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Abstract: It is currently difficult to obtain accurate fine dust information in residential areas due to 11 
the insufficient number of air quality monitoring systems and spatial imbalances. Therefore, a 12 
detailed particulate matter dispersion model including factors such as land use and meteorological 13 
information was developed in this study and used to create fine dust concentration distribution 14 
maps. The fine dust concentration distribution maps currently available to citizens were compared 15 
with those obtained by dispersion modeling, and population distribution data were employed to 16 
compare the populations exposed to fine dust according to the two methods. The results of the 17 
existing method and the developed particulate matter dispersion model differed significantly. For 18 
instance, the PM2.5 concentrations in Daejeon, South Korea, on February 17, 2018, were 56% 19 
“Good” and 44% “Moderate,” according to the existing method, while they were 31% “Good,” 20 
26% “Moderate,” 28% “Unhealthy,” and 15% “Very Unhealthy,” according to the dispersion 21 
model. Furthermore, the existing method indicated that no portion of the population was exposed 22 
to poor fine dust concentrations, while the proposed model revealed that over 170 thousand 23 
people were exposed to such concentrations. These results on fine dust distributions will 24 
contribute to sustainable urban and environmental planning.  25 

Keywords: atmospheric pollution; dispersion modeling; particulate matter; urban and 26 
environmental planning, public health 27 

1. Introduction 28 

Atmospheric pollution is a major environmental issue that has critical impacts on society, the 29 
economy, and human health [1–3]. It is also regarded as one of the most significant environmental 30 
concerns of both the public and scientists for past few decades [4], related studies evaluating or 31 
monitoring its status, risk, and quality have been conducted worldwide [5-9]. Especially in urban 32 
areas, various atmospheric pollutants are generated in increasing amounts due to various types of 33 
land use and human activity. The severity of atmospheric pollutants is also growing in South Korea 34 
due to the development and revitalization of urban areas, and public interest in this matter is rising 35 
based on the increasing examples of the impacts of atmospheric pollution on health. 36 

South Korea is particularly affected by its neighboring countries depending on the season, and 37 
the amount of fine dust is intensifying daily as a result of the traffic volume and industrial facilities 38 
in the cities. In accordance with such societal trends, the South Korean government provides 39 
information on fine dust to its citizens based on data collected from 323 Air Quality Monitoring 40 
Systems (AQMS) installed across the country. Fine dust is designated as PM10 and PM2.5, and the 41 
data about these particulates are provided in real time to citizens through a website and smartphone 42 
app. The AQMS, however, have significant installation and maintenance costs, and a lack of 43 
manpower for maintenance has resulted in a spatial imbalance in their installation. These devices are 44 
installed only in certain regions, and insufficiencies in the number of units make fine dust information 45 
monitoring difficult in wider regions. Determining the quantities and spatial distributions of fine dust 46 
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is of the utmost importance for environmental improvement in urban areas and long-term policy 47 
implementation, but the delivery of accurate fine dust information to citizens is difficult due to the 48 
aforementioned issues. Research is being conducted on prediction of past spatial distributions of fine 49 
dust in order to resolve these issues. 50 

Traditional methods of predicting spatial distributions of air quality, such as the amount of fine 51 
dust, include using the closest measurement data or the average values for an entire region [10, 11]. 52 
If one searches for air quality information about a certain place in Korea, the measurements from the 53 
closest AQMS are queried. However, high-resolution atmospheric pollutant distribution information 54 
is necessary to establish policies on urban planning, the environment, and health [12]. Various 55 
interpolation techniques such as kriging and inverse distance weighting (IDW) are being developed 56 
and utilized as spatial statistics methods to estimate values in locations that have not been measured. 57 
These methods are based on singular variables, but the distributions of atmospheric pollutants should 58 
be predicted using assorted variables according to the circumstances of the target areas because air 59 
quality is affected by complex processes, including climate, temperature, terrain, pollution source 60 
location, traffic volume, and land use [13]. 61 

Recently, studies have been conducted in which artificial intelligence (AI)-based artificial neural 62 
networks (ANNs) and machine learning were utilized by applying numerous variables to increase 63 
the prediction accuracy. Studies have also been conducted on Beijing, China, in which the universal 64 
kriging technique was employed to obtain fine dust distribution maps based on climate data and data 65 
collected by fine dust sensors [14]. In addition, atmospheric pollutant distribution prediction has been 66 
investigated by utilizing ANNs, land-use regression models, and machine learning techniques that 67 
account for factors that affect air quality distributions, such as those of fine dust [15–17]. 68 

The research methodologies for determining accurate air quality distributions are continually 69 
being elaborated upon because they are utilized not only for spatial decision-making, but also by 70 
individuals to make decisions regarding outdoor activities, which is especially critical for vulnerable 71 
groups, such as children and the elderly. There are also many people who want to have accurate fine 72 
dust information to make informed choices regarding outside activities or airing out their homes. 73 
With the continually increasing interest in fine dust, spatial analysis of the population that is exposed 74 
to fine dust is important. 75 

An accurate survey of the population spread is first necessary to analyze the population that is 76 
exposed to fine dust. Population estimates are conducted using methods such as Bayesian models 77 
and random forests by downscaling population census data and analyzing the population spread [18, 78 
19]. In these techniques, the population is calculated using a uniform spatial resolution of 100–1000 79 
m units. 80 

