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 10 

Abstract: The present work is focused on the numerical solution of the complete energy equation 11 
used in fluid film lubrication. The work was motivated by the fact the complete energy equation has 12 
no analytic solution that could be used for validations. Its accuracy and computation time are related 13 
to the employed numerical method and to the grid resolution. The natural discretization method 14 
(NDM) applied on different grids is systematically compared with the spectral method (the Lobatto 15 
Point Colocation Method or LPCM) with different polynomial degrees. A one dimensional inclined 16 
slider is used for the numerical tests and the energy equation is artificially decoupled from 17 
Reynolds. This approach enables to focus all the attention on the numerical solution of the energy 18 
equation. The results show that the LPCM is one or two orders of magnitudes more efficient than 19 
the NDM in terms of computation time. The energy equation is then coupled with Reynolds 20 
equation in a thermo-hydrodynamic analysis of the same 1D slider; the numerical results confirm 21 
again the efficiency of the LPCM. A thermo-hydrodynamic analysis of a two-lobe journal bearing is 22 
then presented as a practical application. 23 

Keywords: energy equation; numerical solution; Lobatto point quadrature; Legendre polynomials 24 
 25 

1. Introduction 26 
The flow of thin lubricant films in journal and thrust bearings is most often described by the 27 

Reynolds equation of lubrication coupled with the energy transport equation. The numerical solution 28 
of these two-coupled equations is a problem solved since many decades [1]. However, it requires a 29 
computational effort that can render transient analyses very time consuming. Therefore, efficient 30 
solvers and adequate coupling strategies become of major importance to perform complex analyses 31 
in a reasonable amount of time.  32 

If film rupture and reformation (traditionally designed as “cavitation”) are absent and if the flow 33 
regime is laminar and isothermal, then Reynolds equation is an elliptic linear differential equation. 34 
A direct solver can be used after its discretization in the thin film plane.  35 

The energy equation contains convective transport terms, conductive transport terms across the 36 
thin film and dissipative source terms arising from its coupling with the Reynolds equation. Its 37 
character is therefore not entirely elliptic and its solver is different from the one used for the Reynolds 38 
equation. Moreover, the energy equation must be discretized also across the thin fluid film and the 39 
number of discretization points in that direction must be large enough to capture temperature 40 
gradients near the walls. Therefore, the energy equation requires a substantially higher 41 
computational effort compared to the Reynolds equation. Developing an accurate and efficient solver 42 
for the energy equation is then an important step toward solving non-isothermal lubrication 43 
problems. The task is not simple because there is no analytical solution of the complete energy 44 
equation to be used for validations. For example, if the analytical solution of the laminar and 45 
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isothermal thin film flow in a one dimensional (1D) slider can be used to validate the Reynolds 46 
equation solver, no similar solution exists for the energy equation. For validation, a numerical solver 47 
for the energy equation will have to be tested with different wall boundary conditions and the 48 
numerical results must be checked for various grid densities. Such results are absent from the 49 
literature. 50 

As mentioned above, the energy equation must be discretized also across the film thickness. This 51 
renders its solution time consuming and the normal practice is to increase the number of 52 
discretization cells across the thin film until reaching a grid independent numerical solution. In 53 
natural discretization methods (NDM), such as finite difference or finite volumes methods, the 54 
variation of the temperature between two cells is linear. This leads to an important number of 55 
discretization cells across the thin film. An efficient approach for solving the energy equation was 56 
introduced by Elrod and uses the Legendre polynomials to describe the temperature variation across 57 
the thin film [2]. The coefficients of the Legendre polynomials expansion were first obtained by using 58 
a Galerkin approach. Later, Elrod used the collocation method at the Lobatto points, i.e. the roots of 59 
the derivative of the highest order of the used Legendre polynomial. This method known as the 60 
“Lobatto Points Collocation Method (LPCM)” proved to be more efficient [3].  61 

Despite its efficiency, the method was barely used likely because of its complexity. Thus, Moraru 62 
[4] extended the LPCM to compressible films by describing the variation of the density across the 63 
thin film with Legendre polynomials. Feng and Kaneko [5] used the LPCM to solve the energy 64 
equation in aerodynamic foil bearings. Lehne et al [6] presented a comprehensive review of the 65 
numerical solution strategies of the coupled Reynolds and energy equations including the LPCM. 66 
Except for the cited references, the literature is scarce in references dealing with the LPCM. 67 

