe levels in miners vs. controls, and dysregulation of 29 differentially expressed proteins. Thus, further investigations are warranted on the grounds of this report (Table 3).

3b. Exposures to REE Aerosols and Dusts
Starting from the early paper by Sabbioni et al. in 1982 [65], a series of case reports associated the occurrence of pneumoconiosis or of lung fibrosis in workers exposed to REE aerosols produced by carbon-arc lamps, such as movie operator [67-69] or lithography printer [70], or to REE dust as lens grinder [71,72]. Thus, the term was adopted of “rare earth pneumoconiosis” [69,73]. Subsequently, Yoon et al. [71] described the microscopic features of dendriform pulmonary ossification in a worker exposed to REE dust.

A recent study by Henríquez-Hernández et al. [60] focused on the occupational exposures to REEs and other metals in workers employed in e-waste processing. In this study, the concentrations of 48 elements (including REE and other metals) were determined by ICP-MS in whole blood samples of anemic and non-anemic workers. The levels of several REEs (Ce, La, Nd, Sm, Eu, Er) were higher in anemic vs. non-anemic workers; the same was found for other elements (Ag, As, Ba, Bi, Ga, Pb, Sn, Ta), and for Th and U. The authors concluded that the higher levels of Pb, REEs and other metals in anemic participants suggested the possibility that these elements could play a role in the development of anemia (Table 3).

4. Beyond the Present Knowledge: Need for Research

4a. REEs in Diesel Exhaust

The addition of Ce- and La-based catalytic additives in oil refining and diesel oil formulation has become a current practice in the last three decades [73-75], thus the presence of CeO₂ nanoparticulate (nano-ceria) can be regarded as a pervasive event in diesel exhaust [1-3]. As summarized in Table 4, an established body of evidence has assessed a number of adverse effects in animals exposed to nano-ceria by different administration routes and resulting in several damages in various organs, such as liver and brain, or affecting inflammatory endpoints [7-12,76-82]. To date, human exposures to
nano-ceria have been recognized [reviewed in 3,78,83] but, to the best of our knowledge, no report has been published relating human exposures to nano-ceria \textit{vs.} any health effects, such as REE bioaccumulation or the onset of pathological changes. The current lack of information may include the likely events of occupational REE exposures among mechanics, necessarily exposed to diesel exhaust emissions and, possibly, among residents in urban areas affected by heavy traffic concentrations. In order to solve this information gap, an on-going study is investigating the REE levels both in ground dust in mechanic workshops and in surface crusts of urban tunnels in Naples, Italy, as well as REE uptake among mechanics, by both measuring urine and scalp hair REE levels. The preliminary results found excess REE levels in workshop ground dust, and evidence for excess urine REE levels in mechanics \textit{vs.} unexposed control workers [Trifuoggi \textit{et al.}, unpublished]. The further steps of this investigation will ascertain whether, and to what extent, excess REE bioaccumulation might result in any pathological outcome(s).

4b. REE Supermagnets: A New Challenge?

The primary paramagnetic properties of some REEs as Nd, Sm and, even more, Dy and Ho [84] have caused their pervasive use in producing supermagnetic devices for hybrid engines and wind turbines [85,86].

As summarized in Table 5, the biological effects of magnetic fields (MF) have been investigated since early studies [87] and a body of literature is available on the adverse outcomes of MF exposures in animal, plant and \textit{in vitro} studies [88-104]. These effects were observed also independently of reactive oxygen species (ROS) formation [94], a well-established feature of iron toxicity and also detected for REEs [21]. The available information on the effects of magnetic fields is mainly focused on extremely low frequency
magnetic fields [98], whereas static magnetic fields have been focused with relatively lesser investigations [99-104].

No published reports, to the best of our knowledge, have been focused on the occupational exposures associated with producing and manufacturing REE-based supermagnets. It is worth noting that the workshop areas committed to these procedures as melting, molding and polishing REE supermagnets are expected to be characterized by definite static magnetic fields, whose intensity is currently unknown. Also unknown are possible health effects of these magnetic fields to the workforce involved in these manufactures.

Altogether, one may assume that the whole technology involved in the production and manufacture of REE-based supermagnets may represent an unexplored field that warrants *ad hoc* investigations.

5. Conclusions

Unlike an extensive body of experimental evidence pointing to REE-associated toxicity, the available information on human REE exposures points to a series of adverse effects including bioaccumulation and only partly known pathological outcomes. The present review attempted to evaluate the state-of-art for other two technologies expected to lead to occupational REE exposures and deserving *ad hoc* investigations.
References

9. Geraets, L.; Oomen, AG.; Schroeter, JD.; Coleman, VA.; Cassee, FR. Tissue
distribution of inhaled micro- and nano-sized cerium oxide particles in rats: Results

10. Ma, J.Y.; Mercer, R.R.; Barger, M.; Schwegler-Berry, D.; Scabilloni, J.; Ma, J.K.;
Castranova, V. Induction of pulmonary fibrosis by cerium oxide nanoparticles.

Graham, U.; Butterfield, D.A.; Grulke, E.A.; et al. Alteration of hepatic structure and
260, 173-182.