It is difficult to obtain accurate fine dust information for the residential districts of modern urban 81 
areas due to the insufficient number of AQMS devices and their uneven spatial distribution. 82 
Accordingly, the objective of the present study was to reduce the spatial imbalance of fine dust 83 
information that is provided to citizens in order to minimize the public health risks from fine dust. 84 
Specifically, land coverage, land use, emission source, and meteorological data were utilized to 85 
develop a particulate matter dispersion model and to construct fine dust concentration distribution 86 
maps. This article provides not only a comparison and analysis of the fine dust concentration 87 
distribution information available to citizens, but also quantitative analysis of the population that is 88 
exposed to fine dust based on elaborate population distribution data. 89 

2. Materials and Methods 90 

In the present study, Particulate matter dispersion modeling was utilized to examine the spatial 91 
errors of the fine dust information that citizens currently receive. The overarching research 92 
methodology employed was particulate matter dispersion modeling and geographic information 93 
systems (GISs) to generate fine dust concentration maps and to analyze the exposed population. The 94 
differences between the model developed in this research and the existing methodology were also 95 
examined by comparing the fine dust concentrations and populations exposed to fine dust according 96 
to the two methods. The overall methodology is illustrated in Figure 1. 97 
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 98 

 99 

Figure 1. Diagram of overall research methodology. 100 

2.1 Study Site 101 

The study site was Daejeon Metropolitan City, which is located in the central region of South 102 
Korea. Daejeon is a large city with a high population density. As one of the five largest metropolitan 103 
cities in South Korea, Daejeon has an area of approximately 530 km2, with a population of roughly 104 
1.5 million people. Particulate matter dispersion modeling was conducted in a 6 km × 6 km area that 105 
included the area surrounding the city hall where the population is concentrated (Figure 2). 106 

107 
Figure 2. Study site. 108 

The study site was divided into grids with a minimum size of 50 m, which includes the scale at 109 
which the dispersion and movement of atmospheric pollutants in the city can be examined. Each grid 110 
was analyzed to deduce its fine dust concentration. 111 

2.2 Particulate Matter Dispersion Modeling 112 

There are two main types of particulate matter dispersion models: meteorological models and 113 
Lagrangian particle dispersion models. The overall particulate matter dispersion modeling process 114 
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used in this study is shown in Figure 3. The computer programming language Fortran 2003, which is 115 
primarily utilized in scientific numerical analysis, was employed. 116 

 117 
 118 

 119 

Figure 3. Particulate matter dispersion modeling process. 120 

In meteorological modeling, meteorological observation dates, land coverage, digital elevation 121 
models (DEMs), and 3D buildings are used as input data. Meanwhile, in Lagrangian particle 122 
dispersion modeling, land coverage, DEMs, 3D buildings, and emission sources (points and areas) 123 
are used as input data. These inputs are summarized in Table 1 below. 124 

Table 1. Input data for particulate matter dispersion modeling. 125 

Model Input data Description 

Particulate 
matter 

dispersion 
modeling 

Meteorological 
model 

Meteorological 
observation data 

Weather station information that is either 
included in the target site or can influence the 
target site 

Land coverage  Conversion of land coverage information 
about the target site into 50 m grid units 

DEM  Conversion of terrain information about the 
target site into 50 m grid units  

3D building 3D information about the buildings included in 
the target site 

Lagrangian 
particle 

dispersion 
model 

Emission 
sources 
(point) 

Hourly quantity of atmospheric pollutant 
emission from smokestacks of emitting 
industries (330 smokestacks) 

Emission 
sources 
(area) 

Conversion of information regarding traffic 
volume and emission pollutants at the target 
site into road emission source information 

Land coverage Conversion of land coverage information 
about the target site into 50 m grid units 

DEM Conversion of terrain information about the 
target site into 50 m grid units 

3D building 3D information about the buildings included in 
the target site 

2.2.1 Meteorological Modeling 126 

In meteorological models, weather observations are used to generate detailed wind fields and 127 
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meteorological fields of target sites, and as diagnostic rather than prognostic models. Meteorological 128 
models produce meteorological information that is identical to the weather observations at any point 129 
in time [20]. 130 

Because nearly 65% of South Korea is comprised of mountainous areas, terrain must be 131 
considered, as there are also considerable terrain fluctuations in its cities. In addition, 3D 132 
meteorological field modeling should be conducted that takes into account buildings and various 133 
structures because South Korea has diverse infrastructure and a concentrated population. In 134 
meteorological modeling, a primary meteorological field is generated that accounts for flat areas, 135 
buildings, and structures through meteorological diagnostic modeling, and a final meteorological 136 
field is generated by producing a secondary meteorological field through complex terrain modeling 137 
that accounts for substantial terrain changes, such as those in mountainous regions.  138 

In atmospheric boundary layer modeling in flat regions, meteorological observations and 139 
forecasts based on Monin–Obukhov similarity theory are utilized to generate meteorological 140 
information about the atmospheric boundary layer. The vertical distribution (u(z)) of the average 141 
wind velocity is given by Equation (1):  142 

(z)ݑ 	= 	 ௨
௞

∗
ቂln ቀ௭

௅
ቁ − ௠ߖ	 ቀ

௭
௅
ቁ + ௠ߖ	 ቀ

௭బ
௅
ቁቃ.                                 (1) 143 

Here, k is the von Kármán constant, ݑ* is the friction velocity, ݖ is the vertical elevation calculated 144 
from the surface, ݖ଴  is the surface roughness, ܮ  is the Monin–Obukhov length, and 	ߖ௠  is a 145 
function that reflects atmospheric stability. 146 