This work presents a systematic comparison between the natural discretization method (NDM) 68 
of the energy equation and its LPCM approximation. In order to decouple Reynolds and energy 69 
equation, the viscosity is supposed to be constant and the flow laminar. A one dimensional (1D) 70 
inclined slider is used for the numerical tests. The Reynolds equation has then an analytical solution 71 
and the analysis is entirely focused on the energy equation. The results for the 1D slider compare 72 
both the number of points and the computational time required by the NDM and by the LPCM to 73 
obtain grid independent solutions.  The results show how the NDM is excessively time consuming 74 
when high accuracy is sought and the net economy of computational time brought by the LPCM 75 
approach. 76 

A thermo-hydrodynamic analyses of the 1D slider with coupled Reynolds and energy equation 77 
is then performed. The analyses highlight the same conclusions, namely the large superiority of the 78 
LPCM compared to NDM in terms of computational effort. Lastly, a two-lobe journal bearing with 79 
an axial supply groove is analyzed to demonstrate the accuracy that can be expected with simple, 80 
non-triggered boundary conditions for the energy equation. 81 

2. The numerical solution of the energy equation based on the natural discretization method 82 
This 1D inclined slider shown in Figure 1 is used in [2] and [3] for the resolution of the Reynolds 83 

equation coupled with the energy equation. The current work is focused on the resolution of the 84 
energy equation decoupled from Reynolds equation for which an analytical solution is used. This 85 
gives an accurate numerical solution of the energy equation without the influence of the coupling 86 
with pressure and velocities affected by numerical uncertainties. The numerical data used is detailed 87 
in Table 1. 88 
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Figure 1. The 1D inclined slider 89 

Table 1. The data used for the 1D slider 

Density 휌  800	[푘푔/푚 ] Inlet thickness  ℎ  1.8288푒 	[푚] 

Specific heat capacity 퐶  2000		[퐽/푘푔퐾] Outlet thickness ℎ  0.9144푒 	[푚] 

Thermal conductivity	휆 0.14	[	푊/푚퐾] Slide length  퐿 0.18288	[푚] 

Dynamic viscosity  휂  0.081	[푃푎. 푠] Ambient temperature 푇푎 20	[°퐶] 

Lower wall operating speed  푈 31.946	[푚/푠] Ambient pressure 푃푎 1	[푏푎푟] 

 90 
The conservative form of the energy equation for the lubrication thin film flow of an 91 

incompressible fluid writes [1]1: 92 

휌 퐶
휕(푢푇)
휕푥 +

휕(푣푇)
휕푦 = 	휆

휕 푇
휕푦 + 휂

휕푢
휕푦  (1) 

It contains the convection transport terms on its left hand side and the temperature diffusion 93 
and dissipation terms on its right hand side. The terms on the right hand side are simplified according 94 
to the lubrication thin film assumption, i.e. only derivatives across the thin film are taken into account.  95 

The dimensionless coordinate 푦 is introduced for taking into account that the film thickness h 96 
is not constant.  97 

푦 = 푦ℎ(푥) (2) 

Following this coordinate transformation, the energy equation (1) for the 1D slider becomes: 98 

휌 퐶
휕(푢푇)
휕푥 −

푦
ℎ
휕ℎ
휕푥

휕(푢푇)
휕푦 +

1
ℎ
휕(푣푇)
휕푦 = 휆

1
ℎ
휕²푇
휕푦²	+	휂

1
ℎ

휕푢
휕푦  (3) 

The slider is discretized with 2D computational cells as depicted in Error! Reference source not 99 
found.. Following the variable change described by (2), the computational domain is rectangular and 100 
orthogonal. The computational cell have four plane faces, denoted by lower-case letters 101 
corresponding to their direction (e, w, n, s) with respect to the central node P . 102 

                                                
1 Other forms of the energy equation are necessary for a compressible lubricant, for example using the 

(total) internal energy or the (total) enthalpy as a field variable. 
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Figure 2. A typical 2D computational cell and the notation used for a 2D grid 103 

In the natural discretization numerical approach, the energy equation is solved with the finite 104 
volume method [7]. Equation (3) is therefore integrated over the control volumes corresponding to 105 
the 2D computational cells:  106 

휌 퐶
휕(푢푇)
휕푥 −

푦
ℎ
휕ℎ
휕푥

휕(푢푇)
휕푦 +

1
ℎ
휕(푣푇)
휕푦 푑푥푑푦

= 휆
1
ℎ

휕 푇
휕푦 푑푥푑푦	+	휂

1
ℎ

휕푢
휕푦 ∆푥∆푦 

(4) 