12. Hardas, S.S.; Sultana, R.; Warrier, G. Rat hippocampal responses up to 90 days after
a single nanoceria dose extends a hierarchical oxidative stress model for nanoparticle

13. Palmer R.J.; Butenhoff J.L.; Stevens J.B. Cytotoxicity of the rare earth metals cerium,
lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary

14. Jha AM, Singh AC. Clastogenicity of lanthanides: induction of chromosomal

15. Park, E.J.; Choi, J.; Park, Y.K.; Park, K. Oxidative stress induced by cerium oxide
nanoparticles in cultured BEAS-2B cells. *Toxicology* **2008**, *245*, 90-100. doi:

16. Benedetto A.; Bocca C.; Brizio P.; Cannito S.; Abete MC.; Squadrone S. Effects of the
rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer

30. Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Guo, Z.; Tai, R.; Ding, Y.; Zhao, Y.; Chai, Z.

52. Hao, Z.; Li, Y.; Li, H.; Wei, B.; Liao, X.; Liang, T.; Yu, J. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner

76. Steiner, S.; Mueller, L.; Popovicheva, O.B.; Raemy, D.O.; Czerwinski, J.; Comte, P.; Mayer, A.; Gehr, P.; Rothen-Rutishauser, B.; Clift, M.J. Cerium dioxide nanoparticles

90. Dornelles, E.B.; Goncalves, B.D.; Schott, K.L.; Barbisan, F.; Unfer, T.C.; Glanzner, W.G.; Machado, A.K.; Cadona, F.C.; Azzolin, V.F.; Montano, M.A.; Griner, J.; da Cruz,
I.B. Cytotoxic effects of moderate static magnetic field exposure on human periphery blood mononuclear cells are influenced by Val16Ala-MnSOD gene polymorphism.

96. Haghighat, N.; Abdolmaleki, P.; Ghanati, F.; Behmanesh, M.; Payez, A. Modification of catalase and MAPK in *Vicia faba* cultivated in soil with high natural radioactivity

Table 1A.
Background information on REE-associated toxicity by in vivo (mammals, other vertebrates) and in vitro models.

<table>
<thead>
<tr>
<th>Species/Model</th>
<th>Main effects/Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rats</td>
<td>Yttrium-induced renal damage</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Neurotoxicological effects following LaCl$_3$ oral administration</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ fine particles, by intratracheal instillation, induce:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple respiratory damage</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Liver toxicity</td>
<td>8; 11</td>
</tr>
<tr>
<td></td>
<td>Lung, liver, kidney, spleen and brain accumulation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Lung fibrosis</td>
<td>10; 80</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ intravenous infusion results in multiple oxidative stress</td>
<td>12</td>
</tr>
<tr>
<td>Mice</td>
<td>CeCl$_3$ oral administration induces lung and liver toxicity</td>
<td>6</td>
</tr>
<tr>
<td>Rat lung alveolar macrophages</td>
<td>LaCl$_3$-, CeCl$_3$- and Nd$_2$O$_3$-induced cytotoxicity</td>
<td>13</td>
</tr>
<tr>
<td>Mouse bone marrow cells</td>
<td>Intraperitoneal Pr6O${11}$ and Nd$_2$O$_3$ induce chromosomal aberrations</td>
<td>14</td>
</tr>
<tr>
<td>BEAS-2B cells</td>
<td>nCeO$_2$-induced oxidative stress</td>
<td>15</td>
</tr>
<tr>
<td>HepG2 and HT-29 cell lines</td>
<td>CeCl$_3$ and LaCl$_3$ affect gene regulation detected by RT-PCR based arrays</td>
<td>16</td>
</tr>
<tr>
<td>Carassius auratus</td>
<td>CeO$_2$-induced changes of enzymatic activities (AChE, SOD, and CAT)</td>
<td>17</td>
</tr>
<tr>
<td>Zebrfish embryos</td>
<td>La and Yb affect the development of zebrafish embryos</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 1B.
Background information on REE-associated toxicity by means of invertebrates and microbial models.

<table>
<thead>
<tr>
<th>Species/Model</th>
<th>Main effects/Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea urchin embryos and sperm</td>
<td>Comparative toxicities of several REEs to early development, fertilization success, offspring damage, cytogenetic damage and oxidative stress</td>
<td>19-21</td>
</tr>
<tr>
<td>Daphnia pulex</td>
<td>CeO₂ uptake in gut content, independent on feeding conditions</td>
<td>22</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>Reproduction and growth inhibition</td>
<td>23</td>
</tr>
<tr>
<td>Gammarus roeselii and Nitzschia palea, Chironomus riparius, Xenopus laevis and Pleurodeles waltl</td>
<td>nCeO₂ decreased size of the lysosomal system, catalase activity and lipoperoxidation in D. polymorpha</td>
<td>24, 27</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>PrCl₃, NdCl₃ and ScCl₃ induce behavioral deficits and neural damage</td>
<td>28</td>
</tr>
<tr>
<td>Various invertebrates and microbiota</td>
<td>Comparative toxicities of REEs in four invertebrates and in two bacteria species</td>
<td>25</td>
</tr>
<tr>
<td>Ames test (5 strains) and Bhas 42 cells</td>
<td>Nano-sized Dy₂O₃ showed strong mutagenesis both in Ames test and in Bhas 42 cell transformation</td>
<td>37</td>
</tr>
</tbody>
</table>
Table 2.
Human environmental REE exposures - geographic studies.