The form of 	ߖ௠ depends on L, and a functional formula presented previously was applied in 147 
this study [20–22]. ݑ* and ܮ are meteorological variables, but they must be calculated based on 148 
meteorological observations because they are not physical quantities measured at weather 149 
observation stations. ܮ can be calculated using the following equation: 150 

ܮ = −
௣௖೛்ೝ೐೑௨

య
∗

௞௚ு
	.                (2) 151 

Here, ݌  is the air density, ܿ௣  is the specific heat at constant pressure, ௥ܶ௘௙  is the observation 152 
temperature, ݑ* is the friction velocity, k is the von Kármán constant, g is the gravitational acceleration 153 
(9.8 m/s2), and ܪ is the sensible heat flux.  154 

H was obtained by employing an empirical formula presented previously [20, 23]. As shown in 155 
Equation (2), ݑ* and ܮ are connected to one another, and because the value of just one of these 156 
quantities cannot be calculated sequentially, an iterative scheme must be used to obtain the values of 157 
both. In the iterative scheme described by Equation (1), 	ߖ௠ is initially set to 0, and elevation and 158 
wind speed observations are employed to calculate ݑ*. The obtained value of ݑ* is then used in 159 
Equation (2) to calculate L, and hence to estimate 	ߖ௠. Next, the resulting value of 	ߖ௠ is substituted 160 
into Equation (1) to recalculate ݑ*, and the result is again substituted into Equation (2) to calculate L. 161 
This process was repeated in this study for iterative calculation of ݑ* and L, and the deduced values 162 
of ݑ* and L were compared. The calculations agreed to within the margin of error. 163 

Although urban areas are flat, their characteristically dense buildings and man-made structures 164 
affect the air currents. Morphological parameters have been used to estimate airflow distributions 165 
considering buildings and man-made structures [20, 24–27]. Urban spaces were divided into 100 m × 166 
100 m grid units to calculate the statistics of the building shapes for each unit, and spaces with heights 167 
of 100 m from the ground were set as the morphological model domains.  168 

The primary meteorological field was generated through meteorological diagnostic modeling in 169 
the target sites, where flat areas, buildings, and structures were accounted for through the above 170 
processes.  171 

Complex terrain effect modeling was conducted to generate a secondary meteorological field. 172 
Urban areas with significant mountainous terrain can be affected considerably by the terrain. The 173 
terrain particularly affects the meteorological field adjacent to the ground surface. To account for the 174 
complexities of the terrain in this study, the meteorological fields were calculated taking into account 175 
five types of terrain effects, including coordinate system variations, kinematic effects, slope flow, 176 
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blocking effects, and divergence minimization procedures in the equation for deducing the 177 
meteorological fields in flat areas.  178 

For the grid system, the following equation was employed to generate a terrain-following 179 
vertical coordinate system: 180 

	ܺ = ,ݔ ܻ = ,ݕ ܼ = ௣ݖ − ℎ் .               (3) 181 

Here, ݔ and ݕ are the horizontal coordinates, ܼ is the vertical coordinate, 	ݖ௣ is the rectangular 182 
coordinate, and ℎ்  is the altitude of the topography above sea level. In the vertical coordinate 183 
system, the vertical wind speed (w) can be calculated by employing the following equation: 184 

ݓ = ௣ݓ − ݑ	 డ௛೅
డ௫

− ݒ	 డ௛೅
డ௬

.                   (4) 185 

Here, ݓ௣ is the vertical wind speed (m/s) in the vertical coordinate system, and ݑ and ݒ are the east–186 
west and north–south horizontal components (m/s) of the wind speed vector.  187 

Kinematic effects reflect the tendency for airflow to form based on terrain, and w was calculated 188 
using the following modified equation [28]: 189 

ݓ = ൫ሬܸ⃗ ∙ ∇ℎ்൯	exp	(−݇ݖ).              (5) 190 

Here, ሬܸ⃗  is the horizontal wind speed vector (ݒ ,ݑ), and ݇ is the vertical attenuation constant, which 191 
changes based on the atmospheric stability. 192 

The slope flow can be calculated using the following equation based on the airflow that occurs 193 
due to differences in density along slopes [29]: 194 

ܵ = ܵ௘[1 −  ଵ/ଶ.              (6) 195[(௘ܮ/ݔ−)݌ݔ݁

Here, ܵ is the slope flow, ܵ௘  is the slope flow that reaches an equilibrium state, ݔ is the distance 196 
from a valley to a slope, and ܮ௘  is the length to the arrival of an equilibrium state. ܵ௘  and ܮ௘  can be 197 
calculated by applying the following equations: 198 

௘ݏ = [ℎ݃(∆ߠ/ߠ) sinܥ)/ߙௗ + ݇)	]ଵ/ଶ              (7)	199 
௘ܮ = ℎ/(ܥ஽ + ݇).                (8) 200 

Here, ℎ  is the depth of the slope flow, ݃  is the gravitational acceleration, ∆ߠ  is the potential 201 
temperature loss that occurs due to surface cooling, ߙ is the elevation angle of a horizontal slope, ܥ஽ 202 
is the frictional force drag coefficient of the ground, and ݇ is the model coefficient of the highest 203 
point of a gradient current. 204 