Where the convection transport terms in x direction for example can be expressed: 107 
휕(푢푇)
휕푥 푑푥푑푦 = [(푢푇) − (푢푇) ]∆푦 (5) 

An upwind discretization technique is used for the convective transport terms to avoid 108 
numerical instability [7]. For example at the east face of the control volume, the temperature 푇  is 109 
up-winded based on the fluid flow direction. Mathematically, this can be express as: 110 

(푢푇) = 푢 −푇
1 − 푠푔푛(푢 )

2 + 푇
1 − 푠푔푛(푢 )

2 + 푇  (6) 

This yields the discretization form of equation (3): 111 
(푎 + 푎 + 푎 + 푎 )푇 − 푎 푇 − 푎 푇 − 푎 푇 − 푎 푇 − 푎 (푇 − 푇 )

=
휆

휌 퐶 ℎ
(푇 − 2푇 + 푇 )

∆푥
∆푦 +

휂
휌 퐶 ℎ 	

휕푢
휕푦 	∆푥∆푦 

(7) 

Where: 112 

푎 	= [ ( ) ] ∆푦;   푎 = [ ( ) ]∆푦; 

푎 = [ ( ) ] ∆ ;  	푎 = [ ( ) ] ∆  ; 

푎 =
푢 푦
2

휕ℎ
휕푥

∆푥
ℎ  

(8) 

As stated in the introduction, the goal of the present work is to investigate the accuracy of the 113 
numerical solution of the energy equation given by the NDM and LPCM methods. Therefore, in order 114 
to avoid the uncertainties introduced by the numerical solution of the Reynolds equation, its analytic 115 
solution for the 1D slider is used. 116 
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Several other simplifying assumptions are needed for decoupling the Reynolds and the energy 117 
equation. Thus, the viscosity is considered constant and the flow regime laminar. Following the 118 
analytical solution, the pressure and the velocity in the 1D slider are [1]: 119 

푝(푥) =
6휂 푈퐿
ℎ − ℎ ℎ −

ℎ ℎ
ℎ + ℎ ℎ −

1
ℎ + ℎ  (9) 

푢(푥, 푦) = ℎ
푦(푦 − 1)
2휂

휕푝
휕푥 +

(1 − 푦)푈		 (10) 

The velocity component across the thin film, 	푣	 , is deduced by integrating the continuity 120 
equation (11) over the film thickness: 121 

휕푢
휕푥 +

1
ℎ
휕푣
휕푦 −

푦
ℎ
푑ℎ
푑푥

휕푢
휕푦 = 0 (11) 

With the boundary conditions 푣(푥, 푦 = 0) = 0	and	푣(푥, 푦 = 1) = 0 , this yields 122 

푣(푥, 푦) = −ℎ
휕푢
휕푥 푑푦 +

푑ℎ
푑푥 푦

휕푢
휕푦 푑푦 (12) 

It is to be underlined that in following approach only the BC at 푦 = 0 is used, while the second 123 
BC at 푦 = 1 is used to check the accuracy of the numerical integration.  124 

The discretized system of equations given by (7) is solved using any numerical procedure for a 125 
linear system with a positive definite matrix. Grids with 80 equidistant cells in the x direction and 126 
different number of cells across the film thickness were used. The number of equidistant grid cells 127 
across the film thickness was Ny=10, 20, 40, 50, 80, 100, 160. In a first test, the ambient temperature 128 
20°C was imposed on the lower and upper walls, so as the inlet and outlet temperatures. The 129 
dimensionless wall temperature gradient was monitored2 . This dimensionless wall temperature 130 
gradient is defined by: 131 

푑푇(푥, 푦)
푑푦 =

1
푇
푑푇(푥, 푦)
푑푦  (13) 

Where 푇 = 푇 − 273퐾 is a reference temperature.  132 
The results are depicted in Figure 3 and Figure 4 and show that the curves become superposed 133 

starting with Ny=80 cells. An estimation of the accuracy is obtained by using the relative error of the 134 
wall temperature gradients which is defined in (14). 135 

휀 =

1
푛∑

푑푇 (푥 , 푦)
푑푦 −

푑푇 (푥 ,푦)
푑푦

1
푛∑

푑푇 (푥 , 푦)
푑푦

		푓표푟	푦 = 0	표푟	푦 = 1 (14) 

