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Abstract

Risk-averse areas such as the medical, aerospace and energy sectors have
been somewhat slow towards accepting and applying Additive Manufacturing
(AM) in many of their value chains. This is partly because there are still
significant uncertainties concerning the quality of AM builds.

This paper introduces a machine learning algorithm for the automatic
detection of faults in AM products. The approach is semi-supervised in that,
during training, it is able to use data from both builds where the resulting
components were certified and builds where the quality of the resulting com-
ponents is unknown. This makes the approach cost efficient, particularly in
scenarios where part certification is costly and time consuming.

The study specifically analyses Selective Laser Melting (SLM) builds. Key
features are extracted from large sets of photodiode data, obtained during
the building of 49 tensile test bars. Ultimate tensile strength (UTS) tests
were then used to categorise each bar as ‘faulty’ or ‘acceptable’. A fully
supervised approach identified faulty specimens with a 77% success rate while
the semi-supervised approach was able to consistently achieve similar results,
despite being trained on a fraction of the available certification data. The
results show that semi-supervised learning is a promising approach for the
automatic certification of AM builds that can be implemented at a fraction
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of the cost currently required.

Keywords: SLM, Process Control, Semi-supervised Machine Learning,
Randomised Singular Value Decomposition.

1. Introduction

There is a growing demand for efficient manufacturing technologies [1].
Additive Manufacturing (AM) has huge potential in healthcare for custom
implants and in aerospace for lightweight designs [2]. However, uncertainties
surrounding part quality prevent the full adoption of AM technology in such
sectors. Moreover, certification of AM parts is challenging (as faults may
occur internal to the parts) and often requires expensive CT scans.

The current paper specifically considers Selective Laser Melting (SLM).
SLM is a 3D printing technology that has become very popular in recent
times due to its ability to produce complex metal geometries, relative to
traditional methods. The SLM process involves layer-by-layer construction
of a build by repeatedly channelling laser beams onto a thin layer of metal
powder deposited on a fusion bed [3]. Powder deposition and sintering are
repeated until a desired product is made to specification.

For the work detailed herein, data related to the SLM process was gath-
ered using high precision photodiodes, which were installed axial to the laser.
These sensors were placed behind filters that were designed to eliminate the
reflected laser light, thus allowing the reflected light intensity to be mea-
sured during the builds . The photodiodes provide process measurements
from which, potentially, it may be possible to determine the quality of AM
products1. Understanding these data is a challenging area. However, ad-
vances in machine learning have made it possible to create and apply intel-
ligent algorithms to large datasets for decision making [4]. Such algorithms
can identify patterns in large data, after being trained. The current work is
based on the hypothesis that, using large amounts of process measurements

1Here, the definition of ‘quality’ depends on the product’s intended purpose - it could
be used to refer to a build’s surface finish, toughness, ductility etc. In the current paper,
‘quality’ refers to mechanical properties, specifically the ultimate tensile strength of SLM
builds of tensile test bars.
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from SLM machines, machine learning can be used to quickly and cheaply
classify the success of SLM builds.

Classification algorithms can be broadly categorised as supervised, semi-
supervised or unsupervised (for a theoretical review of these methods, [5][6][7]
are recommended). With a supervised approach, the algorithm is presented
with labelled data - a set of input vectors, each of which is associated with
an observed output value (or ‘label’). Unsupervised learning can be thought
of as finding patterns in only unlabelled data (clustering, for example, is one
form of unsupervised learning). With a semi-supervised approach, the user
provides some labelled data and some unlabelled data at the same time. The
model may then attempt to establish a decision boundary and classifies the
data into clusters; based on the characteristics of the provided labelled and
unlabelled information [8][9].

In the current context, input vectors consist of data that was gathered
during AM builds and the labels are used to indicate whether each particu-
lar build was ‘acceptable’ or ‘faulty’ (in this paper, for example, labels are
defined based on ultimate tensile strength values). Consequently, before the
application of supervised machine learning, one would have to conduct and
certify a large number of AM builds (see [10], for example, where 100s of
parts were produced to generate the data needed to train a support vec-
tor machine). This procedure would have to be repeated per new type of
component or material. However, in many practical applications, completely
labelled information is not available [11]. It is more common to find few
labelled data and relatively large amounts of unlabelled data. In the current
study, for instance, process measurements are generated whenever a compo-
nent is manufactured, but cost constraints prevent labels from being assigned
to most of these data. This study explores how machine learning could help
to automatically detect defects in situations where there is a large amount of
unlabelled data (builds that were not certified) and a small amount of labelled
data (builds that were certified). Furthermore, it illustrates the application
of a probabilistic methodology - an important aspect of the approach which
allows one to quantify the uncertainties associated with the machine-learnt
assessements of AM builds.

The paper makes 3 main contributions:
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1. It is illustrated how a a Randomised Singular Value Decomposition
can be used to extract key features from large sets of SLM process
measurements.

2. The feasibility of using machine learning to detect unsuccessful SLM
builds from process measurements is demonstrated. This highlights
how signal-based process monitoring, which is adopted in risk analysis
and industrial statistics frameworks [12], could be extended to AM
applications.