Blocking effects occur when the atmospheric layer is stratified in a stable form due to the surface 205 
cooling effect, and airflow rotates on the peripherals rather than passing over the projecting terrain. 206 
The effects of blocked flow in a given direction due to the terrain are reflected by the Froude number 207 
[30], which can be calculated using the following equation: 208 

௥ܨ =
௏

ே∆௛೅
.                (9)  209 

Here, ܨ௥ is the local Froude number, ܸ is the grid wind speed (m/s), ܰ is the Brunt–Vis frequency 210 
(1/s), and ∆ℎ்  is the effective height (m) of the protruding terrain.  211 

Lastly, the divergence minimization procedure must be considered. The divergence of the wind 212 
field where the terrain effect is reflected must be kept close to 0. The divergence at each grid point 213 
can be calculated using Equation (10): 214 

௜௝௞ܦ =
௪೔,ೕ,ೖశభ/మି௪೔,ೕ,ೖషభ/మ

௭ೖశభ/మି௭ೖషభ/మ
+
௨೔శభ,ೕ,ೖି௨೔షభ,ೕ,ೖ

ଶ∆௫
+

௨೔,ೕశభ,ೖି௨೔,ೕషభ,ೖ
ଶ∆௬

.            (10) 215 

Here, ܦ௜௝௞ is the divergence (1/s) of grid point (݅, ݆, ݇), and ∆ݔ and ∆ݕ are the grid intervals (m) in 216 
the ݔ and ݕ directions, respectively. The secondary meteorological field was generated through 217 
complex terrain effect modeling in areas that account for complex terrain, such as mountainous 218 
terrain, by employing the processes described above. 219 

The primary and secondary meteorological fields were used to generate the final meteorological 220 
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field, as shown in Equation (11): 221 

ݑ = ଵݑ	߱ + (1 −  ଶ 222ݑ(߱

ݒ = ଵݒ	߱ + (1  ଶ        223ݒ(߱−

ݓ = ଵݓ	߱ + (1 ଶݓ(߱− .             (11) 224 

Here u, v, and w are the east and west components, the north and south components, and the vertical 225 
components of the wind respectively. ݑଵ, ݒଵ, and ݓଵ are the airflows of the primary meteorological 226 
field considering flat terrain, buildings, and structures; ݑଶ ଶݒ , , and ݓଶ	are the airflows of the 227 
secondary meteorological field above complex terrain; and ߱ is a weight function variable established 228 
based on the number and elevation of the weather observation station; it has a real value between 0 229 
and 1. If the complex terrain effect is marginal, as in ¤ݑଵ ≅¤ ݑଶ, ¤ݒଵ	≅¤ ݒଶ, and ¤ݓଵ ଶݓ ¤≅	 , the first 230 
meteorological field may be viewed as the final meteorological field. 231 

2.2.2 Lagrangian Particle Dispersion Modeling 232 

Lagrangian particle dispersion models are popular tools for simulating the dispersion of trace 233 
gases, aerosols, or radionuclides in the atmosphere [31–35]. These models are primarily utilized as 234 
atmospheric diffusion models and as sophisticated models for calculating changes in wind direction. 235 
Due to topographic characteristics and chemical changes in pollutants based on time, they can trace 236 
the migration of air masses [14]. In Lagrangian particle dispersion modeling, particle movements 237 
during a time ݀ݐ (s) can be expressed as Langevin equations [36]: 238 

ݑ݀ = −
ݑ
௅ܶ௨
ݐ݀ + ඥܥ଴߳݀߱ݐ௨ 239 

ݒ݀ = −
ݒ
௅ܶ௩
ݐ݀ + ඥܥ଴߳݀ݐ ௩߱ 240 

ݓ݀ = − ௪
்ಽೢ

ݐ݀ + ඥܥ଴߳݀߱ݐ௪.             (12) 241 

Here, ௅ܶ௨, ௅ܶ௩ , and ௅ܶ௪  are the Langrangian time scales of the ݕ ,ݔ, and z directions, respectively, 242 
which can be defined as in Equation (13): 243 

௅ܶ௨ = 2
ଶ௨ߪ
଴ചܥ

 244 

௅ܶ௩ = 2
ଶ௩ߪ
଴ചܥ

 245 

௅ܶ௪ = 2 ఙమೢ
஼బച

.               (13) 246 

Here, ߪଶ௨, ߪଶ௩, and ߪଶ௪ are the turbulent energies (m2/s2) in the x, y, and z directions, respectively. 247 

2.2.3 Particulate Matter Dispersion Modeling Verification and Mapping 248 

To verify the modeling, the work conducted by [37], which is widely quoted in literature related 249 
to atmospheric diffusion in the field of fluid dynamics, was employed in this study. [37] designed a 250 
sophisticated wind tunnel experiment and performed a thermal diffusion experiment. In the present 251 
study, the variables and environment used in the wind tunnel experiment were implemented, and 252 
the particulate matter dispersion modeling was verified by comparing the data obtained in this study 253 
with those of [37]. 254 