Where the	푇 	obtained with the finest grid Ny=160 is considered as the reference solution. 136 
The variation of these errors with the number of grid cells across the film thickness is depicted 137 

in Figure 5(a). For Ny=80 the dimensionless error is less than 3% and the accuracy of the numerical 138 
solution is acceptable. 139 

The computational time is depicted in Figure 5(b). A rapid increase of the computational time 140 
with the grid cells must be underlined. For example, the calculation case with Ny=80 grid cells 141 
requires 1,844s while the computational time of the case with Ny=160 cells is one order of magnitude 142 
higher. 143 

                                                
2 This is equivalent to monitoring the wall heat fluxes. 
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Figure 3. Dimensionless temperature gradient at the lower wall for NDM solution and imposed 144 

wall temperatures (h1/h2=2, Nx=80 cells) 145 

 146 

 
Figure 4. Dimensionless temperature gradient at the upper wall for NDM solution and imposed 147 

wall temperatures (h1/h2=2, Nx=80 cells) 148 

 
(a) 

 
(b) 

Figure 5. (a) Relative error and (b) computational time of NDM solution for Y direction grid 149 
refinements (h1/h2=2, Nx=80 cells) 150 

 151 
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3. The numerical solution of the energy equation based on the Lobatto points collocation method 152 

The Lobatto Point Collocation Method (LPCM) is based on the approximation of the temperature 153 
with Legendre polynomials across the film thickness. Because Legendre polynomials are defined on 154 
the interval	[−1, 1], the following coordinate transformation is used: 155 

푦 =
(휁 + 1)ℎ

2 					 (15) 

Where 휁 is the new dimensionless coordinate across the film thickness.  156 
Following the coordinate transformation, the energy equation (1) becomes: 157 

휌퐶
휕(푢푇)
휕푥 −

(휁 + 1)
ℎ

휕ℎ
휕푥

휕(푢푇)
휕휁 +

2
ℎ
휕(푣푇)
휕휁 = 휆

4
ℎ
휕²푇
휕휁² 	+	휂

4
ℎ

휕푢
휕휁  (16) 

For an incompressible lubricant with constant viscosity, only the variable temperature 푇  is 158 
approximated across the film thickness. 159 

푇(푥, 휁) = 푇 (푥)푃 (휁) (17) 

Where 푁  is the highest order of the Legendre polynomials, 푃 (휁)  its jth order and 푇 (푥)  its jth 160 
coefficient. 161 

This description holds for every point in the 2D computational domain. Compared to the NDM 162 
which computes directly the temperature by solving the energy equation discretized over the film 163 
thickness, the LPCM calculates the polynomial coefficients of temperature	푇 . The coefficients of the 164 
Legendre polynomials expansion can be obtained using different methods but it is accepted that the 165 
most reliable is the collocation method using the Lobatto points. The Lobatto points are the roots of 166 
the derivative of the highest degree of the Legendre polynomial (i.e. the roots of	푑푃 푑휁⁄ ).  167 

For a given position in the x direction, the temperature is replaced by its approximation (17) 168 
across the fluid film and the energy equation (16) is enforced to hold true for each Lobatto 169 
point,	휁 	, 푗 ∈ [1,… , 푁 − 1]. This leads to N-1 partial differential equations with the unknown	푇 . The 170 
boundary conditions are applied at the two walls, 휁 = −1 and	휁 = 1, which leads the other two 171 
equations. In total, a system of N+1 equations for the N+1 unknown 푇  is obtained. 172 

Figure 6 and Figure 7 depict the dimensionless wall temperature gradient obtained with an 173 
increasing order of the Legendre polynomials. 174 

 
Figure 6. Dimensionless temperature gradient at the lower wall for LPCM solution and imposed 175 

wall temperatures (h1/h2=2, Nx=80 cells) 176 
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Figure 7. Dimensionless temperature gradient at the upper wall for LPCM solution and imposed 177 

wall temperatures (h1/h2=2, Nx=80 cells) 178 

The reference results used for comparison are given by the NDM with Ny=80 grid cells. The 179 
relative error between the reference results and the wall temperature gradient obtained with the 180 
LPCM is defined as:  181 

휀 =

1
푛∑

2휕푇 (푥 , 휁)
휕휁 −

휕푇 (푥 ,푦)
푑푦

1
푛∑

푑푇 (푥 ,푦)
푑푦

			 (18) 