3. It is shown that, using semi-supervised learning, the number of costly
certification experiments associated with such an approach can be sig-
nificantly reduced.

It is important to note that this study does not aim to draw links be-
tween specific SLM process parameters and the quality of the resulting builds.
Rather, it details a purely data-based approach whereby a machine learning
algorithm is used to classify SLM build quality based only on the patterns
that are contained within sets of photodiode measurements.

The paper is structured as follows; Section 2 discusses current state-of-
the art and highlights the contributions of the paper, Section 3 discusses the
semi-supervised model derivation and formulation, Section 4 demonstrates
the model using a case study and Section 5 is the Conclusion of the work. It
is noted that Section 3 is included so that the machine learning approach is
not presented as a ‘black box’. Section 3 can, however, be skipped by those
who are purely interested in the case study.

2. Literature review

This section highlights key relevant contributions before establishing where
the current paper fits amongst other literature in the field.

2.1. Key process parameters

Local defects may occur during layer by layer construction of an AM part.
The root causes could be traced to improper process parameters, insufficient
supports, a non-homogeneous powder deposition, improper heat exchanges
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and/or material contaminations [4][13][14]. The effects of process parame-
ters, namely; laser power, scanning speed, hatch spacing, layer thickness and
powder temperature, on the tensile strength of AM products are reported in
[15][16]. Specifically for SLM, it has been shown that four key parameters,
namely; part bed temperature, laser power, scan speed, and scan spacing,
have significant effect on the mechanical properties and quality of an SLM
product [17][18][19]. Sensitivity analyses of SLM process parameters have
revealed that both the scan speed of the laser and scan spacing can be used
to facilitate effective improvement in mechanical properties [20].

The type of laser employed determines, to a great extent, the behaviour
of the powdered particles during SLM processing [21]. This dependence is at-
tributed to the dependence of material laser absorptivity on the wavelength
of the laser type used. It has also been discovered that particle size, size
distribution, tap density, oxide film thickness, surface chemistry and impu-
rity concentration has little effect on the sintering behaviour of aluminium
powders [22]. Debroy et al. [15] pointed out that during laser sintering of
metals, the alloying elements vaporise from the surface of the molten pool
and, as a result, the surface area-to-volume ratio is one of the crucial factors
for determining the magnitude of composition change.

2.2. Towards feedback control for SLM

While much work has been conducted to identify key parameters that
affect SLM build quality, it can still be difficult to relate this knowledge to
the development of effective control strategies. This is particularly evident
when one considers developing control strategies for new materials. While
proof-of-concept controllers have been developed in [23] [24] (using measure-
ments from high-speed cameras and/or photodiodes to control laser power)
and the works [25] [26] detail an approach whereby geometrical accuracy was
improved by varying beam offset and scan speed, the adaptability of these
methods to new materials can be prohibitively time consuming and/or ex-
pensive. In [25], for example, it is stated that ‘the benchmarking process is
time consuming ’ and that ‘a change of material used will require identifi-
cation of a new process benchmark as the properties of different materials
influence the fabrication parameters in the process ’.
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It is worth noting that Finite Element models can, potentially, aid con-
troller development by relating key process parameters to the microstructure
of builds (see [27], for example). Unfortunately, these models tend to be very
specific in terms of part design and can take a long time to develop and/or
implement.

2.3. Machine learning approaches

Through data-based approaches, facilitated by machine learning algo-
rithms, it may be possible to overcome the challenges associated with in-
ferring build quality from knowledge of key parameters and/or the results
of Finite Element models. Work has shown that data-driven methods can,
from build data, model how process parameters affect the quality of final
parts [28][29][30]. Approaches that utilise build data are advantageous be-
cause they provide great opportunities for digitalisation and smart process
control, otherwise known as ‘smart manufacturing’ [31][32][33].

Broadly, machine-learning approaches can be categorised as being either
‘supervised’ or ‘unsupervised’. Supervised approaches involve training an al-
gorithm on a set of data, whereby each training point has a ‘label’ attached
to it. This label indicates the particular class that the training point belongs
to (for example, in the current context, the label could indicate whether a
particular set of build data corresponds to a build that had been found to be
‘acceptable’ or ‘faulty’). Supervised algorithms then attempt to infer deci-
sion boundaries that separate these classes. Unsupervised approaches, on the
other hand, are used to identify key patterns in data that is unlabelled (clus-
ter analysis, for example, is a well-known example of unsupervised learning).
The following 2 subsections highlight relevant applications of unsupervised
and supervised approaches within the context of SLM. Particular attention is
given to describing the data acquisition process and/or assumptions involved
in each example, as this motivates the use of semi-supervised learning in the
current study (Section 2.4).