<table>
<thead>
<tr>
<th>Exposed populations</th>
<th>Main Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children and mothers living in a REE mining area (Jiangxi, China)</td>
<td>The REE hair level of young children in mining area was significantly higher than that in their mothers</td>
<td>46-48</td>
</tr>
<tr>
<td>Residents in South Jangxi Province</td>
<td>Significantly lower serum total protein and globulin from both HREE and LREE areas, and albumin from the LREE area</td>
<td>49</td>
</tr>
<tr>
<td>Housewives exposed to indoor air pollution</td>
<td>Excess REE levels were found in scalp hair as related to indoor air pollution and associated with hypertension risk</td>
<td>50,51</td>
</tr>
<tr>
<td>Residents in Baiyun Obo mining area</td>
<td>Excess scalp hair levels of REEs, heavy metals and uranium</td>
<td>52</td>
</tr>
<tr>
<td>Fujian and Shandong Provinces</td>
<td>Excess REE accumulation in soil and vegetables</td>
<td>53,54</td>
</tr>
<tr>
<td>Zhuzhou (industrial city in central China)</td>
<td>Excess REE levels in street dust and associated health risk</td>
<td>55</td>
</tr>
</tbody>
</table>
Table 3.
Human occupational REE exposures – case reports and case-control studies.

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Main Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie projectionist</td>
<td>Pneumoconiosis; interstitial lung disease</td>
<td>65-69</td>
</tr>
<tr>
<td>Exposure to carbon arc lamps</td>
<td>Pneumoconiosis; comparison of REE lung levels with 11 non-exposed workers</td>
<td>70</td>
</tr>
<tr>
<td>in photoengraving laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass polisher</td>
<td>Dendriform pulmonary ossification</td>
<td>71</td>
</tr>
<tr>
<td>Manufacturing Ce and La oxide</td>
<td>Excess Ce and La urine levels</td>
<td>72</td>
</tr>
<tr>
<td>e-waste processing</td>
<td>Decreased hemoglobin concentration in REE-exposed</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 4.
Another REE exposure – Diesel exhaust: experimental data.

<table>
<thead>
<tr>
<th>Species/Model</th>
<th>Main Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell cultures</td>
<td>nCeO$_2$ + diesel exhaust (DE) increase tumor necrosis factor-α and the oxidative stress marker HMOX-1</td>
<td>77</td>
</tr>
<tr>
<td>Rats</td>
<td>CeO$_2$-induced granulomas in the liver; oxidative stress changes in liver and spleen. Nanoscale ceria was persistently retained by mononuclear phagocyte system, associated with adverse changes. nCeO$_2$ added to diesel fuel (DECe) induces more adverse pulmonary effects vs. DE. Lung accumulation of Ce, translocation to liver, and delayed clearance are concerns to health effects of DECe particle clumps in DEP + CeO$_2$ were significantly larger than CeO$_2$ or DEP; CeO$_2$ induced lung phospholipidosis and fibrosis CeO$_2$-induced inflammatory reaction by neutrophil increases in the lung</td>
<td>78-81</td>
</tr>
<tr>
<td>Mice</td>
<td>CeO$_2$-induced oxidative stress and DNA damage</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$-induced lung inflammation</td>
<td>83</td>
</tr>
</tbody>
</table>
Table 5.
Background information on the adverse effects of static magnetic fields.

<table>
<thead>
<tr>
<th>Species/Model</th>
<th>Main effects/Endpoints</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human neuroblastoma SHSY5Y and glioblastoma A172 cells</td>
<td>Magnetite decreases cell viability</td>
<td>88</td>
</tr>
<tr>
<td>Human brain cell cultures</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Human blood mononuclear cells</td>
<td>Cytotoxic effects of moderate static magnetic field (SMF)</td>
<td>90</td>
</tr>
<tr>
<td>Rats (Huntington disease model)</td>
<td>Exposure to static magnetic field and apomorphine induce behavioral changes</td>
<td>91</td>
</tr>
<tr>
<td>Mouse hepatocytes</td>
<td>SMF reduced cell viability, caused apoptosis, and cell cycle aberrations on hepatocytes in vitro and in vivo</td>
<td>92</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>Developmental abnormalities</td>
<td>93</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>ROS-independent toxicity of Fe$_3$O$_4$ nanoparticles and mitochondrial dysfunction</td>
<td>94</td>
</tr>
<tr>
<td>Green Alga Chlorella vulgaris</td>
<td>Inhibition of photosynthesis, induction of oxidative stress, and the inhibition of cell division rate</td>
<td>95</td>
</tr>
<tr>
<td>Vicia faba</td>
<td>Static magnetic field + radioactivity induce modification of catalase and mitogen-activated protein kinase (MAPK)</td>
<td>96</td>
</tr>
</tbody>
</table>