The movement and dispersion of fine dust change continually based on the wind direction, wind 255 
speed, weather conditions, and natural or artificial environments. Thus, fine dust concentrations can 256 
be visualized in 1 h intervals based on weather observations. The PM2.5 and PM10 concentration 257 
standards are divided by each of their concentrations. The concentration of PM2.5 is designated as 258 
“Good” when it is 0–15 μg/m3, “Moderate” when it is 16–35 μg/m3, “Unhealthy” when it is 36–75 259 
μg/m3, and “Very Unhealthy” when it is over 76 μg/m3, while that of PM10 is designated as “Good” 260 
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when it is 0–30 μg/m3, “Moderate” when it is 31–80 μg/m3, “Unhealthy” when it is 81–150 μg/m3, and 261 
“Very Unhealthy” when it is over 151 μg/m3. These are the fine dust concentration standards 262 
currently provided to citizens and are similar to those advised by developed nations and the World 263 
Health Organization (WHO). 264 

2.3 Comparison with Existing Methodology and Analysis 265 

2.3.1 Comparison and Analysis of Fine Dust Concentration Maps 266 

As mentioned previously, the fine dust concentrations that are currently provided to citizens by 267 
the state provide concentrations measured in real time at AQMS in 1 h intervals. Queries for 268 
concentrations can be done via the internet or a smartphone to obtain the concentrations from the 269 
AQMS closest to the current location of the user. The closest fine dust concentrations can be 270 
determined using the Euclidean distance measurement method. In this study, the fine dust 271 
concentration maps deduced through Euclidean distance measurement were compared with those 272 
deduced using the particulate matter dispersion model developed in this study, and the differences 273 
were analyzed. GIS ArcMap 10.3 was used for the Euclidean distance measurements.  274 

2.3.2 Comparison and Analysis of Population Exposed to Fine Dust 275 

The exposed population was calculated, compared, and analyzed based on fine dust maps 276 
constructed using the existing methodology and particulate matter dispersion modeling. Census data 277 
were employed to determine the exposed population. The census data included the population 278 
residing in buildings and were provided by the state as populations within 100 m × 100 m areas. 279 
Downscaling these data, the population was calculated within 50 m × 50 m units for the target site in 280 
this study. A coverage model [32, 33] was employed for the population calculations within the 281 
concentration map, using the following equation: 282 

Coverage = 	∑ ܵ௣௣ .              (14) 283 

Here, ܵ௣ is the distribution area by fine dust concentration, and ݌ is the population. 284 
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3. Results 285 

3.1 Particulate Matter Dispersion Modeling Verification and Mapping  286 

In the simulations conducted in the present research, the variables were implemented to model 287 
an environment such as that used by [37], and the results of their wind tunnel experiment were 288 
compared with those obtained using the model developed in this study. Figure 4(a) depicts the data 289 
from the wind tunnel experiment conducted by [37], which are overlapped with the results of this 290 
study in Figure 4(b). 291 

 292 

Figure 4. (a) Data from the wind tunnel experiment conducted by Raupach and Legg [37], and (b) overlapping 293 
of the data from this study with that obtained by Raupach and Legg [37]. ࢞/ࢎ is the distance from the source 294 
point, ࢎ is the height of the source emissions, ࣂ૙തതതത is the air temperature relative to the ambient air 295 
temperature, and ࣂ∗ is the temperature scale. The calculations of Raupach and Legg [37] are designated as 296 
“Exp,” and those obtained using the model developed in this study are designated as “calculation.” 297 

The experimental results obtained in four environments (a–d) were compared based on the 298 
distance from the source point, and R2 was used to analyze the relationships between the data 299 
obtained in this study and those of [37] (Figure 5). 300 
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 301 

Figure 4. Correlation analysis of the results obtained in the preceding research with those of the present study. 302 
(a)–(d) Comparison of the experimental results obtained in four environments based on distance from the 303 
source point. 304 

The R2 values in environments (b) demonstrates exceptionally high explanatory power above 305 
0.9. Environments (a), (c) and (d) also exhibit high explanatory powers, above 0.7 and 0.8, respectively, 306 
demonstrating that the model developed in this study provides results similar to those obtained in 307 
the preceding research. 308 

Fine dust concentration maps based on input data from 1 h intervals can be constructed in 1 h 309 
intervals in particulate matter dispersion modeling. In this study, concentration maps were created 310 
based on a large amount of fine dust data, and the relationships between the results from particulate 311 
matter dispersion modeling and the data from AQMS was observed. Figure 6 depicts the PM2.5 312 
concentration maps obtained via dispersion modeling in the areas surrounding AQMS units. 313 
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 314 

Figure 5. PM2.5 dispersion modeling results. Days with (a) poor and (b) favorable amounts of fine dust 315 
according to the AQMS values. 316 

Figures 6(a) and (b) present the PM2.5 dispersion modeling concentration maps for one day. 317 
Figure 6(a) shows that the fine dust concentration is generally poor, while Figure 6(b) shows that the 318 
fine dust concentration is generally good. Similar concentrations can be found by comparing the 319 
measured concentrations of AQMS. 320 

Figure 7 presents the PM10 dispersion modeling results obtained in expanded areas 321 
surrounding the AQMS. 322 

  323 
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Figure 6. PM10 dispersion modeling results. (a) Days with poor fine dust values and (b) days with favorable 324 
fine dust values in the AQMS values. 325 

Figures 7(a) and (b) present the PM10 dispersion modeling concentration maps for one day. 326 
Figure 7(a) shows that the fine dust concentration is generally poor, while Figure 7(b) shows that the 327 
fine dust concentration is generally good. Similar concentrations can be found by comparing the 328 
measured concentrations of AQMS. 329 