2.3.1. Unsupervised learning

In [34], to automatically detect local overheating phenomenon, the k-
means algorithm was used to cluster features that had been extracted from
images (in the visible spectrum) of SLM builds. This unsupervised approach
clustered the data before further assumptions were used to relate the results
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to build quality. (It was, for example, assumed that data from ‘normal’ and
‘abnormal’ builds would be best represented by 2 and 3 clusters respectively).
The authors of [35] used an unsupervised cluster-based approach to relate
melt pool characteristics to build porosity. As with [34], a set of assumptions
were then used to relate the clustering results to build quality (specifically,
it was assumed that the number of ‘abnormal’ melt pools would be small
compared to the number of ‘normal’ melt pools).

In a recent study [36], anomaly detection and classification of SLM spec-
imens was implemented using an unsupervised machine learning algorithm
operating on a training database of image patches. The algorithm functioned
well as a post-build analysis tool, allowing a user to identify failure modes
and locate regions within a final part that may contain millimeter-scale flaws.
However, the algorithm was not designed to classify a mixture of labelled
images and unlabelled images simultaneously. The image patches were man-
ually selected from a secondary database; based on a pre-determined rule
which clearly distinguished the patches.

2.3.2. Supervised learning

Ref. [37] describes a variety of approaches that can be used to infer a re-
lationship between melt pool characteristics and part porosity. To label melt
pool data, 3D CT scans were used to empirically locate part defects before
algorithm training could begin. In [38] a Gaussian process was used to infer
a mapping between laser power and scan speed to part porosity. To facilitate
this approach, data was generated by conducting experiments across a grid
of laser power and scan speed values before porosity was measured using
Archimedes’ principle. In [39], a support vector machine was used to classify
images of build layers that had been obtained using a high-resolution digital
camera. Training data was obtained using 3D CT scans, which were used to
identify discontinuities in parts post-build.

It is worth noting that, whilst optical methods have been gaining popular-
ity in recent times, the feasibility of applying supervised learning to acoustic
emission data for in-situ quality monitoring has also been investigated. [40],
for example, used neural networks to classify features of in-build acoustic
signals to one of three quality ratings (defined based on part porosity). To
generate data for algorithm training, a SLM build was conducted using differ-
ent laser scanning parameters which, through a visual analysis, were shown
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to influence porosity. [41] used acoustic signals to train deep belief networks
(a neural network algorithm, sometimes referred to under the banner of ‘deep
learning’). During data acquisition, process parameters were varied to de-
liberately induce different types of build flaw, leading to 5 different classes
(‘balling’, ‘slight balling’, ‘normal’, ‘slight overheating’ and ‘overheating’).
This labelled data was then used to train the parameters of the neural net-
work.

2.4. Contribution of the current work

The works listed above highlight the advantages and disadvantages that
can be encountered when implementing both supervised and unsupervised
approaches.

Supervised approaches require sufficient quantities of labelled data. Un-
fortunately, the assignment of labels to data often requires a significant
amount of additional resources. [37][39], for example, assigned labels based
on the outcomes of CT scans while [38] utilised the results from component
porosity tests. To circumvent the requirement for such additional testing, [40]
and [41] used pre-existing knowledge regarding the relationship between pro-
cess parameters and build defects to label data. Such an approach, however,
relies on the availability of relatively in-depth knowledge regarding process-
defect relationships. This information may be difficult to obtain, particularly
when new materials are being analysed.

Unsupervised approaches do not need labelled data and, consequently,
are often cheaper to implement. However, the relationship between the re-
sults of an unsupervised analysis and build quality has to be built upon an
additional set of assumptions. For example, both [34] and [35] had to make
assumptions about the number / relative size of the data clusters revealed
by their analyses. While the results reported in [34] and [35] are encourag-
ing, it is likely that the validity of these assumptions will come into question
if such an approach was used to guarantee build quality for applications in
risk-averse disciplines. [36] used an unsupervised approach, but only after
image data had been manually selected from a database - a process which,
it must be assumed, was fairly time consuming.

In the current work it is suggested that an efficient approach should be
able to utilise data that is both labelled and unlabelled. This is because,
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in the author’s experience, developing new materials in SLM often leads to
a large amount of unlabelled data and a small amount of labelled data. It
is, for example, relatively easy to conduct (and obtain measurements from)
a large number of builds but, because of cost constraints, only a relatively
small number of these can be ‘labelled’ according to build quality. The work
herein hypothesises that the large amounts of unlabelled data (i.e. process
measurements where the final build has not been certified) should not be
wasted and, should be analysed alongside the more limited set of labelled
data. This semi-supervised approach is especially suited to situations where
there are few labelled data and much unlabelled data. It therefore has the
potential to reduce the number of costly and time consuming certification
experiments that are required in the development of machine-learnt models
of SLM build quality.

3. Model Derivation and Formulation

The proposed semi-supervised method uses a Gaussian Mixture Model
(GMM) to classify ‘acceptable’ and ‘faulty’ AM builds. GMMs are often
relatively time-efficient as their parameters can be estimated with the Ex-
pectation Maximization (EM) algorithm [42],[43] (described briefly in Section
3.2.1). A description of GMMs is covered here for the sake of completeness
and to highlight the application of semi-supervised learning in the current
context. For more information on GMMs the book [44] is reccomended.

