Mathematical models as tools to predict the release kinetic of fluorescein from monoglyceride colloidal liquid crystals

Donatella Paolino 1, Andra Tudose 1,2, Christian Celia 2,3*, Luisa Di Marzio 3, Felisa Cilurzo 3 and Constantin Miricioiu 2,*.

1 University of Catanzaro "Magna Graecia", Department of Experimental and Clinical Medicine, Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy; paolino@unicz.it
2 University of Medicine and Pharmacy "Carol Davila" Bucharest, Faculty of Pharmacy, Department of Applied Mathematics and Biostatistics, 6 Traian Vuia, 020956, Bucharest, Romania; andratds@yahoo.com (Andra Tudose); constantin.miricioiu@yahoo.com (Constantin Miricioiu)
3 University of Chieti - Pescara "G. d'Annunzio", Department of Pharmacy, via dei Vestini 31, 66100 Chieti, Italy; c.celia@unich.it (Celia Christian); luisa.dimarzio@unich.it (Luisa Di Marzio); felisa.cilurzo@unich.it (Felisa Cilurzo)

* Correspondence: c.celia@unic.it (Christian Celia), constantin.miricioiu@yahoo.com (Constantin Miricioiu); Tel.: +39 08713554711 (Christian Celia), Tel.: +40 723175022 (Constantin Miricioiu).

Keywords: monoglyceride colloidal liquid crystals; release profile; mathematical models; drug delivery systems; release kinetic; square root laws.
Supplementary Figure 1. *T*-test applied to compare the linear regression for Square root equation for formulations 1, 3, 4 and 5.
Equation S1:

\[
T_{n_1+n_2-3} = \frac{(a_1 - a_2) - b(x_1 - x_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2} + \frac{\sum(x_{1i} - \bar{x}_1)^2 + \sum(x_{2i} - \bar{x}_2)^2}{\sum x_{1i}^2 - n_1 \bar{x}_1^2 + \sum x_{2i}^2 - n_2 \bar{x}_2^2}}}
\]

The extreme values of slopes were 5.39 and 6.83, respectively.

\(H_0: \alpha_1 + \beta_1x \equiv \alpha_2 + \beta_2x\)

A probability greater than 0.95 showed that \(H_0\) hypothesis is the linear range, similar for different formulations and cannot be rejected.