Although the fine dust patterns constructed through modeling are similar to the AQMS values, 330 
they differ when examining only the cells in which AQMS units are installed. This issue will be 331 
addressed in section 4. 332 

3.2 Comparison and Analysis of Existing Methodology 333 

3.2.1 Comparison and Analysis of Fine Dust Concentration Maps 334 

The fine dust information that is provided to citizens is received from the AQMS closest to the 335 
query location. This existing methodology was employed to generate concentration maps using GIS 336 
Euclidean distance measurements. The maps for the four investigated areas were constructed by 337 
Euclidean distance measurement with the four AQMS devices in the target sites as starting points. 338 

The concentration maps created through particulate matter dispersion modeling according to 339 
the method developed in this study were generated based on the fine dust concentrations of over 340 
16,000 cells, where each concentration was calculated within a 50 m × 50 m cell of the target site. 341 

Figure 8 presents sample PM2.5 concentration maps created using the existing methodology and 342 
PM2.5 dispersion modeling. In Map 1, 2, and 3 of Figure 8, differences can be seen between the maps 343 
generated using the two techniques. According to the existing methodology, the PM2.5 344 
concentrations are “Good” or “Moderate,” while those obtained via dispersion modeling are 345 
frequently “Unhealthy” or “Very Unhealthy.” These differences could mean that the PM2.5 346 
concentration information provided to citizens is inaccurate. In map 4 of Figure 8, the results of the 347 
existing methodology and PM2.5 dispersion modeling are similar. While some of the modeling values 348 
are designated as “Unhealthy,” they comprise a relatively insignificant portion of the overall map. 349 
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   350 

Figure 7. Comparison of PM2.5 concentration maps constructed using the existing methodology and PM2.5 351 
dispersion modeling. 352 

Table 2 provides a comparison of the results obtained using the existing methodology and PM2.5 353 
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dispersion modeling as ratios. 354 

Table 2. Comparison of concentration ratios according to the existing methodology and PM2.5 dispersion 355 
modeling. 356 

Concentration 
(μg/m3) 

Existing Methodology (%) PM2.5 Dispersion Modeling (%) 
(1) 

20180203 
(2) 

20180217 
(3) 

20180323 
(4) 

20180428 
(1) 

20180203 
(2) 

20180217 
(3) 

20180323 
(4) 

20180428 
Good 
(0–15) 82.72024 56.30357 0 0 16.25 31.35714 46.66667 0 

Moderate 
(16–35) 17.27976 43.69643 100 100 52.19048 25.85714 33.20238 98.27976 

Unhealthy 
(36–75) 0 0 0 0 26.06548 27.76786 16.64286 1.720238 

Very 
Unhealthy 

(>76) 
0 0 0 0 5.494048 15.01786 3.488095 0 

 357 
In case 1 of Table 2, the differences between the concentrations obtained using the existing 358 

methodology and PM2.5 dispersion modeling can be seen quantitatively in Table 2. According to the 359 
existing methodology, the concentration is “Good,” meaning that most people can engage in outdoor 360 
activities safely in more than 80% of the area. However, according to the modeling results, more than 361 
30% of the concentrations are bad, and “Moderate” concentrations exist in more than 50% of the areas. 362 
The fine dust standards of WHO and developed nations state that “Moderate” concentrations can 363 
have adverse effects on vulnerable populations, such as children and the elderly. Aside from case 4 364 
of Table 2, there are significant differences between the values obtained using the two methodologies 365 
according to Table 2. 366 

Figure 9 presents PM10 concentration maps created using the existing methodology and 367 
particulate matter dispersion modeling. Map 1 of Figure 9 exhibits “Moderate” fine dust 368 
concentrations everywhere, but the modeling results display “Good,” “Moderate,” “Unhealthy,” and 369 
“Very Unhealthy” concentrations. Map 2 of Figure 9 only shows the areas near AQMS-3 as being 370 
“Unhealthy” and the other areas as “Moderate,” while the modeling results show “Good,” 371 
“Moderate,” “Unhealthy,” and “Very Unhealthy” concentrations. Map 3 of Figure 9 differs from the 372 
others. According to the existing methodology, the areas near AQMS-1 have “Unhealthy” 373 
concentrations, but the modeling results show “Good” or “Moderate” concentrations. Finally, map 4 374 
of Figure 9 indicates that the fine dust concentration is generally “Moderate,” but also exhibits 375 
extensive regions with “Very Unhealthy” concentrations. 376 
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 377 

Figure 8. Comparison of PM10 concentration maps constructed using the existing methodology and PM10 378 
dispersion modeling. 379 

Table 3 provides a comparison of the concentration results obtained using the existing 380 
methodology and PM10 dispersion modeling as ratios. 381 
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Table 3. Comparison of concentration ratios obtained using the existing methodology and PM10 dispersion 382 
modeling. 383 

Concentration 
(μg/m3) 

Existing Methodology (%) PM10 dispersion modeling (%) 
(1) 

20180108 
(2) 

20180114 
(3) 

20180208 
(4) 

20180428 
(1) 

20180108 
(2) 

20180114 
(3) 

20180208 
(4) 