Essentially, a GMM algorithm clusters data based on the assumption that
each data point is a sample from a mixture of Gaussian distributions, such
that the probability distribution over each data point can be described as
a weighted sum of Gaussian components [45]. This is elaborated further
below, where we first describe how a GMM can be applied to labelled data
(supervised learning), before then describing its application to unlabelled
data (unsupervised learning). This then helps to establish how a GMM can
be used to address situations involving both labelled and unlabelled data.

3.1. Supervised Learning with a GMM

In the following, we use x to represent an input vector - a vector of features
that have been extracted from the process measurements of an SLM build.
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As stated previously, a GMM assumes that each vector, x, was sampled from
a mixture of Gaussian distributions [44] such that

p(x) =
K∑
k=1

πkN (x;µk,Σk) (1)

where µ = {µ1, ...,µK} represents the means of the Gaussians, Σ = {Σ1, ...,ΣK}
are covariance matrices of the Gaussians and π = {π1, ...πK} are referred to
as the mixture proportions. N is the number of available data points and K
represents the number of Gaussian distributions that are considered in the
mixture. The model parameters that need to be estimated during algorithm
training are

θ = {µ,Σ,π} (2)

For supervised learning, each input vector, x, is already labelled - in other
words, the user already knows which of the Gaussians in the mixture was used
to generate each sample. In such a circumstance, identifying the parameters
θ is very easy - it is shown here for illustrative purposes and to establish
notation. Using Xk to denote the set of Nk samples that were generated
from the kth Gaussian, the mean of each Gaussian can be estimated by

µk =
1

Nk

∑
x∈Xk

x (3)

The covariance matrices are estimated using

Σk =
1

Nk

∑
x∈Xk

(x− µk)(x− µk)T (4)

while the mixture proportions are set according to

πk =
Nk

N
(5)

where N , as before, represents the total number data points (such that N =∑
kNk).

3.2. Unsupervised Learning

With unsupervised learning each data point is unlabelled. For a GMM
model this means that, while it is assumed that each point is a sample from
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one of the Gaussian distributions in the mixture, the specific Gaussian dis-
tribution from which each data point was sampled is not known. In such a
case the labels are described as latent variables, as they are hidden to the
user when an analysis is conducted. This makes the problem much more dif-
ficult relative to the supervised case as now it is necessary to estimate both
the parameters of the Gaussian distributions in the mixture and the labels
associated with each data point. Difficulties arise because the parameters of
the Gaussian distributions and the labels must be correlated - the geometry
of the Gaussian distributions can only be estimated if the labels are known
while the labels can only be estimated if the geometry of the Gaussian dis-
tributions are known.

At this point, it is convenient to write the latent variables using what
is known as a 1-of-K representation. Specifically, each data point (xi, for
example) is associated with a K-dimensional vector, zi. One element of zi is
always equal to 1 while all the other elements of zi are set equal to 0. This
means that, by stating that zik = 1 indicates that xi was generated from
the kth Gaussian in the mixture, the set Z = {z1, ...,zN} can be used to
represent the latent variables in the problem. Further analysis can be used
to show that the mixture proportions can be defined as

πk = Pr(zik = 1) (6)

(see [44] for example) while the probability of observing the point xi condi-
tional on zi and θ is

p(xi|zi,θ) =
K∏
k=1

N (xi;µk,Σk)zik (7)

Assuming uncorrelated samples, one can then write that

p(X|Z,θ) =
N∏
i=1

K∏
k=1

N (xi;µk,Σk)zik (8)

where X = {x1, ...,xN} is the set of all observed data. Furthermore, the
posterior probability of Z can be derived using Bayes’ theorem:

p(Z|X,θ) =
p(X|Z,θ)p(Z|θ)∑
z∈Z p(X|Z,θ)p(Z|θ)

(9)
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Equation (8) allows the maximum likelihood θ to be identified, conditional on
the latent variables. Likewise, equation (9) allows a probabilistic analysis of
the latent variables, conditional on θ. This allows estimates of θ and Z to be
estimated in a two-step procedure, known as the Expectation Maximization
(EM) algorithm.

3.2.1. Expectation Maximization

As the name implies, the EM algorithm starts with an expectation step.
Simplifying matters slightly, this is essentially where the model parameters θ
are held fixed and the expected values of the latent variables Z are computed.
Using equation (9) it can be shown that

E[zik] =
N (xi;µk,Σk)πk∑K
j=1N (xi;µj,Σj)πj

(10)

This step is followed by the maximization step, where the latent variables Z
are held equal to their expected values and the maximum likelihood of the
model parameters, θ, are computed. Evaluating the derivative of equation
(8) and setting the resulting expression equal to 0 then, subject to the appro-
priate constraints, it can be shown that the maximum likelihood parameters
are

Nk =
N∑
i=1

E[zik] (11)

µk =

∑N
i=1 E[zik]xi

Nk

(12)

Σk =

∑N
i=1 E[zik](xi − µk)(xi − µk)T

Nk

(13)

πk =
Nk

N
(14)

The sequence of EM steps is repeated until convergence of the likelihood,
equation (8), is observed. The reader may consult [44][46] for more details
about the EM algorithm.
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3.3. Semi-Supervised Model Formulation

In semi-supervised learning, the full data set consists of labelled and unla-
belled data. The aim is to classify future data using the labelled information,
while also using information contained in the unlabelled data. This approach
is essentially a combination of the supervised and unsupervised formulations
described in the previous sections.