Where 휁 = 1 or 휁 = −1 for LPCM and 푦 = 1 or 푦 = 0 for NDM. 182 
The relative errors are depicted in Figure 8(a) and show that the approximation of the 183 

temperature variation with Legendre polynomials of degree 8 yields grid independent solution. It is 184 
to be remarked that a non-negligible difference holds for the temperature gradient at the lower wall 185 
(Figure 6) where the error converges toward 6%. This is due the uncertainties of the reference results 186 
obtained with the NDM solution and Ny=80 that are used for comparisons. If comparing the results 187 
of the LPCM solution with the NDM solution and Ny=160, the lower wall relative error decreases to 188 
2%. This shows the high accuracy of the LPCM solution with Legendre polynomials of degree no 189 
larger than 8. 190 

The computational effort is depicted in Figure 8(b). Again, the reference NDM results are 191 
obtained with Ny=80. Compared with the reference solution, the computational time of the LPCM 192 
solution is divided by four or three because only a limited expansion of Legendre polynomials is 193 
sufficient to obtain grid independent results. 194 

For comparison, the temperature fields obtained with LPCM (NLobatto=10) and NDM (Ny=80) are 195 
depicted in Figure A1 and A2 of the Appendix. 196 

 197 
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(a) 

 
(b) 

Figure 8. Relative error (a) and computational time (b) of the LPCM solution for Y direction grid 198 
refinements (h1/h2=2, Nx=80 cells) 199 

4. Further comparison of numerical results obtained by NDM and LPCM 200 

The previous results were obtained for a linear converging 1D slider with inlet/outlet film 201 
thickness ratio h1/h2=2, imposed wall temperatures (Dirichlet BC) and completely decoupled from 202 
Reynolds equation. Other simple cases of the converging 1D slider are also investigated and bring 203 
interesting conclusions.  204 

4.1. Different geometrical configurations of 1D slider 205 
Two other inlet/outlet film thickness ratios, h1/h2=4 and h1/h2=8 were investigated, while 206 

keeping the same wall temperature boundary conditions and the decoupled Reynolds equation. The 207 
increased inlet/outlet film thickness ratio lead to a slower convergence of the NDM results with the 208 
Y grid refinements, therefore the solution obtained with Ny=160 was considered as the reference 209 
results. The number of computational cells in x direction was kept the same (Nx=80 cells). 210 

The results obtained for h1/h2=4 are depicted from Figure 9 to Figure 11.  211 
 212 

 
Figure 9. Dimensionless temperature gradient at the lower wall for LPCM solution and imposed 213 

wall temperatures (h1/h2=4, Nx=80 cells) 214 
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Figure 10. Dimensionless temperature gradient at the upper wall for LPCM solution and imposed 215 

wall temperatures (h1/h2=4, Nx=80 cells) 216 

 
(a) 

 
(b) 

Figure 11. Relative error (a) and computational time (b) of LPCM solution for Y direction grid 217 
refinements (h1/h2=4, Nx=80 cells) 218 

The lower and upper wall results show different trends. The upper wall temperature gradient 219 
reaches grid convergence starting with N=10 Legendre polynomials while the resolution of the lower 220 
wall gradient needs N=16 Legendre polynomials. However, Figure 11(b) shows that even when using 221 
a high number of Legendre polynomials, the LPCM requires one order of magnitude less 222 
computational time than the NDM of the same accuracy.  223 

The results obtained for h1/h2=8 are depicted from Figure 12 to Figure 14. The same remarks as 224 
for h1/h2=4 can be drawn except for the fact that this time both the upper and the lower wall 225 
temperature reach grid convergence only with N=16 Legendre polynomials. Figure 14(b) shows that 226 
the computational time of the NDM with Ny=160 increases for this calculation case. It can be seen 227 
from Figure 11(b) and Figure 14(b) that the computational effort of the NDM increases one order of 228 
magnitude with increasing the ratio h1/h2 from 4 to 8. This is not the case for the LPCM that requires 229 
the same computational time for these two cases, one or two order of magnitude lower than the 230 
LPCM. LPCM remains therefore largely superior to NDM in terms of computational time. 231 

The temperature fields obtained with LPCM (NLobatto=10) and NDM (Ny=160) are depicted in 232 
Figure A3-A6 of the Appendix. 233 