20180428 
Good 
(0–30) 0 0 0 0 58.67857 47.38095 54.54762 48.66071 

Moderate 
(31–80) 100 82.72024 56.89881 100 36.65476 40.64286 43.09524 41.875 

Unhealthy 
(81–150) 0 17.27976 43.10119 0 4.642857 10.08929 2.357143 8.77381 

Very 
Unhealthy 

(>151) 
0 0 0 0 0.02381 1.886905 0 0.690476 

In case 1 of Table 3, all of the concentrations are “Moderate,” according to the existing 384 
methodology, but the modeling results show all of the concentration levels. The results for case 2 385 
indicate that approximately 2% of the sections have “Very Unhealthy” concentrations, but these 386 
regions constitute an area of roughly 800,000 m2, the majority of which is residential. The spatial 387 
interpretation will be addressed in greater detail in section 4. In case 3 of Table 3, the “Unhealthy” 388 
areas comprise approximately 43% according to the existing methodology, indicating restrictions on 389 
outdoor activities and ventilation, but these areas constitute only about 2% in the modeling results. 390 
In case 4 of Table 3, the overall target site is at a “Moderate” level according to the existing 391 
methodology, but the modeling results show PM10 concentrations at “Unhealthy” and “Very 392 
Unhealthy” levels in approximately 10% of the target site. Thus, an area of approximately 4,000,000 393 
m2, which was concentrated around residential areas, had high PM10 concentrations. 394 

3.2.2 Comparison and Analysis of Population Exposed to Fine Dust 395 

The populations exposed to PM2.5 according to the existing methodology and PM2.5 dispersion 396 
modeling were also compared. Figure 10 depicts the areas where people live on the PM2.5 397 
concentration maps constructed using the existing methodology and PM2.5 dispersion modeling. In 398 
map 1, all of the people are exposed to “Moderate” concentrations, according to the existing 399 
methodology, but based on the modeling results, approximately 100,000 people are exposed to 400 
“Unhealthy” and “Very Unhealthy” concentrations. In map 2, approximately 100,000 people are 401 
exposed to “Good” concentrations, according to the existing methodology, but the modeling results 402 
show that over 170,000 people are exposed to “Unhealthy” and “Very Unhealthy” levels. 403 
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 404 

Figure 9. Comparison of populations exposed to different PM2.5 concentrations, according to the existing 405 
methodology and PM2.5 dispersion modeling. 406 

Similarly, the populations exposed to PM10 according to the existing methodology and 407 
dispersion modeling were compared. Figure 11 depicts the areas where people live on the PM10 408 
concentration maps constructed using the existing methodology and dispersion modeling. In map 1, 409 
no one is exposed to “Good” or “Very Unhealthy” concentrations, according to the existing 410 
methodology, but the modeling results show that more than 70,000 people are exposed to “Good” 411 
levels and more than 10,000 are exposed to “Very Unhealthy” levels. In map 2, all of the population 412 
is exposed to “Moderate” concentrations, according to the existing methodology, but the modeling 413 
results show that the population is exposed to all concentration levels.  414 
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 415 

Figure 101. Comparison of populations exposed to various PM10 concentrations, according to the existing 416 
methodology and PM10 dispersion modeling. 417 

4. Discussion 418 

4.1 Particulate Matter Dispersion Modeling  419 

In the particulate matter dispersion model developed in the present study, the meteorological 420 
and Lagrangian particle dispersion models are utilized to determine the dispersion of fine dust in 421 
urban areas. Differences were observed between the fine dust concentration maps created using this 422 
model and those currently provided to citizens. As mentioned above, fine dust information is 423 
acquired from the nearest AQMS. However, [13] stated that the distribution of atmospheric pollutants 424 
must be predicted by taking into account numerous variables, including land use, pollution source 425 
location, traffic volume, and temperature. Thus, the particulate matter dispersion model that 426 
considers these variables is more precise than the existing methodology. 427 

There are various techniques for fine dust distribution prediction, but that currently used to 428 
provide information to citizens is a very simple one based on Euclidean distance measurement. In 429 
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this method, spaces are simply divided according to the distances measured between AQMS units, 430 
without regard to any other variables. The fine dust maps obtained using the existing methodology 431 
in Figures 8 and 9 depict the fine dust concentrations in four areas, and each can only be verified with 432 
identical numerical values. In addition, Tables 2 and 3 show that, according to the existing 433 
methodology, there are almost no “Unhealthy” and “Very Unhealthy” concentrations, which differs 434 
from the results obtained by modeling. The kriging method [15] is more precise than the existing 435 
methodology (Euclidean distance measurement), and can be used to forecast the air quality of an 436 
entire target site. Although this methodology has higher predictive accuracy with a higher number 437 
of real measurement values, some AQMS devices were installed in the target sites in this study, and 438 
thus, fine dust measurements could have been inaccurate if the above method had been employed. 439 
Kriging and IDW are spatial statistics methods based on GIS, but these methods would not have been 440 
able to reflect the characteristics of the target sites in this study, such as land use or emission source. 441 

Recently, high-dimensional data analysis methodologies have also been employed. 17] utilized 442 
meteorological and pollutant data obtained over the previous 6 years and forecasted future fine dust 443 
concentrations via machine learning methods. This methodology differs from that employed in the 444 
present study as it involves the use of numerous data points observed in the past to forecast the future. 445 
The methodology utilized in this study enables current concentrations or those 1 h later to be 446 
determined using meteorological data that is provided in 1 h intervals. Unlike in the study conducted 447 
by [18], it was possible to extract accurate fine dust concentrations through modeling that minutely 448 
reflected the characteristics of the investigated areas in the present study. Future research that merges 449 
the modeling employed in this study with machine learning or AI methods to deduce fine dust 450 
concentrations could be meaningful. 451 