For the labelled data, it is now convenient to introduce a 1-of-K represen-
tation of each label. Specifically, each labelled point xi is associated with a
vector yi where, in a similar manner to our definition of the latent variables,
one element of yi is always equal to 1 while all the other elements of yi are
set equal to 0 (thus indicating the Gaussian that was used to generate the
data point). For simplicity it is assumed that the data is ordered such that
the first L points are labelled, while the remaining points are unlabelled.
This allows the sets of labelled and unlabelled data to be written as

{X l,Y } ≡ {xi,yi}Li=1 (15)

and

{Xu,Z} ≡ {xi, zi}Ni=L+1 (16)

respectively. The probability of witnessing the data conditional on the GMM
parameters is therefore:

p(X l,Y ,Xu,Z|θ) = p(X l,Y |θ)p(Xu,Z|θ) (17)

from which it is possible to show that the maximum likelihood values of θ
are

Nk =
L∑
i=1

yik︸ ︷︷ ︸
Labelled data

+
N∑

i=L+1

E[zik]︸ ︷︷ ︸
Unlabelled data

(18)

µk =
1

Nk

L∑
i=1

yikxn︸ ︷︷ ︸
Labelled data

+
1

Nk

N∑
i=L+1

E[zik]xn︸ ︷︷ ︸
Unlabelled data

(19)
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Σk =
1

Nk

L∑
i=1

yik(xi − µk)(xi − µk)T︸ ︷︷ ︸
Labelled data

+
1

Nk

N∑
i=L+1

E[zik](xi − µk)(xi − µk)T︸ ︷︷ ︸
Unlabelled data

(20)

πk =
Nk

N
(21)

where underbraces have been used to highlight which parts of equations (18),
(19) and (20) arise because of the labelled and unlabelled data.

The expected values of the latent variables, conditional on θ, are found
using equation (10) whereby the summation is only applied to the unla-
belled data. Consequently, the EM algorithm can be applied in this context
(whereby the expected labels and maximum likelihood parameter estimates
are updated sequentially, over a number of iterations).

4. Case Study

A Renishaw RenAM 500M SLM machine was used to construct two
builds, each consisting of 25 individual tensile test bars. Each build involved
the printing of approximately 3600 layers. Herein, these builds are referred
to as B4739 and B4741 respectively.

All samples for this study were produced from a single batch of Inconel
718. Inconel 718 has a nickel mass fraction of up to 55% alloyed with iron up
to 21% and chromium up to 21%. Typical properties include high strength,
excellent corrosion resistance and a working temperature range between−250
°C and 650 °C. It has a wide range of applications within industry and is
suitable for applications where good tensile, creep, and rupture strength is
required. In particular, it is often used in situations where corrosion and
oxidation resistance at high temperatures is needed. Its excellent welding
characteristics and resistance to cracking makes it an ideal material for AM.
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Figure 1 shows a schematic of the machine and optical system used to con-
trol the movement of the nominal 80µm diameter focused laser spot. Samples
were built in a layer-wise fashion on a substrate plate. The plate is connected
to an elevator which moves vertically downwards, allowing the controlled de-
position of powder layers at 60 µm intervals.

A commercially available laser processing parameter set (supplied by Ren-
ishaw) was used throughout the experiments. These were derived from stan-
dard process optimisation methods used in the AM industry. Post build, the
test pieces were removed from the substrate plates using wire erosion. The
tensile test bars were machined to ASTM E8-15a specification to a nominal
diameter of 6.0mm and parallel length equal to 36.0mm.

Each specimen was instrumented with a dual averaging extensometer and
tested at ambient temperature using an Instron tensile test machine. Tests
were conducted with a 100 kN load cell under strain rate control at the first
rate (0.005 strain/min) to beyond yield at which point the second rate (0.05
strain/min ) was adopted, following the removal of the extensometry equip-
ment.
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Figure 1: Schematic of Renishaw RenAM 500M SLM machine and optical sensing sys-
tem (image reproduced with permission from the Renishaw Brochure ‘InfiniAM Spectral’,
available at http://www.renishaw.com/en/infiniam-spectral--42310).

Figure 1 illustrates the photodiode sensing system (MeltVIEW) that was
used during each build. Light from the melt pool enters the optical mirror
before being reflected into the MeltVIEW module by the galvanometer mir-
ror. A semi-transparent mirror is then used to reflect light to photodiode
1 (labelled as 4 in Figure 1) before a fully opaque mirror reflects light to
photodiode 2 (labelled as 5 in Figure 1). Photodiode 1 is designed to detect
plasma emissions (between 700 and 1050 nm) while photodiode 2 is designed
to detect thermal radiation from the melt pool (between 1100 and 1700 nm).
Time histories of the photodiode measurements and laser position were out-
put to a series of DAT files. Each DAT file corresponded to a layer of the
build and contained approximately 115 KB of data. During processing, no
missing values were identified.