 234 
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Figure 12. Dimensionless temperature gradient at the lower wall for LPCM solution and imposed 235 

wall temperatures (h1/h2=8, Nx=80 cells) 236 

 
Figure 13. Dimensionless temperature gradient at the upper wall for LPCM solution and imposed 237 

wall temperatures (h1/h2=8, Nx=80 cells) 238 

 
(a) 

 
(b) 

Figure 14. Relative error (a) and computational time (b) of LPCM solution for Y direction grid 239 
refinements (h1/h2=8, Nx=80 cells) 240 

 241 
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4.2. Different thermal boundary conditions applied to 1D slider 242 

The previous cases dealt with imposed wall temperatures while the wall temperature gradient 243 
was a calculation result. In the following test, the lower wall of the 1D slider is adiabatic, i.e. 244 
(휕푇 휕푦⁄ ) = 0 while the temperature of the upper wall is	푇 = 30°퐶. The film thickness 245 
ratio is h1/h2=4 and the inlet temperature	푇 = 20°퐶. For the LPCM, 10 Lobatto points are used 246 
and the results are compared to the NDM (Nx=80 cells and Ny=160 cells all equidistant). Figure 15 247 
and Figure 16 show the perfect resolution of the upper wall temperature gradient and of the lower 248 
wall temperature.  249 

 
Figure 15. Dimensionless temperature gradient at the upper wall  250 

(퐓퐔퐩퐩퐞퐫퐖 = ퟑퟎ°퐂, (훛퐓 훛퐲⁄ )퐋퐨퐰퐞퐫퐖 = ퟎ,푻풊풏풍풆풕 = ퟐퟎ°푪;푻풐풖풕풍풆풕 = ퟐퟎ°푪) 251 

 
Figure 16. Temperature at the lower wall  252 

(퐓퐔퐩퐩퐞퐫퐖 = ퟑퟎ°퐂, (훛퐓 훛퐲⁄ )퐋퐨퐰퐞퐫퐖 = ퟎ,푻풊풏풍풆풕 = ퟐퟎ°푪;푻풐풖풕풍풆풕 = ퟐퟎ°푪) 253 

A different test case consists of imposing different wall temperatures, 	푇 = 30°퐶 , 254 
푇 = 20°퐶 and 푇 = 20°퐶. The LPCM is performed with 10 and 14 Lobatto points and the 255 
previous resolution was used for the NDM. Results are depicted in Figure 17 and Figure 18 and show 256 
that for the lower wall errors subsist close to the inlet section. The errors remain present with 257 
increasing the number of Lobatto points. 258 
The temperature fields of these two last cases are depicted in Figure A7-A10 of the Appendix. 259 
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Figure 17. Dimensionless temperature gradient at the upper wall  260 
(퐓퐔퐩퐩퐞퐫퐖 = ퟑퟎ°퐂, 퐓퐋퐨퐰퐞퐫퐖 = ퟐퟎ°퐂, 푻풊풏풍풆풕 = ퟐퟎ°푪;	푻풐풖풕풍풆풕 = ퟐퟎ°푪) 261 

 
Figure 18. Dimensionless temperature gradient at the lower wall  262 
(퐓퐔퐩퐩퐞퐫퐖 = ퟑퟎ°퐂, 퐓퐋퐨퐰퐞퐫퐖 = ퟐퟎ°퐂, 푻풊풏풍풆풕 = ퟐퟎ°푪;	푻풐풖풕풍풆풕 = ퟐퟎ°푪) 263 

5. Results for the energy equation coupled with Reynolds equation 264 

The above presented results showed the grid refinements required for obtaining accurate 265 
solutions of the energy equation when decoupled from the Reynolds equation. The viscosity of a 266 
liquid lubricant depends strongly on the temperature and therefore decoupling is not possible3. For 267 
this reason, data found in the literature deal directly with the complete thermo-hydrodynamic 268 
analysis of the 1D slider [3] presented previously.  269 

This thermo-hydrodynamic (THD) coupled analysis is subsequently performed for the 1D slider 270 
case. The results of the LPCM are compared with the data from [3]. Their grid convergence and the 271 
computational time are analyzed by comparisons with NDM results. This step completes the 272 
validation of the decoupled energy equation described in the previous paragraphs.  273 

A temperature dependent viscosity following an exponentially decaying law 	휂(푇) =274 
0.13885푒 . ( ) is used to replace the constant viscosity	휂 . The rest of the geometrical and 275 
physical parameters are the same as in the previous case. The inlet and wall temperatures are equal 276 
to the ambient reference temperature. As for the variations of the temperature across the thin film, 277 
                                                