The Lagrangian particle dispersion model used in the particulate matter dispersion model that 452 
was developed in this study is a 3D numerical analysis model that is primarily utilized with the 453 
Eulerian model when modeling atmospheric dispersion. However, it has the disadvantage that its 454 
results are difficult to compare with measurements from air pollution monitoring stations. In 455 
addition, the modeling results shown in Figures 6 and 7 indicate that there are differences between 456 
the AQMS fine dust concentrations and modeling values in identical cells. The reason for this 457 
discrepancy appears to be the complexity of the algorithm that includes the dispersion and movement 458 
of fine dust based on wind direction and speed, as well as land use and emission source. 459 

4.2 Spatial Distribution of Fine Dust and Exposed Populations 460 

The results of the particulate matter dispersion model developed in this study revealed high fine 461 
dust concentrations mainly in the southern and eastern areas, where a river was flowing horizontally 462 
through the center of the region. The target site had a mountainous area to the north whose parts 463 
remained mostly urbanized. The complex terrain was reflected in the developed particulate matter 464 
dispersion model to calculate the meteorological field. As such, even if the fine dust concentration 465 
was high in the south, the effects of wind blowing in the mountainous areas in the north resulted in 466 
low fine dust concentrations. AQMS-1, which is located in the north, also yielded mostly lower 467 
concentrations than the AQMS located in the remaining three areas. 468 

According to existing research methodologies, the AQMS data at one location represent the 469 
entirety of the corresponding area, while the modeling results provide fine dust concentrations by 470 
cell. The modeling results in Figure 8 reveal high PM2.5 concentrations in the south and east where 471 
there is a high density of buildings. The reason for this finding can be approached from a variety of 472 
perspectives. First, industrial complexes, which are the leading source of pollution, are located in the 473 
east, where there is also a developed road network with a significant volume of traffic. Studies in 474 
which fine dust concentrations due to vehicles have been measured on the sides of roads based on 475 
elevation [40, 41] have indicated that high fine dust concentrations occur at low elevations due to 476 
vehicles. It is also necessary to consider high fine dust concentration values that occur due to 477 
buildings. High-rise apartments and other buildings are located in areas with high concentrations, 478 
and 3D building and structural information was also utilized in the developed particulate matter 479 
dispersion model. Although they did not address buildings, [42] performed fine dust concentration 480 
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measurements by elevation along roads lined with tall trees on both sides. Their results indicated that 481 
there were higher fine dust concentrations than in the surrounding areas. It is possible that high 482 
buildings impact wind paths similarly, causing fine dust to stagnate between buildings. 483 

In addition to spatial fine dust concentration analysis, it is also necessary to analyze exposed 484 
populations, which is important for urban and environmental planning. A small portion of the 485 
population may be exposed in areas where poor fine dust concentrations are widely distributed, and 486 
a large portion of the people in densely populated areas may be exposed even if poor fine dust 487 
concentrations are narrowly distributed. For instance, the PM2.5 concentrations on February 17, 2018, 488 
in Figures 8 and 10 show that while approximately 40% of the target area had poor PM2.5 levels, 489 
around 70% of the entire population was exposed to those levels. Similarly, the PM10 concentrations 490 
on January 14, 2018, in Figures 9 and 11 reveal that while only 10% of the target area had poor PM10 491 
concentrations, over 40,000 people were exposed to those concentrations.  492 

To achieve cities that are free from fine dust, the creation of sustainable cities and environmental 493 
planning based on the above results that account for land use and exposed populations is necessary, 494 
as well as the use of green spaces and proper wind paths and continuous environmental monitoring 495 
of emission sources.  496 

5. Conclusions 497 

The present study was conducted with an awareness of the errors in the fine dust concentrations 498 
currently provided to citizens. Motivated by this awareness, the fine dust concentrations obtained 499 
using the existing methodology and dispersion modeling were compared with each other and 500 
analyzed. The exposed populations according to these two methodologies were also examined. While 501 
the fine dust concentrations currently available are simply representative values provided by AQMS, 502 
those obtained by modeling account for the present conditions of the target site and meteorological 503 
factors. Thus, the results yielded by the two methodologies differed from each other. Modeling was 504 
able to provide the detailed spatial distributions of fine dust concentrations and exposed populations. 505 
As the harm caused by fine dust is becoming more severe worldwide, this research will contribute to 506 
sustainable urban and environmental planning. 507 

Since the emission information used in the particulate matter dispersion model developed in 508 
this study was survey data rather than real-time observations, future studies should be conducted 509 
using real-time observations. In addition, when exposed populations are calculated in future studies, 510 
smartphone data should be employed, and the exposed population should be calculated by taking 511 
into account current location rather than place of residence. 512 

Above all, to provide fine dust concentrations, such as those deduced in this study, through 513 
smartphones or websites in real time, research and technical skills related to data connections, 514 
algorithm loading, and communications are needed from an information systems perspective, and 515 
systems and policies that can contribute to sustainable urban environments should be considered. 516 
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