Using the MeltVIEW sensing system, the task is to extract significant
information about build quality from the photodiode measurements. In this
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work, quality is defined using the results from an Ultimate Tensile Strength
(UTS) test of each bar. Here, a UTS value of 1400 MPa represents an
acceptable part while UTS values below 1400 MPa represent a faulty part
(this definition is sufficient for demonstrating the feasibility of the proposed
approach although it is noted that more complex criteria can be utilised in
the future). Figure 2 shows the x-y coordinates of the laser during the build
of 1 layer on the fusion bed.

 

Figure 2: x-y coordinates of the laser as a single layer of a build is being constructed. Red
areas indicate the positions of the 25 tensile test bars while blue represents the laser path.
Note that x-y coordinates are calculated from galvanometer measurements and that, for
confidentiality reasons, units of position have been left as arbitrary.

Regarding the choice of sensing system, the general consensus amongst
current literature is that data regarding melt pool characteristics will be
closely related to build quality. Photodiode data is used to the current work
as it is known to be closely correlated to properties of the melt pool (see
[24], for example). While it has been hypothesised that, relative to thermal
imaging systems, photodiodes may be able to capture data from a larger zone
around the melt pool, the significance of this difference is currently unclear
and could be investigated as future work.

4.1. Feature Extraction

As described previously, 2 SLM builds were conducted as part of the
study. This led to the construction of a total of 50 tensile test bars (i.e. 25
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bars per build). During each build, the x and y position of the laser was
collected alongside time history measurements from 2 photodiodes sensors
(sample frequency equal to 100kHz, resulting in approximately 400 GB of
data per build). Here it is described how, from these large data, key features
were extracted. This was based on the hypothesis that, from the photodiode
measurements, it would be possible to extract relatively low dimensional fea-
tures that give a statistically significant indication of build quality. It is also
demonstrated how, because of the size of the data being utilised, feature ex-
traction from SLM process measurements must be conducted using methods
that are appropriate for large data sets.

Initial data processing / reduction was conducted in two steps. Figure
3 graphically demonstrates this process for a single build (noting that the
same procedure was applied to measurements from both photodiodes, Figure
3 illustrates the process for data from a single photodiode only). In Step 1, a
downsampling procedure was used such that only the data from every 10th
layer of the build was used in subsequent analyses2. Note that only measure-
ments taken when the laser was active were considered. In Step 2, for each
layer that was analysed, the x-y position of the laser was used to identify
which parts of each photodiode measurement time history corresponded to
the building of a particular tensile test bar. This data was then collected
together into an m × n data matrix, A, where the first column of A corre-
sponded to measurements associated with bar one, the second column of A
corresponded to measurements associated with bar two etc. The transpose
of A is illustrated graphically at the bottom of Figure 3.

2This step was taken simply to reduce the size of the data that needed to be pro-
cessed. Further studies showed that using every layer did not significantly alter the results
presented here.
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Figure 3: Initial analysis of data from a single photodiode sensor, for a single build.

In the final step of the feature extraction procedure the intention was to
apply a Singular Value Decomposition (SVD) to the data matrix, allowing
A to be written as the product of 3 matrices:

A = UDV T (22)

where U is an m × n orthogonal matrix, V is an n × n orthogonal matrix
and

D = diag(σ1, ..., σm) (23)

where σ1, σ2, ... are constants (given by the eigenvalues of ATA) that, typ-
ically, are ordered such that σ1 ≥ σ2 ≥ ... ≥ σm. The SVD allows each
of the columns in A to be written as a linear combination of basis vectors.
Specifically, writing B = DV T , it can be shown that

A = UB =⇒ aj =
n∑

p=1

upBpj (24)

where aj is the jth column in A and up is the pth column in U . From
equation (24) it can be seen that each column of A is now associated with
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n constants (aj is associated with B1j, B2j, ..., Bnj etc.) It is these constants
that can be used as features - inputs to the machine learning algorithm.
In fact, by ordering the SVD results such that σ1 ≥ σ2 ≥ ... ≥ σm, close
approximations ofA can be realised without using the full set of basis vectors.
Specifically, if a new matrix, Ã, is formed whose jth column is

ãj =
ñ∑

p=1

upBpj, ñ < n (25)

then Ã will form a low-rank approximation of A. Using Ã instead of A
can therefore facilitate a reduction in the size of the feature space (in other
words, the number of constants associated with each column of Ã will be
less than the number of constants associated with each column of A).

Unfortunately it was found that the matrix A was prohibitively large for
analysis via standard SVD. To circumvent this issue A was, instead, decom-
posed using a Randomised SVD. A brief outline of this procedure is given
in the following text, however, for more information, readers may consult
[47][48][49].