3 The same is not true for aerodynamic bearings operating with very thin air films.  
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the terms in the generalized Reynolds equation with variable viscosity are also discretized by 278 
Legendre polynomials and the coefficients are obtained by collocation at the Lobatto points. 279 

The computational domain of the 1D slider is discretized using Nx=30 equidistant cells in the 280 
main flow direction and 10 Lobatto points across the film thickness. The Reynolds and the energy 281 
equations are numerically solved following a segregated approach. 282 

Figure 19(a) compares the pressure variation in the 1D slider obtained with the LPCM and the 283 
one given in [3]. Figure 19(b) presents the variation of the outlet temperature difference across the 284 
film thickness. Both the pressure and the temperature variations obtained with the LPCM are in 285 
agreement with [3]. 286 

 287 

 
(a) 

 
(b) 

Figure 19. (a) Pressure variation in the 1D slider (h1/h2=2), coupled THD solution and (b) Outlet 288 
temperature variation across the film thickness in the 1D slider (h1/h2=2), coupled THD solution 289 

This 1D non-isothermal slider is also used to compare the efficiency of the LPCM with the NDM. 290 
Several calculations are performed with the NDM method in order to check the grid convergence and 291 
for obtaining results that could serve as a reference. These tests use seven grid refined in the Y 292 
direction (Ny=10, 20, 40, 60, 80, 100, and 120 equally spaced control volumes) while a constant number 293 
of 30 control volumes is used in the x direction. The relative error 휀  in terms of wall temperature 294 
gradients between two successive grids is defined as: 295 

휀 =

1
푛∑

휕푇 (푦)
휕푦 − 휕푇 (푦)

휕푦

1
푛∑

휕푇 (푦)
휕푦

		 (19) 

Where the subscript K indicates the grid refinement level in the y direction.  296 
Figure 20(a) shows that a minimum number of 40 cells in y direction is necessary to reach a 297 

satisfactory grid-independent solution. The computational time is depicted in Figure 20(b). Thus, the 298 
solution obtained by NDM with 40 equally spaced cells over the film thickness is considered as the 299 
reference for the 1D thermo-hydrodynamic slider test case.  300 

 301 
 302 
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(a) 

 
(b) 

Figure 20. (a) Relative error 휺푲 of the NDM method for different grid refinements and (b) 303 
Computational time of NDM for different numbers of cells over the film thickness for the 1D THD 304 

slider 305 

The LPCM results obtained with different numbers of Lobatto points are compared with the 306 
reference NDM solution. In Figure 21(a), the relative error drops rapidly and remains below 2% 307 
starting with 11 Lobatto points. Figure 21(b) shows that the computational time for the LPCM does 308 
not exceed 2 seconds while the reference method takes about 18 seconds.  309 

 
(a) 

 
(b) 

Figure 21. (a) Relative error 훆퐍 between LPCM and the reference NDM Ny=30 and (b) 310 
Computational time of LPCM compared to the reference NDM Ny=30 results for the 1D THD slider. 311 

6. Example of a two-lobe journal bearing 312 

The coupled Reynolds and energy equations represent a solver for thermo-hydrodynamic 313 
problems in lubricated journal and thrust bearings. However, pure validations are more difficult in 314 
the context of lubricated bearings because of the additional effects such as the film rupture and 315 
reformation (cavitation) that must be modeled and dealt with ([9], [10], [11]).  316 

Not the least, several user-defined heat transfer parameters must be specified and this is mainly 317 
done in a trial and error approach. The uncertainties in this kind of problems may therefore be quite 318 
important and comparisons with experimental data are not exactly validations of the numerical 319 
approaches.  320 

For the completeness of the present work, the numerical analysis of a real journal bearing is 321 
presented in the following. The recent experimental results published by Giraudeau et al. [8] in 2016 322 
for a two-lobe journal bearing with axial supply grooves are used for comparing numerical 323 
predictions with experimental results. The length of the tested bearing is 68.4 mm and its diameter is 324 
100 mm. The radial assembly clearance is 68 휇푚 while the radial bearing clearance is 143	휇푚. The 325 
bearing is lubricated by an ISO VG 46 oil supplied at a constant pressure of 0.17 MPa and a 326 
temperature of 43°C. The following oil characteristics are used for the calculations:	휌 = 850	푘푔/푚 , 327 
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퐶 = 2000	퐽/(푘푔퐾)  and 	휆 = 0.13	푊/(푚퐾) . The viscosity of the oil is 	0.0416	푃푎. 푠  at 	40°퐶  and 328 
	0.0191	푃푎. 푠 at	60°퐶. The variation is described by an exponentially decaying law.  329 