A Randomised SVD first involves the generation of an orthogonal projec-
tion matrix G, which, when applied to the data matrix, reduces dimensional-
ity while approximately preserving the pairwise distances between each of the
projected vectors. To avoid the large computational costs that can be asso-
ciated with this procedure, the columns of the projection matrix are sampled
from a zero-mean unit-variance multivariate Gaussian distribution. This en-
sures that, on average, the required properties of the projection matrix are
obtained. Once G has been formed, A is projected onto G to realise the
matrix H (such that H = AG). An iterative procedure, described in [48],
is then used to increase the differences between the large and small singular
values of H . This decreases the computational cost of the next stage of the
process, whereby a QR-decomposition is used to orthonormalise the column
vectors of H . The QR-decomposition is used to account for the fact that,
potentially, the randomly generated projection matrix G may not be per-
fectly orthonormal. Having been orthonormalised, H is then used to realise
a final, low rank approximation of A, denoted A′. A standard SVD is then
applied to A′.
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In the current work, for each tensile test bar, the time history of mea-
surements from photodiodes 1 and 2 were each projected onto a single basis
vector only. As a consequence, each specimen becomes associated with a
2-dimensional ‘feature vector’. The first element of the feature vector repre-
sents the projection of measurements from photodiode 1 onto a single basis
vector while the second element of the feature vector is the projection of
measurements from photodiode 2 onto a single basis vector. Inevitably, some
information is lost in this projection process. Figures 4 and 5 respectively
compare a segment of the measurements from photodiodes 1 and 2, for a
single specimen, before and after the projection onto a single basis vector.
If this level of information loss was deemed unsatisfactory one could choose
to project these measurement time histories onto a greater number of ba-
sis vectors (although this would, in turn, increase the dimensionality of the
space within which the machine learning algorithm must be applied). In
the current study, however, it was found that projecting onto a single basis
vector made it possible to distinguish between acceptable and faulty builds
with sufficient accuracy - the potential benefits of projecting onto more than
1 basis vector will be investigated in future work.
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Figure 4: Outputs for photodiode 1, for the first tensile test bar of build B4739. Black
represents the uncompressed measurements, red represents measurements after they have
been projected onto a single basis vector. Note that, for confidentiality reasons, unitless
photodiode measurements are shown here.
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Figure 5: Outputs for photodiode 2, for the first tensile test bar of build B4739. Black
represents the uncompressed measurements, red represents measurements after they have
been projected onto a single basis vector. Note that, for confidentiality reasons, unitless
photodiode measurements are shown here.

4.2. Semi-Supervised Learning Application

Tensile tests were performed on the builds using a standard Instron ten-
sile machine at room temperature. As detailed in Section 4.1, the ultimate
tensile strength (UTS) of the bars were used to define each bar as ‘acceptable’
or ‘faulty’. Semi-supervised learning was applied to the features extracted
from each of the bars. However, bar 22 from build B4741 was not considered
because its ultimate tensile strength could not be obtained. As a result, 49
specimens were considered in this analysis. Figure 6 shows the position of
each specimen in the feature space and the associated labels. With the aim
of distinguishing between ‘acceptable’ and ‘faulty’ cases, a GMM with two
Gaussian distributions was employed.

In the following, when assessing new data, specimens are labelled as faulty
if the probability that they are faulty is greater than 0.5. This was consid-
ered sufficient for analysing the feasibility of the approach such that, once
established, future work can aim to further exploit the uncertainty infor-
mation contained in such probabilistic outputs. In the author’s opinion, it
is important that an uncertainty quantification framework is built into the
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proposed approach from the onset as, for approaches that are purely data
based, knowing when a diagnosis is uncertain and where human intervention
may be required will be crucial.
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Figure 6: The position of each specimen in the feature space. The triangular points are for
bars from build B4741 and the circular points are for bars from build B4739. The colour
green represents acceptable specimens and red represents faulty specimens.

It is noted that, in the following, the algorithm is always initialised using
the results of a purely supervised approach. Specifically, the first iteration
ignores unlabelled samples and produces an initial estimate of the GMM
parameters using the labelled samples only (employing equations (11), (12),
(13) and (14)).

4.3. Results

Initial runs concentrated on a single case where 25 of the specimens were
labelled while the remaining 24 were unlabelled. For this case, the unlabelled
points were selected randomly, leading to the training data shown in Figure
7. The semi-supervised GMM was then trained, before being used to classify
all 49 specimens. Using the training data shown in Figure 7, faulty speci-
mens were identified with a 77% success rate. These results are illustrated
in Figure 8, where red and green contours illustrate the positions of the two
Gaussians in the mixture model, circle represents the true labels that were

24

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2018                   doi:10.20944/preprints201809.0346.v1

Peer-reviewed version available at Additive Manufacturing 2019; doi:10.1016/j.addma.2019.01.006

http://dx.doi.org/10.20944/preprints201809.0346.v1
https://doi.org/10.1016/j.addma.2019.01.006


assigned to each specimen and triangles show the labels inferred by the al-
gorithm. Note that the inferred labels are colour-coded depending on the
probabilities that were assigned by the algorithm - purely green triangles
correspond to the probability of a faulty specimen equal to zero while purely
red triangles correspond to the probability of a faulty specimen equal to one.
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Figure 7: Training data. Example labelled and unlabelled specimens, in the feature space,
before the application of semi-supervised learning.
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Figure 8: Example semi-supervised learning results. Red and green contours show the
inferred geometry of the two Gaussian distributions in the mixture. Circles represent the
true labels that were assigned to each specimen, while triangles show the inferred labels.

The results in Figure 8 represent the algorithm’s outputs for a single set of
training data only. To better gauge overall performance, a Monte Carlo anal-
ysis was conducted - 1000 analyses were undertaken where, at each Monte
Carlo iteration, the 24 unlabelled points were selected randomly. The result-
ing positions of the two Gaussian distributions were found to be relatively
insensitive to the choice of unlabelled points. This is illustrated in Figure
9, which shows the results that were obtained for six runs of the Monte
Carlo analysis. Furthermore, the algorithm success rate was also found to
be relatively insensitive to the assignment of unlabelled data; the histogram
in Figure 10 shows success rates that are closely clustered around 77%. It
is important to note that, by giving a probabilistic estimate of each speci-
men’s label, uncertainty quantification is embedded into the approach. This
is useful as it can illustrate, to the user, when a particular specimen is diffi-
cult to label (i.e. when it is not clear which cluster the data point belongs to).
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Figure 9: Semi-supervised learning results obtained for 6 runs of a Monte Carlo simulation
where, for each run, 24 unlabelled points are selected randomly.
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Figure 10: Histogram of algorithm success rates, obtained over 1000 runs of Monte Carlo
simulation where, for each run, 24 unlabelled points are selected randomly.
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To analyse how the algorithms performance degrades as less labelled
data is used, similar Monte Carlo simulations were conducted using different
amounts of labelled and unlabelled data. Figure 11 shows results ranging
from the case where there are 48 labelled points (and 1 unlabelled point) to
the case where there are 20 label points (and 28 unlabelled points). While
lower success rates are more frequently observed when the number of labelled
data appoints is reduced (as one would expect), it is encouraging to note that
algorithm performance does not drop off sharply. It can be seen, for example,
that the number of labelled data points can be halved without significantly
altering the resulting success rates. While, in the example, labels were rela-
tively cheap to obtain (using tensile tests) the cost savings associated with the
semi-supervised approach will clearly increase when more thorough and/or
expensive certification methods are used. For example, in the author’s ex-
perience, a CT scan of a typical component usually costs between £500 and
£1000.
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Figure 11: Histogram of algorithm success rates, obtained over 1000 runs of Monte Carlo
simulation, as a function of the number of labelled data points.
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5. Conclusion and Future Work

Additive Manufacturing (AM) is a digital approach for manufacturing
highly customised components. However, uncertainties surrounding part
quality hinders the adoption of AM technology in many risk-averse sectors.
This paper is the outcome of a feasibility study wherein a semi-supervised
machine learning algorithm was developed and applied to a large amount of
AM process data (photodiode measurements, generated during SLM builds
of tensile test bars). Key features were extracted from these large datasets us-
ing a Randomised Singular Value Decomposition, before a Gaussian Mixture
Model was trained to recognise builds that had been identified as ‘faulty’.
The semi-supervised approach allowed this to be conducted using a reduced
number of certification experiments and, even when the number of labelled
data points was halved, could consistently identify faulty builds with a suc-
cess rate close to 77%. Key contributions are summarised as follows:

1. In this work it was demonstrated how, when using machine learning to
infer part quality from SLM process measurements, the large quantity
of available data can prevent the application of ‘conventional’ feature
extraction methods. It was illustrated how this challenge can be over-
come using methods that are suitable for large datasets (a Randomised
Singular Value Decomposition in this case).

2. By successfully classifying ‘successful’ builds with a 77% success rate,
the feasibility of identifying faulty SLM builds using a purely data-
based approach analysis of photodiode measurement time histories has
been demonstrated.

3. It has been demonstrated that, through a semi-supervised approach,
the number of costly certification experiments required in the imple-
mentation of machine-learnt build classification can be significantly re-
duced.

The paper has led to several avenues of future work.

Firstly, the authors are currently investigating whether the results re-
ported in the current manuscript can be improved through the use of addi-
tional basis vectors. This will reduce the amount of information lost during
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feature extraction but will also increase the dimensionality of the feature
space within which machine learning must be performed. Secondly, with
regard to sensing systems, the current paper utilised data from photodi-
odes sensors (which has been shown to be closely related properties of the
melt pool [24]). Future work aims to investigate whether classification can
be improved through the use of additional, complimentary sensing systems
(acoustic sensors and thermal imaging cameras, for example). Finally, the
authors are currently developing a version of the semi-supervised algorithm
described in the current paper that is suitable for layer-by-layer defect de-
tection, using data provided from CT scans. Ultimately, the aim of this work
is to establish machine-learnt control strategies that can de-risk AM Tech-
nology, facilitate its wider adoption and reduce the time associated with new
materials innovation.
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