Only the results for the lower, loaded lobe are shown here. Cavitation was dealt with by using 330 
the algorithm introduced in [11]. This algorithm uses a free boundary formulation of the 331 
incompressible Reynolds equation. The problem is then solved with an efficient solver based on 332 
Fischer-Burmeister form, Newton algorithm and Shur’s complement. 333 

The shaft is considered to have a constant temperature estimated from experiments while 334 
adiabatic wall conditions are imposed on the bushing. The computational domain is discretized using 335 
32×16 cells in circumferential and axial directions while 11 Lobatto points are used to describe the 336 
temperature variation across the fluid film.  337 

Figure 22(a) and Figure 22(b) depict the pressure and the temperature variations in the 338 
circumferential direction of the bearing mid plane. The predicted pressures show good agreement 339 
with the measurements. The predicted temperature shows a reasonable agreement with the 340 
measurements and the quality of the prediction could be improved by including the thermal 341 
deformation of the bushing and by refining the boundary conditions for the energy equation. 342 

 
(a) 

 
(b) 

Figure 22. (a) Comparison of measured pressures and current numerical results in the mid plane of 343 
the loaded lobe (3500 rpm, 6kN load) and (b) Comparisons of measured temperatures and current 344 

numerical results in the mid plane of the loaded lobe (3500 rpm, 6kN load) 345 

7. Conclusions 346 

The present work is focused on the numerical solution of the energy equation in very simple test 347 
cases as part of thin fluid films lubrication. The work was motivated by the fact that the complete 348 
energy equation has no analytic solution that can be used for comparisons in validations. Therefore, 349 
an energy equation decoupled from Reynolds equation in the case of the 1D slider was imagined for 350 
which the analytical solution of the velocity field was used. The second concern was an efficient 351 
solver for the energy equation. Two numerical methods were compared, the NDM based on a finite 352 
volume discretization and the LPCM based on a Legendre polynomial approximation of the 353 
temperature across the film thickness. The LPCM proved to be one or two orders of magnitudes more 354 
efficient than the NDM in terms of computation time. This is not negligible if one takes into account 355 
that when coupled, the Reynolds and the energy equations are numerically solved in segregated and 356 
iterative manner. The thermo-hydrodynamic calculation of a 1D slider (i.e. for coupled Reynolds and 357 
energy equation) confirm this conclusion.  358 

Comparisons of the LPCM thermo-hydrodynamic analyses with the experimental results 359 
obtained in a two lobes journal bearing are also presented. However, they are not considered as real 360 
validations of the numerical model since very simple and intuitive boundary conditions of the energy 361 
equation were used. Alternatively, the results presented for the 1D slider may be used for validating 362 
the first development steps of any solver based on the energy equation for thin film flows. 363 

 364 
 365 
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Appendix: Temperature fields 366 

  
ℎ1/ℎ2 = 2, 푇 = 20°퐶, 푇 = 20°, 푇 = 20°퐶,				푇 = 20°퐶 

Figure A1: LPCM, NLobatto=10 Figure A2: NDM, Ny=80  

  

 
ℎ1/ℎ2 = 4, 푇 = 20°퐶, 푇 = 20°, 푇 = 20°퐶,			푇 = 20°퐶 

Figure A3: LPCM, NLobatto=10 Figure A4: NDM, Ny=160  

  

ℎ1/ℎ2 = 8, 푇 = 20°퐶, 푇 = 20°, 푇 = 20°퐶,			푇 = 20°퐶 

Figure A5: LPCM, NLobatto=10 Figure A6: NDM, Ny=160  
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ℎ1/ℎ2 = 4, 푇 = 30°퐶, (휕푇 휕푦⁄ ) = 0, 푇 = 20°퐶,				푇 = 20°퐶	 

Figure A7: LPCM, NLobatto=10 Figure A8: NDM, Ny=160  

  

 
ℎ1/ℎ2 = 4, 푇 = 30°퐶, 푇 = 20°, 푇 = 20°퐶,			푇 = 20°퐶	 

Figure A9: LPCM, NLobatto=10 Figure A10: NDM, Ny=160  
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